

Part III Symmetry and Bonding

Chapter 3 Direct Products

Prof. Dr. Xin Lu (吕鑫)

Email: xinlu@xmu.edu.cn

http://pcossgroup.xmu.edu.cn/old/users/xlu/group/courses/theochem/

3. Direct products

• In this chapter we will learn how to find *the symmetry of a product of two or more functions*.

This is extraordinarily important!

Recall those integrals we used before:

$$S_{ij} = \int \psi_i^* \psi_j d au \qquad oldsymbol{eta} = \int s_a \widehat{H} s_b d au$$

3.1 Introduction

• From the C_{2v} character table, we know that the function x transforms like B_1 whereas the function y transforms like B_2 . Then how does the function xy transform?

• This is already given in the table.

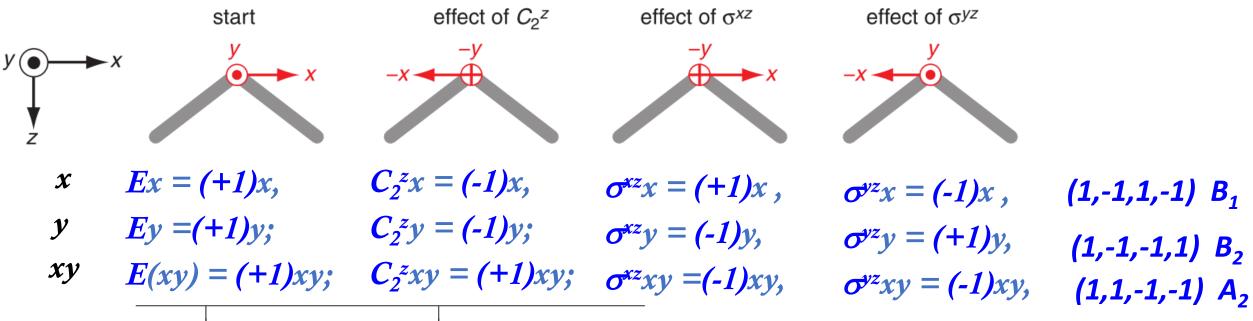
The function xy transforms like A_2 .

• How can we actually work this out?

C_{2v}	E	C_2^z	σ^{xz}	σ^{yz}			
A_1	1	1	1	1 -1 -1 1	z		$x^{2}; y^{2}; z^{2}$ xy xz yz
A_2	1	1	-1	-1		R_z	xy
B_1	1	-1	1	-1	x	R_{y}	XZ
B_2	1	-1	-1	1	у	R_{x}	уz

3.1 Direct products introduction

• Use the function xy as a basis to form the corresponding representation of C_{2v} , which will just be *a set of numbers*, i.e., these numbers are the *characters*.



E	C_2^z	σ^{xz}	σ^{yz}			
1	1	1	1	z		$x^2; y^2; z^2$
1	1	-1	-1		R_z	xy
1	-1	1	-1	x	R_{y}	XZ
1	-1	-1	1	y	R_{x}	yz
_	1 1 1 1	$\begin{array}{cccc} E & C_2 \\ \hline 1 & 1 \\ 1 & 1 \\ \hline 1 & -1 \\ \hline 1 & -1 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $\triangleright xy$ transforms like A_2 .

• The characters for xy are simply found by multiplying together the characters for the IR B_1 , which is how x transforms, and for the IR B_2 , which is how y transforms, operation by operation:

$$\underbrace{(1,-1,1,-1)}_{B_1\ (x)}\otimes\underbrace{(1,-1,-1,1)}_{B_2\ (y)}=(1\times 1,-1\times -1,1\times -1,-1\times 1)\equiv\underbrace{(1,1,-1,-1)}_{B_1\otimes B_2=A_2}$$

This kind of multiplication is called the *direct product*: $B_1 \otimes B_2 = A_2$.

• To take another example, if we wanted to know how xz transforms:

$$\underbrace{(1,-1,1,-1)}_{B_1\ (x)} \otimes \underbrace{(1,1,1,1)}_{A_1\ (z)} = (1\times 1,-1\times 1,1\times 1,-1\times 1) \equiv \underbrace{(1,-1,1,-1)}_{B_1\otimes A_1=B_1}$$

Thus xz transforms like B_1 .

