Fullerenes

DOI: 10.1002/ange.200503705

Isolation and Characterization of Sc₂C₂@C₆₈: A Metal-Carbide Endofullerene with a Non-IPR Carbon Cage**

Zhi-Qiang Shi, Xin Wu, Chun-Ru Wang,* Xin Lu,* and Hisanori Shinohara*

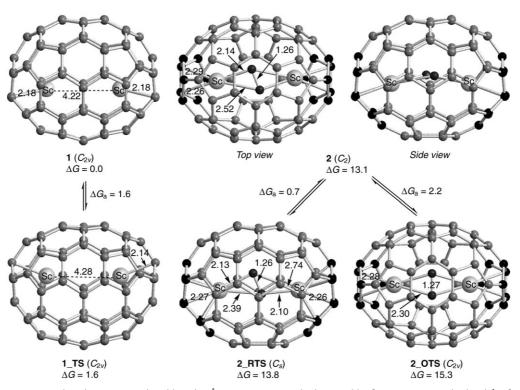
The geometries of pure-carbon fullerenes synthesized thus far follow exclusively the isolated-pentagon rule (IPR), which states that the pentagons in the most stable fullerenes are isolated from each other by hexagons.^[1,2] Due to enhanced steric strain (steric effect) and resonance destabilization pertaining to the pentalene-type 8n-electron system (electronic effect), pure-carbon non-IPR fullerenes with abutted pentagons are always unstable and synthetically unattainable.^[3] However, it appears that non-IPR fullerenes can be stabilized by either endohedral inclusion of electron-donating metal atoms/clusters^[4,5] or exohedral derivatization,^[6] as exemplified by such non-IPR fullerene derivatives as the endofullerenes $Sc_2@C_{66}$,^[4b] $La_2@C_{72}$,^[4c] and $Sc_3N@C_{68}$ ^[5] as well as the exohedral derivative $C_{50}Cl_{10}$.^[6] On the other hand, many metal-carbide endofullerenes, for example, $Sc_2C_2@C_{84}$,^[7] $Ti_2C_2@C_{78}$,^[8] $Y_2C_2@C_{82}$,^[9] and $Sc_3C_2@C_{80}$,^[10] have been synthesized and characterized exclusively with IPR-satisfying fullerene cages. Herein we report the isolation and characterization of Sc₂C₂@C₆₈, which is, to the best of our knowledge, the first metal-carbide endofullerene having a non-IPR cage.

[*]	Dr. ZQ. Shi, Prof. Dr. CR. Wang Institute of Chemistry Chinese Academy of Sciences Beijing 100080 (China) Fax: (+86) 10-6265-2120 E-mail: crwang@iccas.ac.cn X. Wu, Prof. Dr. X. Lu State Kay Laboratory of Physical Chemistry of Solid Surface &
	State Key Laboratory of Physical Chemistry of Solid Surface & Center for Theoretical Chemistry Departmental of Chemistry Xiamen University Xiamen 361005 (China) Fax: (+86) 592-218-3047 E-mail: xinlu@xmu.edu.cn
	Prof. Dr. H. Shinohara Department of Chemistry Nagoya University Nagoya, 464-8602 (Japan) Fax: (+81) 52-789-2962 E-mail: noris@cc.nagoya-u.ac.jp
[**]	CR.W. thanks NSFC (No. 50225206, 90206045, 20121301), National Key Project on Basic Research (Grant 2006CB30040, 2003CB716900), and National Center for Nanoscience and Tech- nology of China. X.L. thanks NSFC (No. 20021002, 20425312, 20203013, 20423002, 90206038). H.S. thanks the JSPS for Future

