

Part III Symmetry and Bonding

Chapter 6 Hückel Molecular Orbitals

Prof. Dr. Xin Lu (吕鑫)

Email: xinlu@xmu.edu.cn

http://pcossgroup.xmu.edu.cn/old/users/xlu/group/courses/theochem/

6. Hückel molecular orbitals (HMO) 休克尔分子轨道

- So far we have just been drawing up *qualitative MO diagrams* aided by symmetry considerations *without computing the energies and forms of any molecular orbitals*.
- Of course, it is now possible to compute the detailed form and energy of the MOs using a computer program such as *Hyperchem*, *G16*, *Dmol3*, *ADF*, *Molpro etc*.
- Anyway, it is both useful and instructive to *do some MO calculations 'by hand'*. This topic will be talked about in this chapter.

6.1 The LCAO method

• The simplest and most intuitive way to construct molecular orbitals is to use *the linear* combination of atomic orbitals (LCAO) method, which we have been doing up to now.

Each MO ψ is expressed as a linear combination of atomic orbitals, Φ_1, Φ_2, \ldots ,

$$\boldsymbol{\psi} = \boldsymbol{c}_1 \boldsymbol{\Phi}_1 + \boldsymbol{c}_2 \boldsymbol{\Phi}_2 + \boldsymbol{c}_3 \boldsymbol{\Phi}_3 + \cdots$$

 $\Phi_i \sim i$ th AO (also known as one of the *basis functions*) used to construct the MO. $c_i \sim$ the coefficient which indicates the relative contribution of an AO Φ_i to the MO.

• The problem we have to solve is finding the values of the *coefficients* and the corresponding *energy for each MO*.

The key principle to solve such a problem is the variation theorem.

• For a MO expressed as an *LCAO* sum: $\psi = \sum_{i=1}^{N} c_i \Phi_i$

end up here with a

certain value of *E* if

we knew every terms

within this expression.

$$\psi = \sum_{i=1}^{n} c_i \Phi_i$$

the expectation value \mathbf{E} of the *Hamiltonian* is calculated in the usual way:

$$E = \langle \widehat{H} \rangle = \frac{\int \psi \widehat{H} \psi d\tau}{\int \psi \psi d\tau} = \frac{\int (\sum_{i} c_{i} \Phi_{i}) \widehat{H} (\sum_{j} c_{j} \Phi_{j}) d\tau}{\int (\sum_{i} c_{i} \Phi_{i}) (\sum_{j} c_{j} \Phi_{j}) d\tau} = \frac{\sum_{i,j} c_{i} c_{j} \int \Phi_{i} \widehat{H} \Phi_{j} d\tau}{\sum_{i,j} c_{i} c_{j} \int \Phi_{i} \Phi_{j} d\tau} \langle \nabla_{i} \nabla_{i} \nabla_{i} \nabla_{j} \nabla_{j} \nabla_{i} \nabla_{j} \nabla_{j} \nabla_{i} \nabla_{j} \nabla_$$

which involves computation of the following two types of integrals:

$$H_{ij} = \int \Phi_i \widehat{H} \Phi_j d\tau \qquad S_{ij} = \int \Phi_i \Phi_j d\tau$$

 S_{ii} ~ the *overlap integral* between the two basis functions Φ_i and Φ_j .

 $H_{ii} \sim \text{a matrix element}$ of the operator \hat{H} (the Hamiltonian for the system).

- According to the *variation principle*, we need to minimize *E* with respect to the coefficients c_i , i.e. $\partial E/\partial c_i=0$.
- Now we rewrite the equation as, $E \sum_{i,j} c_i c_j S_{ij} = \sum_{i,j} c_i c_j H_{ij}$

6.1.1 Derivation of the secular equations

• We then take the (partial) derivative of both sides with respect to the coefficient c_i .

$$\frac{\partial}{\partial c_i} \left[E \sum_{ij} c_i c_j S_{ij} \right] = \frac{\partial}{\partial c_i} \left[\sum_{ij} c_i c_j H_{ij} \right]$$

$$\frac{\partial E}{\partial c_i} \sum_{ij} c_i c_j S_{ij} + E \sum_j c_j S_{ij} = \sum_j c_j H_{ij}$$

• Demanding $\partial E / \partial c_i = 0$, then we have

$$E\sum_{j} c_{j}S_{ij} = \sum_{j} c_{j}H_{ij} \longrightarrow \sum_{j} (H_{ij} - ES_{ij})c_{j} = 0$$

(i = 1,2,...,N; i.e., a total of N equations!)

Derivation of the secular equations

• The N equations can be conveniently expressed in matrix form (N is the number of basis functions):

$$\begin{bmatrix} \begin{pmatrix} H_{11} & H_{12} & H_{13} & \dots & H_{1N} \\ H_{21} & H_{22} & H_{23} & \dots & H_{2N} \\ H_{31} & H_{32} & H_{33} & \dots & H_{3N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ H_{N1} & H_{N2} & H_{N3} & \dots & H_{NN} \end{pmatrix} - E \begin{pmatrix} S_{11} & S_{12} & S_{13} & \dots & S_{1N} \\ S_{21} & S_{22} & S_{23} & \dots & S_{2N} \\ S_{31} & S_{32} & S_{33} & \dots & S_{3N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ S_{N1} & S_{N2} & S_{N3} & \dots & S_{NN} \end{pmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{bmatrix} = 0$$

 $N^2 H_{ij}$ type integrals and $N^2 S_{ij}$ type integrals to be computed!!!!

- These are called the *secular equations* (久期方程) and in general their solution will lead to N different values of E, each corresponding to a MO.
- The coefficients c_i corresponding to a particular MO can be found by *substituting the* corresponding value of the energy E back into the *secular equations*.

6.1.2 The Hückel approximations

• The *Hückel approximations*: 1) set $S_{ij} = \int \phi_i \phi_j d\tau = 0$ ($i \neq j$) or 1 (i = j)

Then the secular equations look simpler,

$$\begin{bmatrix} H_{11} & H_{12} & H_{13} & \dots & H_{1N} \\ H_{21} & H_{22} & H_{23} & \dots & H_{2N} \\ H_{31} & H_{32} & H_{33} & \dots & H_{3N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ H_{N1} & H_{N2} & H_{N3} & \dots & H_{NN} \end{bmatrix} - E \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{bmatrix} = 0$$

and can be rewritten as

$$H_{11} - E$$
 H_{12} H_{13} ... H_{1N}
 H_{21} $H_{22} - E$ H_{23} ... H_{2N}
 H_{31} H_{32} $H_{33} - E$... H_{3N}
 \vdots \vdots \vdots \vdots \vdots
 H_{N1} H_{N2} H_{N3} ... $H_{NN} - E$

Secular matrix (久期短陸)

 c_1

These equations can be solved by setting *the determinant of the secular matrix*, namely *the secular determinant*, to be *zero*.

6.1.2 The Hückel approximations

• Calculating the actual values of the matrix elements H_{ij} is itself a formidable task, so we sidestep this by simply leaving them as parameters,

$$H_{ii} = \int \phi_i \widehat{H} \phi_i d\tau = \alpha_i$$
 (approx. as the energy of the AO ϕ_i) Negative $H_{ij} = \int \phi_i \widehat{H} \phi_j d\tau = \beta_{ij}$ (resonance integral) values

 β_{ii} is non-zero unless the two orbitals are on adjacent atoms!

