

Part III Symmetry and Bonding

Chapter 4 Vanishing Integrals

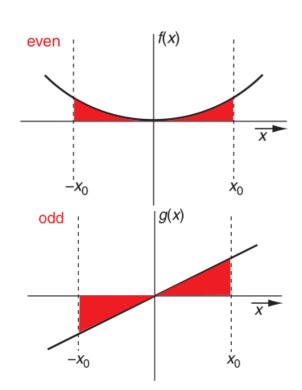
Prof. Dr. Xin Lu (吕鑫)

Email: xinlu@xmu.edu.cn

http://pcossgroup.xmu.edu.cn/old/users/xlu/group/courses/theochem/

4. Vanishing integrals

- One of the most powerful applications of *Group Theory* is the ability to decide whether a *particular integral* is *zero* or *not* without actually evaluating the integral.
- We will learn how this approach can be used to great advantage in *constructing* molecular orbitals and in understanding spectroscopic selection rules.
- For example, it is clear that the integral of the *even function is positive* but that of the *odd function must be zero*.
- Using *Group Theory* we can generalise this property of *odd* and *even functions* into a powerful method for deciding whether or not particular *integrals* will be *zero*.



4.1 Symmetry criteria for vanishing integrals

- Now consider the integral of a general function ψ over all space: $I = \int \psi d\tau$
 - $I = \iiint_{-\infty}^{+\infty} \psi(x, y, z) dx dy dz$ (in cartesian coordinates)
- The *integrand* must transform as the *totally symmetric IR* to make the integral *non-zero*.
- If the *integrand* transforms as some other IR, the integral is *necessarily zero*.

The value of the integral $I = \int \psi d\tau$ is necessarily zero if ψ transforms as anything other than the totally symmetric irreducible representation.

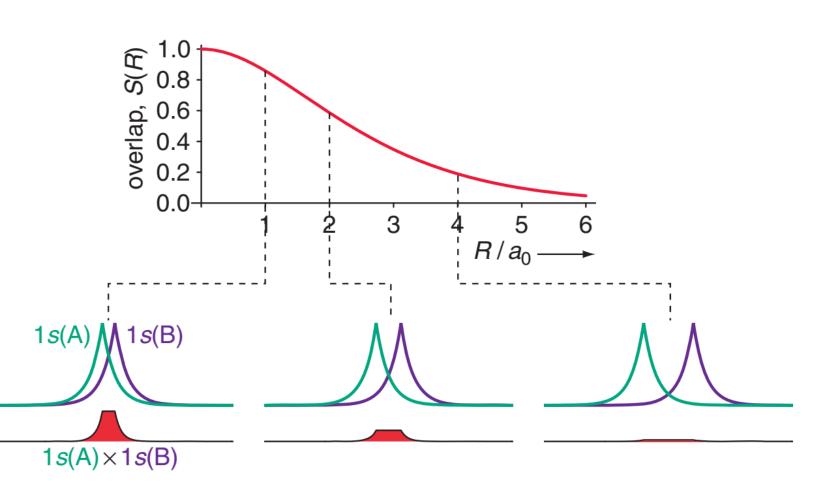
• In other words, if ψ transforms as *a sum of IRs* that contain the totally symmetric *IR*, the integral is not necessarily zero.

4.2 Overlap integrals

• A commonly encountered integral in quantum mechanics, and especially when constructing MOs, is the *overlap integral* between two wavefunctions ψ_i and ψ_j ,

$$S_{ij} = \int \psi_i^* \psi_j d\tau$$

• In H₂, the *overlap* of two 1s AOs centred on different atoms (1s(A) and 1s(B)):