Zuschriften

The synthesis and isolation of Sc2C70 are essentially analogous to those of other scandium metallofullerenes such as $Sc_2@C_{66}$ and $Sc_2C_2@C_{84}$ reported before. $\ensuremath{^{[4b,7]}}$ Briefly, soot containing Sc₂C₇₀ and other metallofullerenes were generated by arc discharge of scandium/graphite carbide composite rods (Tokyo Tanso Co. Ltd., 12×12×300 mm, 1.6 atom % Sc) in direct-current mode (350 A, 21 V) under a 17 Lmin⁻¹ flow of helium at 50–100 Torr. The soot was Soxhlet-extracted with carbon disulfide for 12 h, and the soot extracts were redissolved in toluene. Sc2C70 was isolated by multistage HPLC with two complementary types of column (5PYE and Buckyclutcher columns). The retention time of Sc_2C_{70} on the 5PYE column is very close to that of C_{76} ; thus, stage 1 was HPLC on the 5PYE column to roughly separate Sc_2C_{70} and C_{76} from C_{60} , C_{70} , and higher fullerenes and metallofullerenes. In stage 2, recycling HPLC on the 5PYE column was performed to separate Sc₂C₇₀ from C₇₆. After 8-10 cycles, separation into two subfractions was completed, whereby the first subfraction (pink) was Sc₂C₇₀ with some minor impurities and the second subfraction (yellow) was C76. In stage 3, recycling HPLC on the Buckyclutcher column was performed to further purify the Sc₂C₇₀. The purity (up to 99%) of isolated Sc_2C_{70} was confirmed by laser-desorption time-of-flight (LD-TOF) mass spectrometry (Figure 1a).

The relative yield of Sc_2C_{70} is roughly 0.1% of that of C_{70} . We isolated about 3 mg of Sc_2C_{70} (black powder) for spectroscopic study and structural characterization. Solutions of Sc_2C_{70} in carbon disulfide or toluene are pink. The UV/Vis/ NIR spectrum of Sc_2C_{70} in carbon disulfide solution shows absorption peaks at 570, 841, and 1126 nm (Figure 1 b), and it differs remarkably from that of empty C_{70} (absorptions at 472, 550, and 640 nm). The remote absorption onset of Sc_2C_{70} at about 1800 nm ($\approx 0.69 \text{ eV}$) as compared to that of C_{70} at about 680 nm identifies it as a metallofullerene with a small band gap.

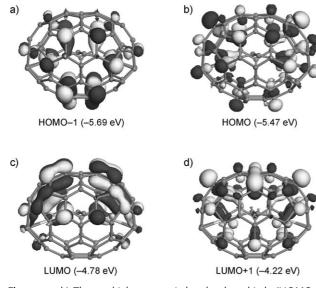

The ¹³C NMR spectrum of Sc₂C₇₀ in CS₂ solution is shown in Figure 1 c. Between $\delta = 135$ and 158 ppm, the spectrum consists of a series of 21 distinct lines that indicate at least 21 unique C atoms in as-prepared Sc₂C₇₀. Except for an impurity peak at 137.5 ppm (Figure 1 c), a wider range spectrum (not shown) shows no further resonances attributable to impurities.

With respect to the structure of Sc_2C_{70} , two models were considered: simple endohedral Sc₂@C₇₀ structure 1 and metalcarbide $Sc_2C_2@C_{68}$ structure 2. For the simple endohedral $Sc_2@C_{70}$ structure, both the IPR-satisfying D_{5h} -symmetric C_{70} fullerene and all non-IPR C₇₀ isomers that have 21 unique C atoms (i.e., #62, #3783, #4912, #6108, #7032, #7114, #8143 following the spiral algorithm^[2]) were considered (Supporting Information). To attain a stable closed-shell electronic configuration,^[8a,11,12] it is likely that a total of six valence electrons of the two encased Sc atoms would be donated to the carbon cage^[13] to give a valence state of $(Sc^{3+})_2@C_{70}^{6-}$. Hence, we computed the structures of the hexaanions of the aforementioned C_{70} isomers at the semiempirical $\mbox{PM3}^{[14]}$ level of theory. In addition, the tetraanions and dianions of these C_{70} isomers were considered. The energies of the non-IPR C_{70}^{q-1} (q=2, 4, 6) isomers are much higher than that of the IPRsatisfying D_{5h} -symmetric C_{70}^{q-} (q = 2, 4, 6) predicted by the