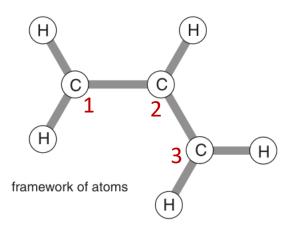
• Accordingly, the secular equations become

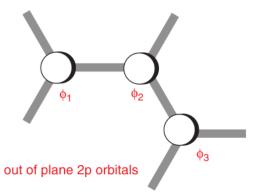
$$\begin{pmatrix}
\alpha_1 - E & \beta_{12} & \beta_{13} & \dots & \beta_{1N} \\
\beta_{21} & \alpha_2 - E & \beta_{23} & \dots & \beta_{2N} \\
\beta_{31} & \beta_{32} & \alpha_3 - E & \dots & \beta_{3N} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\beta_{N1} & \beta_{N2} & \beta_{N3} & \dots & \alpha_N - E
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3 \\
\vdots \\
c_N
\end{pmatrix} = 0.$$

Q2: For a π_3^x system, write out the secular equation!

- Some of the β_{ij} terms can be zero case by case!
- The values of α_i , β_{ij} can be determined semi-empirically!
- Quite easy for dealing with π conjugation systems!
- Q1: how to determine $\alpha_c \& \beta_{cc}$?

• The allyl fragment: the π -type MOs formed from these p_{π} orbitals, $\psi = c_1 \phi_1 + c_2 \phi_2 + c_3 \phi_3$





The *secular eq*s. are

out of plane 2p orbitals
$$\begin{pmatrix} \alpha_1 - E & \beta_{12} & \beta_{13} \\ \beta_{21} & \alpha_2 - E & \beta_{23} \\ \beta_{31} & \beta_{32} & \alpha_3 - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = 0$$

Can the eqs. be further simplified?!

• All C $2p_{\pi}$ orbitals, $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$, $\beta_{12} = \beta_{21} = \beta_{23} = \beta_{32} = \beta$ (Hückel approx.) the *secular eq*s. thus become

$$\begin{pmatrix} \alpha - E & \beta & 0 \\ \beta & \alpha - E & \beta \\ 0 & \beta & \alpha - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = 0.$$

Now set $x = (\alpha - E)/\beta!$

- Now *divide both sides by* β and then $set \frac{\alpha E}{\beta} = x$, we have: $\begin{pmatrix} x & 1 & 0 \\ 1 & x & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = 0$
- As usual, set the determinant to zero:

$$det \begin{pmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & x \end{pmatrix} = 0 \longrightarrow x(x^2 - 1) - 1 \times (x - 0) + 0 \times (1 - 0) = 0$$
$$x(x^2 - 1) - x = 0$$
$$x(x^2 - 1) - x = 0$$
$$x(x^2 - 2) = 0 \longrightarrow x = 0, \pm \sqrt{2}$$

$$\longrightarrow E_1 = \alpha + \sqrt{2}\beta, \qquad E_2 = \alpha, \qquad E_3 = \alpha - \sqrt{2}\beta$$

• Let us start with $x = -\sqrt{2}$ that gives $E_1 = \alpha + \sqrt{2}\beta$

$$\begin{pmatrix} -\sqrt{2} & 1 & 0 \\ 1 & -\sqrt{2} & 1 \\ 0 & 1 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = 0 \longrightarrow \begin{array}{c} -\sqrt{2}c_1 + c_2 = 0 & [A] \\ c_1 - \sqrt{2}c_2 + c_3 = 0 & [B] \\ c_2 - \sqrt{2}c_3 = 0 & [C] \end{array}$$

Three eqs. are not independent!

• The normalization relationship can be introduced to make the eqs. solvable,

$$c_1^2 + c_2^2 + c_3^2 = 1$$

- There are two practical approaches to find the coefficients.
- *First method*: use the equations to write all of the coefficients in terms of one of them.

From eq. [A] we have: $-\sqrt{2}c_1 + c_2 = 0$ hence $c_2 = \sqrt{2}c_1$.

Now use eq. **[C]**: $c_2 - \sqrt{2}c_3 = 0$ **[C]**

Substitute $c_2 = \sqrt{2}c_1 \rightarrow \sqrt{2}c_1 - \sqrt{2}c_3 = 0 \rightarrow c_3 = c_1$

now insert these values into the normalization condition, and hence find c_1 :

$$c_1^2 + c_2^2 + c_3^2 = 1$$
 $\rightarrow c_1^2 + (\sqrt{2}c_1)^2 + c_1^2 = 1$ $\rightarrow 4c_1^2 = 1$ $\rightarrow c_1 = 1/2$

$$rightarrow c_2 = \sqrt{2}/2$$
, $c_3 = 1/2$; $rightarrow \psi_1 = (\Phi_1 + \sqrt{2}\Phi_2 + \Phi_3)/2$ with $E_1 = \alpha + \sqrt{2}\beta$

- The second method: as we know the relationship between the coefficients, we might just set one of them to have the value 1 and work out the rest, then normalize at the end.
- Let us set $c_1 = 1$; from [A] we have:

$$-\sqrt{2}c_1 + c_2 = 0$$
, put $c_1 = 1$, giving $c_2 = \sqrt{2}$

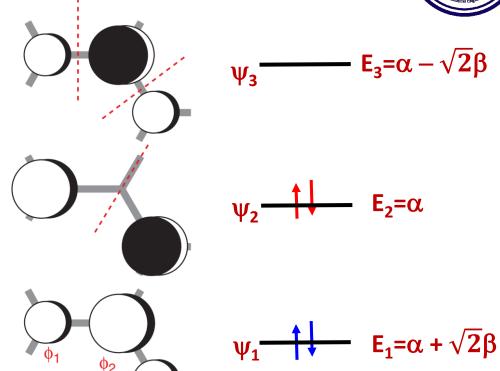
- Now we use this value for c_2 in [C]: $c_2 \sqrt{2}c_3 = 0$, giving $c_3 = 1$
- The coefficients are therefore: $c_1 = 1$ $c_2 = \sqrt{2}$ $c_3 = 1$
- Now normalize the coefficients: $\sqrt{c_1^2 + c_2^2 + c_3^2} = \sqrt{1 + 2 + 1} = 2$
- The normalized coefficients are: $c_1 = 1/2$ $c_2 = \sqrt{2}/2$ $c_3 = 1/2$

Which method do you recommend?

• The final results are summarized in the table.

MO number	energy	MO wavefunction
1	$E_1 = \alpha + \sqrt{2}\beta$	$\psi_1 = \frac{1}{2}\phi_1 + \frac{1}{\sqrt{2}}\phi_2 + \frac{1}{2}\phi_3$
2 Fy 27	$E_2 = \alpha$	$\psi_2 = \frac{1}{\sqrt{2}}\phi_1 - \frac{1}{\sqrt{2}}\phi_3$
3	$E_3 = \alpha - \sqrt{2}\beta$	$\psi_3 = \frac{1}{2}\phi_1 - \frac{1}{\sqrt{2}}\phi_2 + \frac{1}{2}\phi_3$

(please recall that we once employed a graphical method to deal with the π -MOs of this molecule in the first semester!)