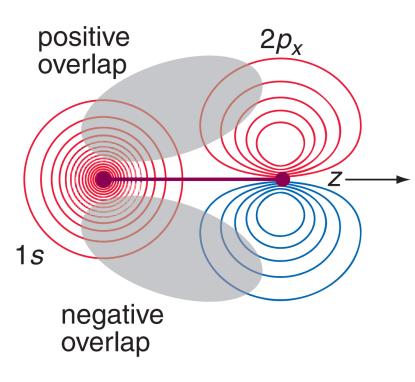
4.2 Overlap integrals

- Suppose that ψ_i transforms as the $IR \Gamma^{(i)}$ and ψ_j transforms as $\Gamma^{(j)} \otimes \Gamma^{(j)}$. Thus $\psi_i^* \psi_j$ transforms as $\Gamma^{(i)} \otimes \Gamma^{(j)}$.
- For the overlap integral to be *non-zero* the product $\Gamma^{(i)} \otimes \Gamma^{(j)}$ must be (or at least contains) the totally symmetric IR.
- The only way for the product $\Gamma^{(i)} \otimes \Gamma^{(i)}$ to contain the *totally symmetric IR* is for $\Gamma^{(i)}$ and $\Gamma^{(i)}$ to be the same. This leads to a very important conclusion about the overlap integral:

The overlap integral $S_{ij} = \int \psi_i^* \psi_j d\tau$ is non-zero only if ψ_i and ψ_j transform as the same IR. (i.e., 'symmetry compatible')

4.2 Overlap integrals

• Example: the overlap between an s orbital and a p_x orbital (the internuclear axis is z).



- *Qualitative picture*: The overlap of the two positive parts of the wavefunctions (*positive overlap*) *is cancelled* by the '*negative overlap*' between the positive and negative parts of the wavefunctions.
- *Symmetry argument*: The *s orbital is symmetric* with respect to a mirror plane coming out of the plane of the paper whereas *the* p_x *orbital is anti-symmetric*. The two AOs do NOT have the same symmetry and therefore do not overlap.

More practical example

Figure out the symmetry-compatible overlap of AOs in OH: H 1s vs. O 2s, 2pz, 2px, 2py

- OH belongs to $C_{\infty \nu}$ point group.
- Simple inspection:

$C_{\infty v}$	$E = 2C^{z}(\alpha)$) ··· ∞σ _ν		
Σ^+ (A_1)	1 1	1	Z	$x^2 + y^2; z^2$
$\Sigma^ (A_2)$	1 1	··· -1	R_z	
Π (E_1)	$2 \cos \alpha$	0	(x,y) (R_x,R_y)	
Δ (E_2)	$2 \cos 2$	$\alpha \cdots 0$		$(x^2 - y^2, 2xy)$
Φ (E_3)	$2 \cos 3$	$\alpha \cdots 0$,
•••				

4.3 Matrix elements

• Another very commonly encountered *integral* in quantum mechanics is:

$$Q_{ij} = \int \psi_i^* \widehat{Q} \psi_j d\tau$$

 \hat{Q} is a quantum mechanical operator. Q_{ij} is often described as a *matrix element*. The size of the matrix is determined by the number of basis functions ψ_i we choose to use.

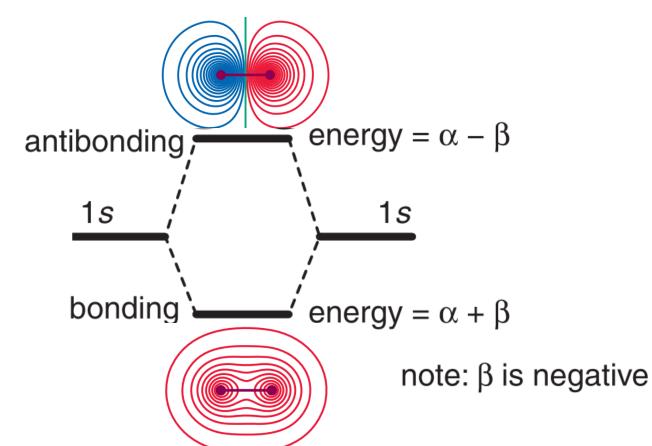
- Apparently, Q_{ij} is of course just a number (scalar).
- To make the integral *non-zero*, the integrand (or part of it) must transform as *the totally symmetric representation*.
- Accordingly we need to work out the *triple direct product*: $\Gamma^{(i)} \otimes \Gamma^{(Q)} \otimes \Gamma^{(Q)}$ where $\Gamma^{(i)}$, $\Gamma^{(i)}$ and $\Gamma^{(Q)}$ are the IRs of ψ_i , ψ_j , and \widehat{Q} , respectively.