Figure 1. a) Time-of-flight mass spectrum of Sc_2C_{70} anions. b) UV/Vis/ NIR absorption spectrum of Sc_2C_{70} in CS_2 solution. c) 125 MHz ¹³C NMR spectrum of Sc_2C_{70} in CS_2 solution (27 °C, 100000 scans (5 d) on a Varian Inova-600 spectrometer; chromium(11) acetylacetonate was added as relaxation agent). The 21 distinct ¹³C NMR lines are located at 135.57 (7.4), 140.09 (8.5), 140.53 (3.3), 142.38 (7.3), 143.17 (3.7), 143.22 (7.0), 143.57 (7.7), 143.65 (4.1), 144.14 (8.0), 145.05 (8.3), 145.26 (6.7), 146.23 (3.0), 147.16 (6.8), 147.3 (7.5), 147.35 (3.1), 147.74 (3.2), 148.09 (7.4), 149.62 (8.1), 153.54 (3.8), 155.95 (7.0), and 157.18 ppm (7.1), where the data in parentheses refer to relative intensity. The line marked with \times is assigned to impurities on account of its unusual line width and unreasonably high intensity.

B3LYP^[15]/6-31G//PM3 calculations^[16] (Supporting Information). Hence, the $Sc_2@C_{70}$ structure 1 would preferentially adopt the IPR-satisfying D_{5h} -symmetric C₇₀ cage, rather than any of the $C_{2\nu}$ -symmetric non-IPR C₇₀ cages. Though the D_{5h} - C_{70} cage has only five unique C atoms, encapsulation of Sc_2 in the D_{5h} -C₇₀ cage can result in $C_{2\nu}$ -symmetric geometries for $Sc_2@C_{70}$, which would give rise to 21 lines in the ¹³C NMR spectrum. However, such a simple endohedral model is not supported by our quantum chemical calculations. The most stable $C_{2\nu}$ -symmetric structure of Sc₂@C₇₀ (1) with D_{5h} symmetic C70 cage, optimized at the GGA-PBE/DNP level of theory,^[17,18] is shown in Figure 2; each Sc atom is bonded to a 5-6 ring fusion pertaining to the polar pentagon. The valence state of **1** is $(Sc^{2+})_2@(C_{70})^{4-}$; its HOMO consists predominantly of the d orbitals of the encased Sc^{2+} atoms (Supporting Information). Interestingly, a small barrier of only 1.6 kcalmol⁻¹ (at transition state **1_TS**) is predicted for rotation of the Sc₂ unit around the C_5 axis of C_{70} at room

Figure 2. GGA-PBE/DNP predicted geometries (bond lengths [Å]), symmetries, and relative Gibbs free energies ΔG [kcal mol⁻¹] of Sc₂C₇₀ isomers at T=298.15 K. **1** is the optimized geometry of Sc₂@C₇₀; **1_TS** is the transition state for rotation of the Sc₂ unit around the C₅ axis of the D_{5h} -C₇₀ cage. **2** is the optimized geometry of Sc₂@C₆₈ with the non-IPR C₆₈ (#6073) cage; **2_RTS** and **2_OTS** are the transition states for rotation and oscillation of the carbide moiety within **2**. These stationary points were confirmed to be local minima or transition states by harmonic vibrational analyses. ΔG_a [kcal mol⁻¹] is the free energy of activation for intramolecular rotation or oscillation.


temperature. Hence, rotation of the Sc₂ unit should be quite fast, and the C₇₀ cage in **1** should maintain D_{5h} symmetry over a long timescale. As a result, Sc₂@C₇₀ (**1**) should display only five ¹³C NMR lines at room temperature, in obvious disagreement with the measured spectrum shown in Figure 1 c. Hence, the synthesized Sc₂C₇₀ does not exist in the Sc₂@C₇₀ form.