6.1.4 1,3-Butadiene

- The π system of **butadiene** comprises four *p* orbitals in a row:

$$\begin{pmatrix} \alpha - E & \beta & 0 & 0 \\ \beta & \alpha - E & \beta & 0 \\ 0 & \beta & \alpha - E & \beta \\ 0 & 0 & \beta & \alpha - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = 0$$

- To solve this problem, we would first need to find the determinant of the 4×4 matrix, set it to zero and then solve the resulting quartic in E.
- This already sounds like very hard work and although in this case it might just be possible to do this by hand.
- Luckily, *symmetry* comes to our aid and reduces this problem to something very much easier.

6.2 Using symmetry to simplify the calculations

6.2.1 Butadiene

- The symmetry elements: C_2 , i, σ_h .
- The point group is C_{2h} .

C_{2h}	E	C_2^z	i	σ^{xy}		
A_g	1	1	1	1	$R_z \qquad x^2; y^2; z^2$	x; xy
B_g°	1	-1	1	-1	$R_x; R_y \qquad xz; yz$	<u>7</u>
A_u	1	1	- 1	-1	Z	_
B_u	1	-1	-1	1	x; y	
	2	n	n	2	- 1 \(\Omega \) \(\text{P} \)	

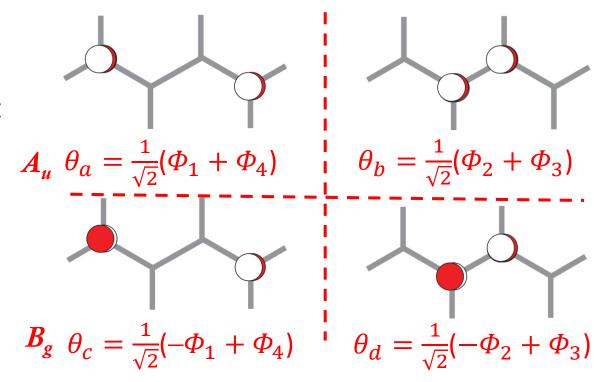
	^	1	- 1	1	
•	The fou	$\operatorname{tr} \left(p_{\pi} \left(p_{z} \right) \right)$ AOs	can be d	ivided into)
	two set	s of basis, (ϕ	ϕ_4) and	(ϕ_2, ϕ_3) , an	ıĆ

• Both sets transform as $A_u \oplus B_g$.

can be dealt with separately.

- z transforms like A_u ; $\theta_{A_u} = (\phi_1 + \phi_4)$ is z-like.
- yz transforms like B_g ; $\theta_{B_g} = (-\phi_1 + \phi_4)$ is yz-like!
- Similarly the basis (ϕ_2, ϕ_3) gives rise to two SOs, $\theta_{A_u} = (\phi_2 + \phi_3)$ & $\theta_{B_g} = (-\phi_2 + \phi_3)$

- Now we have four normalized SOs:
- Only SOs of the same symmetry interact. The symmetry analysis has reduced the problem to the two-way overlap of θ_a and θ_b , and the two-way overlap of θ_c and θ_d .



• At this stage, the secular equations can be developed by thinking about forming MOs by *the linear combination of any other kind of orbitals*, such as *symmetry orbitals*.

• Generally we may write an MO as a linear combination of symmetry orbitals θ_a , θ_b , . . .

$$\psi = c_a \theta_a + c_b \theta_b + c_c \theta_c + \cdots$$

We will consistently use $1,2,3,\ldots$ as the label for AOs and a,b,c,\ldots for the label for SOs. Written in terms of SOs the secular equations upon *Hückel approx*. are:

$$\begin{pmatrix} H_{aa} - E & H_{ab} & H_{ac} & \dots & H_{aN} \\ H_{ba} & H_{bb} - E & H_{bc} & \dots & H_{bN} \\ H_{ca} & H_{cb} & H_{cc} - E & \dots & H_{cN} \\ \dots & \dots & \dots & \dots & \dots \\ H_{Na} & H_{Nb} & H_{Nc} & H_{Nd} & H_{NN} - E \end{pmatrix} \begin{pmatrix} c_a \\ c_b \\ c_c \\ \dots \\ c_N \end{pmatrix} = 0 \text{ with } \mathbf{H}_{ab} = \int \mathbf{\theta}_a \hat{\mathbf{H}} \mathbf{\theta}_b d\mathbf{\tau}$$

• For butadiene, we therefore have two sets of secular equations to solve: a 2×2 problem for the A_u SOs θ_a and θ_b , and another 2×2 problem for the B_g SOs θ_c and θ_d .

6.2.1 Butadiene
$$A_{u}$$
 SOs: $\theta_{a} = \frac{1}{\sqrt{2}}(\Phi_{1} + \Phi_{4}), \quad \theta_{b} = \frac{1}{\sqrt{2}}(\Phi_{2} + \Phi_{3})$

- For the A_u SOs, the MOs are written as: $\psi_{A_u} = c_a \theta_a + c_b \theta_b$
- And the secular equations are: $\begin{pmatrix} H_{aa} E & H_{ab} \\ H_{ba} & H_{bb} E \end{pmatrix} \begin{pmatrix} c_a \\ c_b \end{pmatrix} = 0$
- Now compute the matrix elements (how many?) by applying the *Hückel Approx*.:

$$H_{aa} = \int \theta_a \hat{H} \theta_a \, d\tau$$

$$= \int \frac{1}{\sqrt{2}} (\phi_1 + \phi_4) \, \hat{H} \frac{1}{\sqrt{2}} (\phi_1 + \phi_4) \, d\tau$$

$$= \frac{1}{2} (H_{11} + H_{14} + H_{41} + H_{44})$$

$$= \frac{1}{2} (\alpha_1 + \beta_{14} + \beta_{41} + \alpha_4)$$

$$= \alpha.$$

$$H_{ab} = \int \theta_a \hat{H} \theta_b \, d\tau$$

$$= \int \frac{1}{\sqrt{2}} (\phi_1 + \phi_4) \, \hat{H} \frac{1}{\sqrt{2}} (\phi_2 + \phi_3) \, d\tau$$

$$= \frac{1}{2} (H_{12} + H_{13} + H_{42} + H_{43})$$

$$= \frac{1}{2} (\beta_{12} + \beta_{13} + \beta_{42} + \beta_{43}) = \beta$$

$$H_{bb} = \int \theta_b \hat{H} \, \theta_b d\tau$$

$$= \frac{1}{2} (H_{22} + H_{23} + H_{32} + H_{33}) = \alpha + \beta$$

- Now the secular equations become: $\begin{pmatrix} \alpha E & \beta \\ \beta & \alpha + \beta E \end{pmatrix} \begin{pmatrix} c_a \\ c_b \end{pmatrix} = 0$
- Divide both sides by β and then set $\frac{\alpha E}{\beta} = x$: $\begin{pmatrix} x & 1 \\ 1 & x + 1 \end{pmatrix} \begin{pmatrix} c_a \\ c_b \end{pmatrix} = 0$
- Demand the determinant to be zero: $\det \begin{pmatrix} x & 1 \\ 1 & x+1 \end{pmatrix} = x(x+1) 1 = 0$

$$\rightarrow x^2 + x - 1 = 0$$
 $\Rightarrow x = (-1 \mp \sqrt{5})/2 = -1.618 \text{ or } 0.618$

$$E_{A_u,1} = \alpha + 1.618\beta$$
 $E_{A_u,2} = \alpha - 0.618\beta$

• Now we have two equations to solve with *x* being known:

$$xc_a + c_b = 0$$
 [A] $c_a + (1 + x)c_b = 0$ [B]