C_{2v}	E	C_2^z	σ^{xz}	σ^{yz}			
A_1	1	1	1	1	z		$x^2; y^2; z^2$
A_2	1	1	-1	-1		R_z	xy
B_1	1	-1	1	-1	X	R_{y}	XZ
$\overline{B_2}$	1	-1	-1	1	у	R_{x}	yz

3.2 Direct product of one-dimensional irreducible representations

- lacktriangle In any group there is always the *totally symmetric IR* with all of the characters being +1.
- lacktriangle For the *i*th one-dimensional IR, $\Gamma^{(i)}$, of a group, the following properties apply:
 - 1) The direct product of this *IR* with the *totally*

symmetric IR, I^{tot. sym.}, gives this IR,

$$\Gamma^{(i)} \bigotimes \Gamma^{tot. sym.} = \Gamma^{(i)}$$

2) The direct product of a *one-dimensional IR* with itself gives the *totally symmetric IR*

$$\Gamma^{(i)} \bigotimes \Gamma^{(i)} = \Gamma^{tot. sym.}$$

-	C_{2v}		E	C_2^z	σ^{xz}	σ^{yz}			
	A_1		1	1	1	1	z		$x^2; y^2; z^2$
	A_2		1	1	-1	-1		R_z	xy
	B_1	١	1	-1	1	-1	\boldsymbol{x}	R_{y}	xz
	B_2		1	-1	-1	1	у	R_{x}	yz

3.3 Direct product of two-dimensional irreducible representations

- Two-dimensional IRs have character 2 under the identity operation, and are always denoted by a label E. (e.g., E IR in C_{3v})
- *Property 1* from the previous section still applies. For example, if we take the direct product $A_1 \otimes E$ we obtain E.

$$\underbrace{(1,1,1)}_{A_1} \otimes \underbrace{(2,-1,0)}_{E} = (1\times 2,1\times -1,1\times 0) \equiv \underbrace{(2,-1,0)}_{E} \quad \underbrace{(2,-1,0)}_{E} \otimes \underbrace{(2,-1,0)}_{E} = (2\times 2,-1\times -1,0\times 0) \equiv (4,1,0)$$

- Property 2 does not apply. If we compute $E \otimes E$, we find $E \otimes E = E \oplus A_1 \oplus A_2$
- *Modified version of property 2*: The direct product of an IR with itself *contains* the *totally symmetric IR*. This trend holds for higher-dimensional *IR*s.

3.4 Further points

• How does xyz transforms in the group $C_{2\nu}$? Consider the triple direct product:

$$\underbrace{B_1}_{x} \otimes \underbrace{B_2}_{y} \otimes \underbrace{A_1}_{z} = \underbrace{A_2}_{B_1 \otimes B_2} \otimes \underbrace{A_1}_{z} = \underbrace{A_2}_{z}.$$

Thus xyz transforms as A_2 .

C_{2v}		_	σ^{xz}				
A_1	1	1	1	1	z		$x^2; y^2; z^2$
A_2	1	1	-1	-1		R_z	xy
B_1	1	-1	1	-1	x	R_{y}	XZ
B_2	1	-1	-1	-1 -1 1	у	R_z R_y R_x	yz

• The direct product is commutative and distributive.

i.e.
$$B_1 \otimes B_2 = B_2 \otimes B_1$$
 and $(B_1 \otimes B_2) \otimes A_1 = B_1 \otimes (B_2 \otimes A_1)$.

• *Simple numbers* (scalars) transform as the *totally symmetric IR*, as a number is *unaffected* by any symmetry operation.

- If *two functions* transform as the $IRs \Gamma^{(i)}$ and $\Gamma^{(j)}$, respectively, then *their product* transforms as the *direct product* of the two $IRs \Gamma^{(i)} \otimes \Gamma^{(j)}$.
- The *direct product* is found by *multiplying the characters* of the two IRs for each symmetry operation: $(a, b, c, \ldots) \otimes (p, q, r, \ldots) = (a \times p, b \times q, c \times r, \ldots)$
- The *totally symmetric* IR, $I^{tot. sym.}$, has character +1 for all operations.
- For any $IR \Gamma^{(i)}$: $\Gamma^{(i)} \otimes \Gamma^{tot. sym.} = \Gamma^{(i)}$.
- For any one-dimensional IR: $\Gamma^{(i)} \otimes \Gamma^{(i)} = \Gamma^{tot. sym.}$
- For any higher-dimensional \mathbb{R} the result of the product $\Gamma^{(i)} \otimes \Gamma^{(i)}$ contains $\Gamma^{tot. sym.}$.
- *Scalars* (*numbers*) transform as the *totally symmetric IR*.