An alternative structural model for Sc_2C_{70} is $Sc_2C_2@C_{68}$ (2). According to the spiral algorithm, $^{\left[2\right]}$ C_{68} has no IPRsatisfying isomer but 6332 non-IPR isomers, of which only four $C_{2\nu}$ -symmetric non-IPR isomers (i.e., #494, #465, #647, and #6073^[2]) can produce 21 distinct lines in the ¹³C NMR spectrum (Supporting Information). Among all 6332 non-IPR C₆₈ isomers, C₆₈ (#6073) has the smallest number (two) of pentagon-pentagon fusions. On the other hand, previous DFT computations on the metal-carbide endofullerene $Sc_2C_2@C_{84}$ revealed that the encased Sc_2C_2 cluster adopts the charge state $[Sc_2C_2]^{4+}$.^[7b] Similarly, $Sc_2C_2@C_{68}$ (2) may have a charge state of $[Sc_2C_2]^{4+}@C_{68}^{4-}$ by donation of four electrons from the encased Sc_2C_2 cluster to the C_{68} cage. We computed structures and energies for the tetraanions of the four $C_{2\nu}$ -symmetric non-IPR C₆₈ isomers at the PM3 level of theory^[14] and found that the C_{68}^{-4-} (#6073) isomer is far more stable than the other three C_{68}^{-4-} isomers (Supporting Information). Hence $Sc_2C_2@C_{68}$ (**2**) would preferentially adopt the $C_{2\nu}$ -symmetric C₆₈ (#6073) cage. For Sc₂C₂ encased in the C_{68} (#6073) cage, the most stable structure 2 predicted at the GGA-PBE/DNP level is C_2 -symmetric (Figure 2). Although the computed free energy of **2** is $13.1 \text{ kcal mol}^{-1}$

higher than that of **1**, the much larger predicted HOMO– LUMO gap of **2** (0.68 eV) relative to **1** (0.33 eV) suggests that **2** is kinetically more stable than **1**. More importantly, **2** has a normal valence state $(Sc^{3+})_2(C_2)^{2-}@C_{68}^{-4-}$ that fulfills the rule of closed-shell electronic configuration,^[8a,11,12] whereas $Sc_2@C_{70}$ (**1**) has the valence state $(Sc^{2+})_2@(C_{70})^{4-}$, which contains unusual Sc^{2+} cations.^[13,19] Hence, $Sc_2C_2@C_{68}$ (**2**) is chemically more rational than $Sc_2@C_{70}$ (**1**). As shown in Figure 3, the two highest occupied molecular orbitals (HOMO and HOMO–1) and two lowest unoccupied molecular orbitals (LUMO and LUMO + 1) of **2** are derived mainly from the orbitals of the C_{68}^{4-} cage with minor contribution from the encased cluster. These frontier orbitals should control the redox properties of **2**, for example, electrochemical redox potentials.

Furthermore, two transition states, **2_RTS** and **2_OTS**, were located for rotation of the encased acetylide (C_2^{2-}) group around the Sc–Sc axis and oscillation of the carbide moiety between the two Sc atoms, respectively (Figure 2). At room temperature, the rotational barrier (at **2_RTS**) is only 0.7 kcalmol⁻¹, whereas the barrier for the oscillation is 2.2 kcalmol⁻¹ (at **2_OTS**). Due to the small barriers, rotation and oscillation of the encased carbide moiety within **2** should be rather fast at room temperature. Its C₆₈ cage appears to be $C_{2\nu}$ -symmetric by averaging over all rotating and oscillating structures on a long timescale, and this accounts for the observed 21 lines in the ¹³C NMR spectrum. Accordingly, the synthesized Sc₂C₇₀ can be reasonably assigned as Sc₂C₂@C₆₈ (**2**).

Zuschriften

Figure 3. a, b) The two highest occupied molecular orbitals (HOMO and HOMO-1), and c, d) the two lowest unoccupied molecular orbitals (LUMO and LUMO+1) of $Sc_2C_2@C_{68}$ (2).