• The first value of x is 0.618; putting this into [A] enables us to find c_b in terms of c_a :

$$0.618c_a + c_b = 0$$
 $\rightarrow c_b = -0.618c_a$

- Now make use of the normalization condition: $c_a^2 + c_b^2 = 1$
- Hence $c_a = 0.851 \rightarrow c_b = -0.526$.

$$\psi_{A_u,2} = 0.851 \,\theta_a - 0.526 \,\theta_b$$

$$= 0.851 \frac{1}{\sqrt{2}} (\phi_1 + \phi_4) - 0.526 \frac{1}{\sqrt{2}} (\phi_2 + \phi_3)$$

$$= 0.602 \,\phi_1 - 0.372 \,\phi_2 - 0.372 \,\phi_3 + 0.602 \,\phi_4$$

• To find another A_u MO, we repeat the process with x = -1.618.

$$\psi_{A_u,1} = 0.526 \,\theta_a + 0.851 \,\theta_b$$

$$= 0.526 \frac{1}{\sqrt{2}} (\phi_1 + \phi_4) + 0.851 \frac{1}{\sqrt{2}} (\phi_2 + \phi_3)$$

$$= 0.372 \,\phi_1 + 0.602 \,\phi_2 + 0.602 \,\phi_3 + 0.372 \,\phi_4$$

• We now need to repeat the process for the B_g SOs. The MOs are written as

$$\psi_{B_q} = c_c \theta_c + c_d \theta_d$$

$$B_g$$
 SOs: $\theta_c = \frac{1}{\sqrt{2}}(-\Phi_1 + \Phi_4), \ \theta_d = \frac{1}{\sqrt{2}}(-\Phi_2 + \Phi_3)$

and the secular equations are

$$\begin{pmatrix} H_{cc} - E & H_{cd} \\ H_{dc} & H_{dd} - E \end{pmatrix} \begin{pmatrix} c_c \\ c_d \end{pmatrix} = 0$$

- Compute the matrix elements; then $\begin{pmatrix} \alpha E & \beta \\ \beta & \alpha \beta E \end{pmatrix} \begin{pmatrix} c_c \\ c_d \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} x & 1 \\ 1 & x 1 \end{pmatrix} \begin{pmatrix} c_c \\ c_d \end{pmatrix} = 0$ **Ex. 28** $(x = (\alpha E)/\beta)$
 - The solutions are x = -0.618 and 1.618. The corresponding MOs are

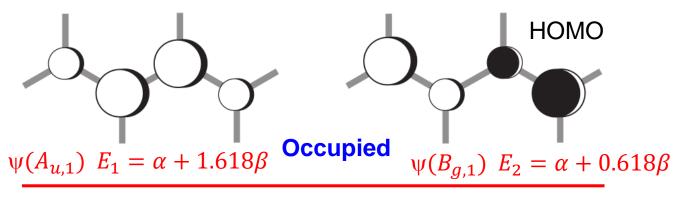
$$\psi_{B_g,1} = -0.602 \,\phi_1 - 0.372 \,\phi_2 + 0.372 \,\phi_3 + 0.602 \,\phi_4 \qquad E_{B_g,1} = \alpha + 0.618 \,\beta$$

$$\psi_{B_g,2} = -0.372 \,\phi_1 + 0.602 \,\phi_2 - 0.602 \,\phi_3 + 0.372 \,\phi_4 \qquad E_{B_g,2} = \alpha - 1.618 \,\beta.$$

E

Ex.29 (allyl)

• The complete set of four MOs are shown below.

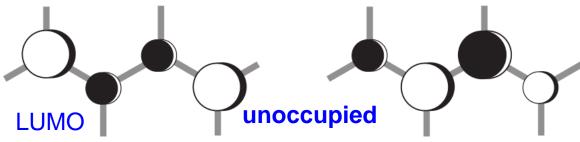


 $2b_{g}$ $E_{4} = \alpha - 1.618\beta$

 $2a_u$ $E_3 = \alpha - 0.618\beta$

 $1b_{g}$ $E_{2} = \alpha + 0.618\beta$

 $E_1 = \alpha + 1.618\beta$



$$\psi(A_{u,2}) \ E_3 = \alpha - 0.618\beta$$

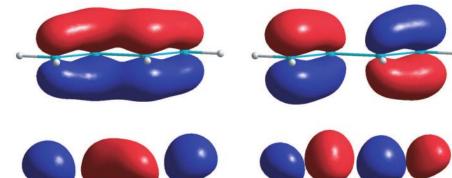
$$\psi(B_{g,2}) E_4 = \alpha - 1.618\beta$$

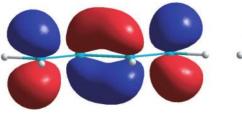
• Electron population on *i*th atom:

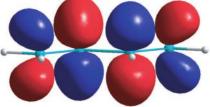
$$P_i = \sum_{j} n_j c_{ij}^2$$
(sum over all occupied MOs

regioreactivity of butadiene?

Results from Computer-based calculations

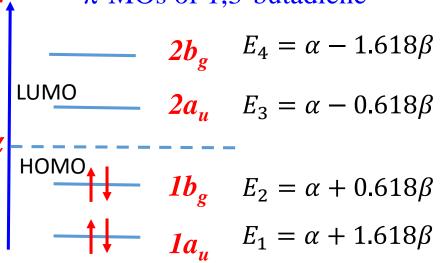






(sum over all occupied MOs)

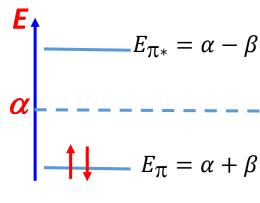
• π -MOs of 1,3-butadiene



• π -MOs of a localized C-C π bond:

$$\psi_{\pi_2^2} = c_1 \phi_1 + c_2 \phi_2$$

Secular eqs. (set $x = \frac{\alpha - E}{\beta}$):



$$\begin{pmatrix} x & 1 \\ 1 & x \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = 0 \rightarrow x = \pm 1, E = \alpha \pm \beta$$

• Total π electron energy of butadiene:

$$E_{delocalized}^{4\pi e} = 2E_1 + 2E_2$$
$$= 4\alpha + 4.472\beta$$

• Total π electron energy of two localized C-C π -bonds:

$$E_{localized}^{4\pi e} = 2 \times 2E_{\pi} = 4(\alpha + \beta)$$

• **Delocalization energy**: the difference between the energy of electrons in the **delocalized** π system (e.g., butadiene) and the energy of the electrons in hypothetical localized π -orbitals (e.g., of ethene).

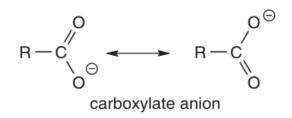
Delocalization energy =
$$E_{delocalized}^{4\pi e}$$
 - $E_{localized}^{4\pi e}$ = 0.472 β < 0

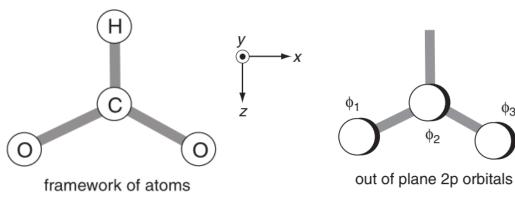
Delocalization of the electrons lowers the energy!