- Atomic orbitals (AOs) can overlap to form molecular orbitals (MOs).
- In the simplest molecule, H₂, the 1s AOs of two H atoms can overlap to give

energy

- i) an in-phase combination
 - the bonding MO
- ii) an out-of-phase combination
 - the antibonding MO.

The **bonding MO** is lower in energy than the AOs, and the **antibonding** energy is higher.



- The MOs were generally written as a linear combination of the 1s AOs s_a and s_b on the different atoms: $\psi = c_a s_a + c_b s_b$ (for H₂, $|c_a| = |c_b|$, why?)
- The resulting energies of the MOs were:

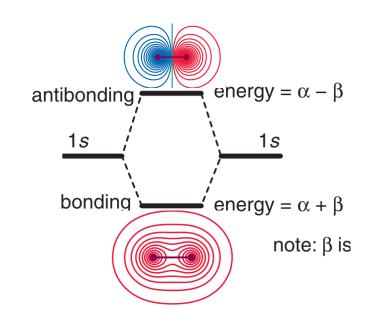
$$E = \alpha \pm \beta$$
 [+ for the bonding MO, - for the antibonding MO].

• The quantities α and β are both energies, and are defined via the integrals:

$$\alpha = \int s_a \hat{H} s_a d\tau = \int s_b \hat{H} s_b d\tau$$
; $\beta = \int s_a \hat{H} s_b d\tau = \int s_b \hat{H} s_a d\tau$; both α and β are negative.

 \hat{H} is just the *Hamiltonian* for the electron and β is sometimes called the *resonance integral*.

- The quantity β can be thought of as a measure of *the energy of interaction* between *the nuclei of both atoms* and the *electron density* arising from the *overlap* of the orbitals.
- The larger (more negative) β becomes, the stronger the bond.
- If β is zero, so there is no energetic advantage to forming a bond.



• For more complex molecules, quantities similar to β can be generally computed from integrals of the form:

 $\psi_i^* \widehat{H} \psi_j d\tau$

- These integrals are clearly matrix elements, and will only be *non-zero* if the result of the triple direct product $\Gamma^{(i)} \otimes \Gamma^{(\widehat{H})} \otimes \Gamma^{(\widehat{I})}$ contains the totally symmetric IR.
- The *Hamiltonian* represents the energy of the system, and that this energy is a just a number (a scalar). That is, $\Gamma^{(\widehat{H})}$ must be *the totally symmetric IR*. So

$$\Gamma^{(i)} \otimes \Gamma^{(\widehat{H})} \otimes \Gamma^{(j)} = \Gamma^{(i)} \otimes \Gamma^{tot. sym.} \otimes \Gamma^{(j)} = \Gamma^{(i)} \otimes \Gamma^{(j)}.$$

This product will only be equal to the totally symmetric IR if $\Gamma^{(i)} = \Gamma^{(j)}$.

The integral in $\int \psi_i^* \widehat{H} \psi_j d\tau$ will only be non-zero if $\Gamma^{(i)} = \Gamma^{(j)}$, i.e. the two wavefunctions transform as the same IR.

• This leads to the following result, which is exceptionally important when it comes to constructing MO diagrams:

MOs will only form between orbitals which transform as *the same IR*.

- In other words, 'only orbitals with *the same symmetry*, meaning that they transform as *the same IR*, will interact to form MOs'.
- So we will put this key result to good use right away.

- 1. The value of the integral $I = \int \psi d\tau$ is necessarily *zero* if ψ transforms as anything other than *the totally symmetric irreducible representation*.
- 2. The overlap integral $S_{ij} = \int \psi_i^* \psi_j d\tau$ is necessarily zero if ψ_i and ψ_j transform as different IRs. i.e. only wavefunctions with the same symmetry (meaning that they transform as the same IR) overlap.
- 3. The matrix element $Q_{ij} = \int \psi_i^* \widehat{Q} \psi_j d\tau$, will necessarily be *zero* unless the result of the direct product $\Gamma^{(i)} \otimes \Gamma^{(0)} \otimes \Gamma^{(j)}$ contains *the totally symmetric* IR.
- 4. MOs will only form between orbitals which transform as the same IR.