- This species has a *delocalised* π *system* involving the two oxygen atoms and the carbonyl carbon.
- The carboxylate fragment has $C_{2\nu}$ symmetry.
- $2p_v$ AOs: $C \sim \phi_2(B_2)$; $O_1, O_3 \sim (\phi_1, \phi_3)$
- The basis (ϕ_1, ϕ_3) transforms as $A_2 \oplus B_2$.

B₂ SO (y-like):
$$\theta_a = (\phi_1 + \phi_3)/\sqrt{2}$$

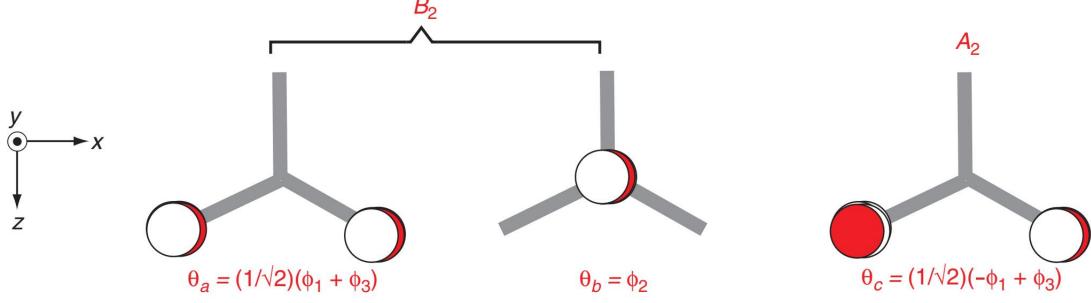
A₂ SO (*xy*-like):
$$\theta_c = (-\phi_1 + \phi_3)/\sqrt{2}$$





C_{2v}	E	C_2^z	σ^{xz}	σ^{yz}	
A_1	1	1	1	1	$z \qquad x^2; y^2; z^2$
A_2	1	1	-1	-1	R_z xy
B_1	1	-1	1	-1	$x R_y xz$
B_2	1	-1	-1	1	$y R_x yz$
$\overline{\Gamma}$	2	0	-2	0	$=A_2 \oplus B_2$

SOs of carboxylate anion



 \rightarrow The A_2 SO (θ_c) itself gives a non-bonding MO, $\psi(A_2) = \theta_c = (-\phi_1 + \phi_3)/\sqrt{2}$

MOs of IR B_2 : $\psi(B_2) = c_a \theta_a + c_b \theta_b$

• Now consider the overlap of the two B_2 SOs and define $\theta_h = \phi_2$. Then

$$\begin{pmatrix} H_{aa} - E & H_{ab} \\ H_{ba} & H_{bb} - E \end{pmatrix} \begin{pmatrix} c_a \\ c_b \end{pmatrix} = 0$$

• Now compute H_{aa} etc.

$$H_{aa} = \int \theta_a \hat{H} \theta_a \, d\tau$$

$$= \int \frac{1}{\sqrt{2}} (\phi_1 + \phi_3) \, \hat{H} \frac{1}{\sqrt{2}} (\phi_1 + \phi_3) \, d\tau$$

$$= \frac{1}{2} (H_{11} + H_{13} + H_{31} + H_{33})$$

$$= (\alpha_1 + \beta_{13} + \beta_{31} + \alpha_3)/2$$

$$= (\alpha_0 + 0 + 0 + \alpha_0)/2$$

$$= \alpha_0$$

$$H_{ab} = \int \theta_{a} \hat{H} \theta_{b} \, d\tau$$

$$= \int \frac{1}{\sqrt{2}} (\phi_{1} + \phi_{3}) \, \hat{H} \phi_{2} \, d\tau$$

$$= \frac{1}{\sqrt{2}} (H_{12} + H_{32}) = \frac{1}{\sqrt{2}} (\beta_{12} + \beta_{32}) = \sqrt{2}\beta$$

$$(\beta_{12} = \beta_{32} = \beta_{0C} = \beta)$$

$$H_{bb} = \int \theta_{b} \hat{H} \theta_{b} \, d\tau$$

$$= \int \phi_{2} \hat{H} \phi_{2} \, d\tau = H_{22} = \alpha_{C}$$

$$\Rightarrow \begin{pmatrix} \alpha_o - E & \sqrt{2}\beta \\ \sqrt{2}\beta & \alpha_c - E \end{pmatrix} \begin{pmatrix} c_a \\ c_b \end{pmatrix} = 0$$

• Now suppose $\alpha_0 = \alpha_C + \beta = \alpha + \beta$.

$$\begin{pmatrix} \alpha + \beta - E & \sqrt{2}\beta \\ \sqrt{2}\beta & \alpha - E \end{pmatrix} \begin{pmatrix} c_a \\ c_b \end{pmatrix} = 0$$

• Define $x = (\alpha - E)/\beta$ and solve the secular equations,

$$\begin{pmatrix} x+1 & \sqrt{2} \\ \sqrt{2} & x \end{pmatrix} \begin{pmatrix} c_a \\ c_b \end{pmatrix} = 0 \longrightarrow \det \begin{pmatrix} x+1 & \sqrt{2} \\ \sqrt{2} & x \end{pmatrix} = 0 \longrightarrow \begin{pmatrix} x^2+x-2=0 \\ x_1=-2, x_2=1 \end{pmatrix}$$

• The resulting normalized MOs of B_2 symmetry are

$$E_{B_{2,1}} = \alpha + 2\beta$$
 $\psi_{B_{2,1}} = 0.577\phi_1 + 0.577\phi_2 + 0.577\phi_3$ Bonding $E_{B_{2,2}} = \alpha - \beta$ $\psi_{B_{2,2}} = 0.408\phi_1 - 0.816\phi_2 + 0.408\phi_3$ Anti-bonding

• The energy of the MO of A_2 symmetry is simply given as

$$H_{cc} = \int \theta_c \hat{H} \theta_c \, d\tau$$

$$= \int \frac{1}{\sqrt{2}} (-\phi_1 + \phi_3) \, \hat{H} \frac{1}{\sqrt{2}} (-\phi_1 + \phi_3) \, d\tau = \frac{1}{2} (H_{11} - H_{13} - H_{31} + H_{33}) = \alpha_0 = \alpha + \beta$$

$$\psi_{A_2,1} = -0.707 \, \phi_1 + 0.707 \, \phi_3 \qquad E_{A_2,1} = \alpha + \beta. \qquad \text{non-bonding}$$

• The diagram below shows the energy levels and MOs with the contributions from each *p* orbital drawn roughly to scale.

$$\psi_{B_{2,2}} = 0.408\phi_1 - 0.816\phi_2 + 0.408\phi_3 \qquad E_3 = \alpha - \beta$$

$$\psi_{A_2} = -0.707\phi_1 + 0.707\phi_3 \qquad E_2 = \alpha + \beta$$

$$\psi_{B_{2,1}} = 0.577\phi_1 + 0.577\phi_2 + 0.577\phi_3 \qquad E_1 = \alpha + 2\beta$$

$$E_1 = \alpha + 2\beta$$

• The total π electron energy is

$$E_{\pi} = 2 \times E_{B_2,1} + 2 \times E_{A_2,1}$$
$$= 2 \times (\alpha + 2\beta) + 2 \times (\alpha + \beta)$$
$$= 4\alpha + 6\beta$$

Delocalization energy

 $R-C_{\bigcirc}^{"}$

- Of great interest is the energy difference between the electrons in the *delocalized* π *system* and *the energy of the electrons in hypothetical localized orbitals*.
- A localized picture of the carboxylate anion: two electrons in the *C-O* π *bond*, and the remaining two electrons in a p_y orbital on the other oxygen.
- For the localized C–O π bond, the secular equations become

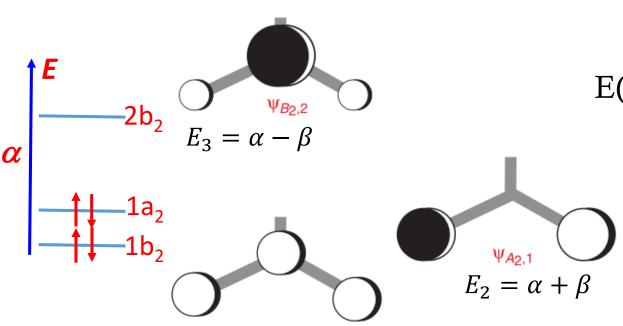
$$\begin{pmatrix} \alpha_0 - E & \beta \\ \beta & \alpha_c - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \mathbf{0} \qquad \frac{\alpha_0 = \alpha + \beta}{\alpha_c = \alpha} \qquad \begin{pmatrix} \alpha + \beta - E & \beta \\ \beta & \alpha - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \mathbf{0}$$

$$\rightarrow E_1 = \alpha + 1.618\beta$$
, $E_2 = \alpha - 0.618\beta$.

2e of a C-O π -MO O p_{π} lone pair

- The total localized electron energy is $E_{loc} = 2(\alpha + 1.618\beta) + 2(\alpha + \beta) = 4\alpha + 5.236\beta$
- Delocalization energy = $E_{deloc.} E_{loc.} = (4\alpha + 6\beta) (4\alpha + 5.236\beta) = 0.764\beta$

- A consequence of the *Hückel approximations* is that *the sum of the energies of the AOs* (i.e. the H_{ii}) must be equal to *the sum of the energies of the MOs*.
- Example: carboxylate anion.



$$E(\pi-AOs) = 2E_{(O-2p)} + E_{(c-2p)}$$
$$= 2(\alpha+\beta) + \alpha$$
$$= 3\alpha+2\beta$$

$$E(\pi\text{-MOs}) = E_1 + E_2 + E_3$$
$$= (\alpha + 2\beta) + (\alpha + \beta) + (\alpha - \beta)$$
$$= 3\alpha + 2\beta$$

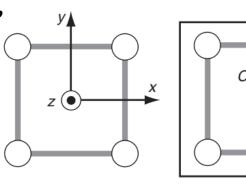
Q1: please check if this statement holds true for 1,3-butadiene?

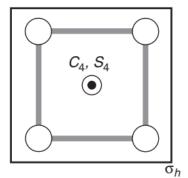
Q2: How to make use of this relationship?

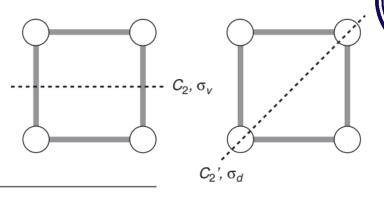
6.3 Cyclobutadiene

 C_4H_4 , (D_{4h})

Basis set: 4C 2pz AOs!







D_{4h}	E	$2C_4$	C_4^2	$2C_2$	$2C_2'$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$			
A_{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2; z^2$	•
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	R_z		
B_{1g}	1	-1	1	1	-1	1	-1	1	1	-1		$x^2 - y^2$	
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy	•]
E_g	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)	
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1			
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	z		•
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1			
B_{2u}	1	-1	1	-1	1	-1	1	-1	1	-1			(
E_u	2	0	-2	0	0	-2	0	2	0	0	(x, y)		_ `
$\chi(R)$	4	0	0	0	-2	0	0	4	0	2	$=A_{2u}$	$E_g \oplus B_{1i}$	- и

•
$$A_{2u}$$
 SO ~ z -like

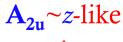
•
$$E_g$$
 SOs ~ xz - & yz -like

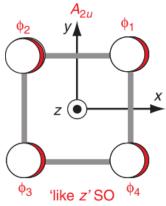
•
$$B_{1u}$$
 SO ~ xyz -like

$$(B_{2g} \otimes A_{2u} = B_{1u})$$

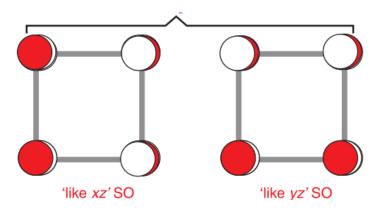
$$\chi(R)$$

6.3 Cyclobutadiene

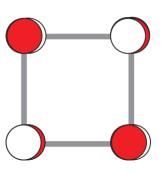




$\mathbf{E}_{\mathbf{g}} \sim xz \& yz$ -like



$\mathbf{B}_{1n} \sim xyz$ -like



The normalized SOs are

$$A_{2u} \text{ like } z \quad \theta_a = (\phi_1 + \phi_2 + \phi_3 + \phi_4)/2$$

$$E_g \text{ like } xz \quad \theta_b = (\phi_1 - \phi_2 - \phi_3 + \phi_4)/2$$

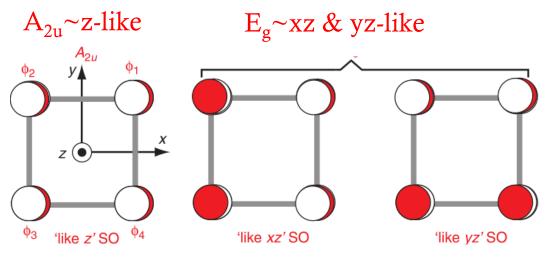
$$E_g \text{ like } yz \quad \theta_c = (\phi_1 + \phi_2 - \phi_3 - \phi_4)/2$$

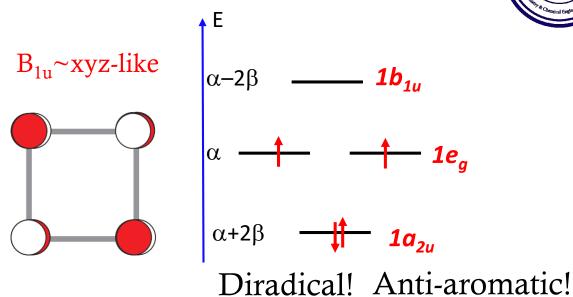
$$B_{1u} \text{ like } xyz \quad \theta_d = (\phi_1 - \phi_2 + \phi_3 - \phi_4)/2$$

• These SOs are themselves π -MOs.

$$\begin{split} \boldsymbol{E}_{1} &= \boldsymbol{H}_{aa} = \int \theta_{a} \hat{H} \theta_{a} \, \mathrm{d}\tau \\ &= \int \frac{1}{2} \left(\phi_{1} + \phi_{2} + \phi_{3} + \phi_{4} \right) \hat{H} \frac{1}{2} \left(\phi_{1} + \phi_{2} + \phi_{3} + \phi_{4} \right) \, \mathrm{d}\tau \\ &= \frac{1}{4} (H_{11} + H_{12} + H_{13} + H_{14} + H_{21} + H_{22} + H_{23} + H_{24} \\ &\quad + H_{31} + H_{32} + H_{33} + H_{34} + H_{41} + H_{42} + H_{43} + H_{44} \right) \\ &= \frac{1}{4} (\alpha + \beta + 0 + \beta + \beta + \alpha + \beta + 0 \\ &\quad + 0 + \beta + \alpha + \beta + \beta + 0 + \beta + \alpha \right) = \alpha + 2\beta \end{split}$$

6.3 Cyclobutadiene





• The normalized SOs are

$$\begin{array}{lll} \boldsymbol{A_{2u}} & \boldsymbol{\theta_a} = (\phi_1 + \phi_2 + \phi_3 + \phi_4)/2 & \boldsymbol{E_1} = \boldsymbol{H_{aa}} = \alpha + 2\beta \\ \boldsymbol{E_g like xz} & \boldsymbol{\theta_b} = (\phi_1 - \phi_2 - \phi_3 + \phi_4)/2 & \boldsymbol{E_2} = \boldsymbol{H_{bb}} = \int \theta_b \widehat{H} \theta_b d\tau = \alpha \\ \boldsymbol{E_g like yz} & \boldsymbol{\theta_c} = (\phi_1 + \phi_2 - \phi_3 - \phi_4)/2 & \boldsymbol{E_3} = \boldsymbol{H_{cc}} = \int \theta_c \widehat{H} \theta_c d\tau = \alpha \end{array} \right\} \ \text{degenerate} \\ \boldsymbol{B_{1u}} & \boldsymbol{\theta_d} = (\phi_1 - \phi_2 + \phi_3 - \phi_4)/2 & \boldsymbol{E_4} = \boldsymbol{H_{dd}} = \int \theta_d \widehat{H} \theta_d d\tau = \alpha - 2\beta \end{array}$$

• The total π energy is $4\alpha + 4\beta$. (Is it stable than two localized C=C π -bonds?)

作业:

思考题1. 运用休克尔分子轨道理论推导苯分子π分子轨道的能量和组成, 并推算其离域能。 能级图,

思考题2. 运用休克尔分子轨道理论推导线式[n]共轭烯烃π分子轨道的正弦波规律:

k 为分子轨道能级 (k = 1, 2, 3, ...n)

第k个能级的能量为: $E_k = \alpha + 2\beta \cos(k\theta)$ 其中 $\theta = 2\pi/(n+1)$

第k个能级的 π 分子轨道为: $\psi_k^{\pi} = \sum_{k=1}^{\infty} \phi_m sin(mk\theta)$

思考题3. 运用休克尔分子轨道理论推导环[n]共轭体系π分子轨道的能量和组成为:

6.4 Summary

- The energies of MOs and the particular combinations of AOs from which they are formed can be found by *solving the secular equations*.
- The solution to these equations is simplified by adopting the Hückel approximations:
 - (1) the overlap between orbitals is neglected, i.e. $S_{ii} = 0$;
 - (2) AOs are assumed to be normalized i.e. $S_{ii} = 1$;
 - (3) only adjacent orbitals have an interaction i.e. $H_{ii} = 0$ if i and j are not adjacent.
- In the secular equations H_{ii} is written α_i ; this is approximately the energy of orbital i, and is *negative*.
- In the secular equations H_{ij} is written β_{ij} ; this is the energy of interaction of adjacent orbitals i and j; it is *negative*.

6.4 Summary

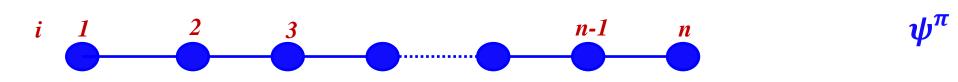
• The *secular equations* are of the form:

$$\begin{pmatrix} \alpha_1 - E & \beta_{12} & \beta_{13} & \dots & \beta_{1N} \\ \beta_{21} & \alpha_2 - E & \beta_{23} & \dots & \beta_{2N} \\ \beta_{31} & \beta_{32} & \alpha_3 - E & \dots & \beta_{3N} \\ \dots & \dots & \dots & \dots \\ \beta_{N1} & \beta_{N2} & \beta_{N3} & \dots & \alpha_N - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \dots \\ c_N \end{pmatrix} = 0$$

- The solution to the secular equations is simplified by first constructing symmetry orbitals (SOs); only SOs of the same symmetry overlap, thereby reducing the dimensionality of the secular matrix. (That is why we use symmetry and group theory!!!!!!!!!)
- The delocalization energy of a π system is the difference between the energy of electrons in delocalized orbitals and the energy of the electrons in localized orbitals.

6.5 More considerations –graphical method for for linear [n]polyenes

Graphical method to predefine the coefficients of HMOs for conjugated systems (developed by **Qianer Zhang** et al.)



For a linear [n] polyene, we have n secular equations $(x = (\alpha - E)/\beta)$:

• For a linear [n] polyene, we have n secular equations
$$(x = (\alpha - E)/\beta)$$
:
$$\begin{pmatrix}
x & 1 & \dots & 0 & 0 \\
1 & x & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & \dots & x & 1 \\
0 & 0 & \dots & 1 & x
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
\dots \\
c_{n-1} \\
c_n
\end{pmatrix} = 0 \Longrightarrow
\begin{pmatrix}
xc_1 + c_2 = 0 \\
c_1 + xc_2 + c_3 = 0 \\
\dots \\
c_{i+1} + c_{i-1} = -xc_i \\
\dots \\
c_{i+1} + c_{i-1} = -xc_i \\
\dots \\
c_{i+1} + xc_i + c_{i+1} = 0
\end{pmatrix}$$

$$\begin{array}{c}
\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2} \\
\cos \frac{A-B}{2}\cos \frac{A-B}{2$$

6.6 General process for [n]polyenes

For a linear [n]polyene, we have *n* secular equations $(x = (\alpha - E)/\beta)$:

$$xc_{1} + c_{2} = 0;$$

$$c_{1} + xc_{2} + c_{3} = 0;$$

$$c_{i-1} + xc_{i} + c_{i+1} = 0;$$

$$c_{i-1} + xc_{n} + c_{i+1} = 0;$$

$$c_{i-1} + xc_{n} + c_{i+1} = 0;$$

$$c_{i-1} + xc_{n} = 0$$

$$c_{i-1} + xc_{n} = 0$$
Boundary condition:
$$c_{n+1} = \sin(n+1)\theta = 0$$

$$\theta_{k} = 2k\pi/(n+1) \quad (k=1,...,n)$$

$$E_{k} = \alpha + 2\beta\cos\theta_{k}$$

$$\vdots$$

$$\theta_{k} = 2k\pi/(n+1) \quad (k=1,...,n)$$

$$C_{i} = \sin i\theta$$

$$C_{n} = \sin i\theta$$

$$C_{n} = \sin i\theta$$

$$C_{n} = \sin i\theta$$

$$C_{n} = \sin i\theta$$

Now recall the sine wave rule we learnt in the 1st semester!

(*k* defines the energy level!)

cyclic [n]polyenes

$\theta = 2\pi/n$

$$k=0, 1, ..., (n-1)/2$$
 (for n = odd) or n/2 (for n= even)

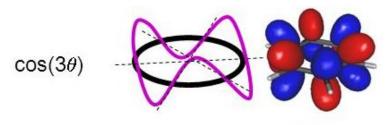
$$E_{\mathbf{k}} = \alpha + 2\beta \cos(\mathbf{k}\boldsymbol{\theta})$$

$$\psi_{k}^{cos} = \sum_{m=1}^{n} \phi_{m} \cos[(m-1)k\theta]$$

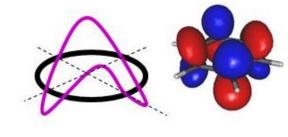
$$\psi_k^{sin} = \sum_{m=1}^n \phi_m \sin[(m-1)k\theta]$$

(when $k\theta = 0$ or π , no ψ_k^{sin})

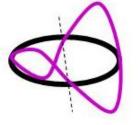
π MOs of Benzene



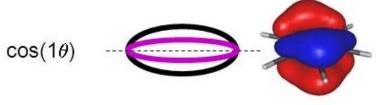
where is $sin(3\theta)$??

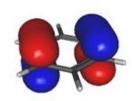


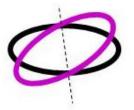




 $\sin(2\theta)$

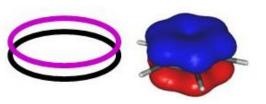


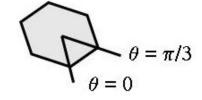




 $sin(1\theta)$

 $cos(2\theta)$





- The method can be used for dealing with more complicated systems.
- Recent work developed by Prof. Zhenhua Chen can be found as "*Graphical representation of Hückel Molecular Orbitals*" in *J. Chem. Educ.* 2020, 97(2), 448-456.

(https://pubs.acs.org/doi/10.1021/acs.jchemed.9b00687)

• FYI: "Introduction to Computational Chemistry: Teaching Hückel Molecular Orbital Theory Using an Excel Workbook for Matrix Diagonalization"

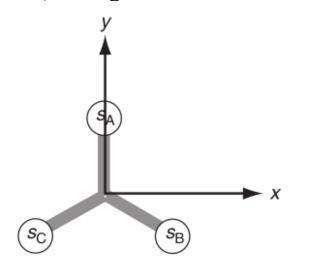
in *J. Chem. Educ.* 2015, 92(2), 291-295.

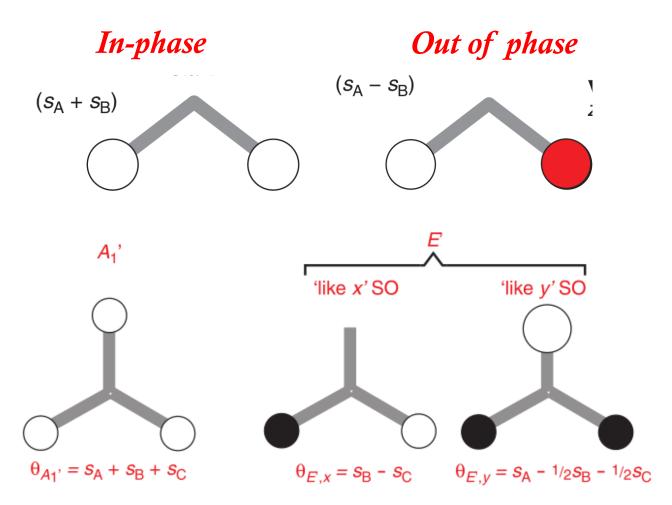
(https://pubs.acs.org/doi/full/10.1021/ed500376q)

Work out SOs quickly by inspection & using trends!

Trend in SOs arising from

- i) 2 equivalent AOs
- ii) 3 equivalent AOs

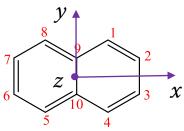




• The aforementioned trend in the SOs arising from 2, 3,4-equivalent functions can be used to quickly work out the SOs as well as the corresponding IRs by inspection.

Work out SOs quickly by inspection & using trends!

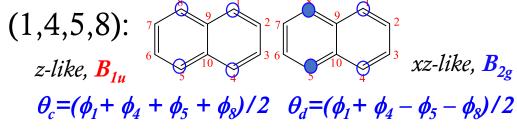
• Example: Naphthalene (D_{2h})

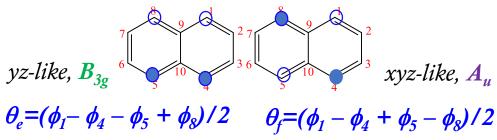


• 10 p_z AOs:

(9,10):
$$_{2-like, B_{1u}}^{7} \xrightarrow{_{10}}^{8} \xrightarrow{_{10}}^{1} \xrightarrow{_{2}}^{2} \xrightarrow{_{3}}^{7} yz-like, B_{3g}$$

$$\theta_{a} = (\phi_{9} + \phi_{10}) / \sqrt{2} \quad \theta_{b} = (\phi_{9} - \phi_{10}) / \sqrt{2}$$





D_{2h}	E	C_2^z	C_2^y	C_2^x	i	σ^{xy}	σ^{xz}	σ^{yz}		
A_g	1	1	1	1	1	1	1	1		$x^2; y^2; z^2$
B_{1g}	1	1	-1	-1	1	1	-1	-1	R_z	xy
B_{2g}	1	-1	1	-1	1	-1	1	-1	R_{y}	XZ
B_{3g}	1	-1	-1	1	1	-1	-1	1	R_x	yz
A_u	1	1	1	1	-1	-1	-1	-1		xyz
B_{1u}	1	1	-1	-1	-1	-1	1	1	z	
B_{2u}	1	-1	1	-1	-1	1	-1	1	y	$B_{1g} \otimes B_{1u} = A_u$
B_{3u}	1	-1	-1	1	-1	1	1	-1	x	-
	I								1	

$$(2,3,6,7): \frac{1}{z-like}, B_{1u}$$

$$xz-like, B_{2g}$$

$$\theta_{g} = (\phi_{2} + \phi_{3} + \phi_{6} + \phi_{7})/2 \quad \theta_{h} = (\phi_{2} + \phi_{3} - \phi_{6} - \phi_{7})/2$$

$$yz-like, B_{3g}$$

$$yz-like, B_{3g}$$

$$\theta_{i} = (\phi_{2} - \phi_{3} - \phi_{6} + \phi_{7})/2 \quad \theta_{j} = (\phi_{2} - \phi_{3} + \phi_{6} - \phi_{7})/2$$

• MOs of
$$B_{1u}$$
 symmetry: $\psi(B_{1u}) = c_a \theta_a + c_c \theta_c + c_g \theta_g$

$$\begin{pmatrix} H_{aa} - E & H_{ac} & H_{ag} \\ H_{ca} & H_{cc} - E & H_{cg} \\ H_{ga} & H_{gc} & H_{gg} - E \end{pmatrix} \begin{pmatrix} c_a \\ c_c \\ c_g \end{pmatrix} = 0 \qquad \begin{aligned} H_{aa} = (H_{99} + H_{1010} + H_{910} + H_{109})/2 &= \alpha + \beta \\ H_{cc} = (H_{11} + H_{44} + H_{55} + H_{88})/4 &= \alpha \\ H_{gg} = \alpha + \beta \end{aligned}$$

$$H_{ac} = (H_{91} + H_{98} + H_{104} + H_{105})/2\sqrt{2} = \sqrt{2} \beta$$
 $H_{ag} = 0$ $H_{cg} = \beta$