On account of the fascinating intramolecular dynamics of 2, an accurate theoretical simulation of its ¹³C NMR spectrum is nontrivial and requires molecular dynamics (MD) simulation followed by elaborate ¹³C NMR computations on a large number of individual snapshots selected from the MD trajectory. Such a computational technique, though rather time-consuming, proved to be powerful in reproducing the experimental NMR spectrum of $Sc_3N@C_n$ (n = 68, 80).^[20] Unfortunately, we cannot afford such a simulation due to hardware limitations. Nevertheless, we computed the ¹³C NMR chemical shifts of 2 at the GIAO^[21]-B3LYP/6-31G* level of theory using the B3LYP/6-31G* optimized geometries.^[22] By averaging the chemical shifts of equivalent sites in the C_{68} cage, a total of 21 ^{13}C NMR chemical shifts ranging from 133.5 to 159.9 ppm were predicted for $Sc_2C_2@C_{68}$ (Supporting Information), in reasonable agreement with the experimental data, which range from 135.6 to 157.2 ppm. On the contrary, the computed ¹³C NMR chemical shifts for static $C_{2\nu}$ -symmetric Sc₂@C₇₀ (1) (Supporting Information) range from 130.1 to 159.4 ppm with an interval ($\Delta \delta = 29.3$ ppm) much larger than the experimental one ($\Delta \delta = 21.6$ ppm). So far as its intramolecular dynamic behavior is considered, 1 would display only five ¹³C NMR signals ranging from 137.6 to 145.2 ppm (Supporting Information), inconsistent with the experimental spectrum (Figure 1c). These data further justify the $Sc_2C_2@C_{68}$ (2) structure for the synthesized Sc_2C_{70} . In addition, the predicted ¹³C NMR chemical shift for the encapsulated acetylide group in $Sc_2C_2@C_{68}$ (2) is about 234.7 ppm, which is not observed in the NMR experiment, probably due to spin-rotation interaction^[9] at room temperature.

Finally, it is noteworthy that the C₆₈ cage of Sc₂C₂@C₆₈ (**2**) is different from that of the previously synthesized Sc₃N@C₆₈ (**3**).^[5] Endofullerene **2** has the valence state $(Sc^{3+})_2(C_2)^{2-}@C_{68}^{4-}$, in which the $C_{2\nu}$ -symmetric C₆₈ (#6073) cage has two pentagon–pentagon pairs accommodating two Sc³⁺ ions.

 $Sc_3N@C_{68}$ (3) is in a valence state $(Sc^{3+})_3N^{3-}@C_{68}^{-6-}$; its D_{3^-} symmetric C_{68} (#6140) cage has three pentagon–pentagon pairs, each coordinated to an Sc^{3+} ion.^[5,23] Accordingly, our synthesis of $Sc_2C_2@C_{68}$, in combination with the previous work on $Sc_3N@C_{68}$, clearly evidences that endohedral clusters such as Sc_2C_2 and Sc_3N function as templates for the synthesis of different non-IPR C_{68} cages.

Received: October 19, 2005 Revised: December 20, 2005 Published online: February 24, 2006

Keywords: density functional calculations · fullerenes · host-guest systems · scandium · structure elucidation

- [1] H. W. Kroto, Nature 1987, 329, 529.
- [2] P. W. Fowler, D. E. Manoloupoulos, An Atlas of Fullerenes, Oxford University Press, Oxford, 1995.
- [3] X. Lu, Z. Chen, Chem. Rev. 2005, 105, 3643.
- [4] a) K. Kobayashi, S. Nagase, M. Yoshida, E. Osawa, J. Am. Chem. Soc. 1997, 119, 12693; b) C.-R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, M. Sakata, H. Shinohara, Nature 2000, 408, 426; c) H. Kato, A. Taninaka, T. Sugai, H. Shinohara, J. Am. Chem. Soc. 2003, 125, 7782.
- [5] S. Stevenson, P. W. Fowler, T. Heine, J. C. Duchamp, G. Rice, T. Glass, K. Harich, E. Hajdu, R. Bible, H. C. Dorn, *Nature* 2000, 408, 428.
- [6] a) S. Y. Xie, F. Gao, X. Lu, R. B. Huang, C.-R. Wang, X. Zhang, M. L. Liu, S. L. Deng, L. S. Zheng, *Science* 2004, *304*, 699; b) X. Lu, Z. Chen, W. Thiel, P. v. R. Schleyer, R. B. Huang, L. S. Zheng, *J. Am. Chem. Soc.* 2004, *126*, 14871; c) Z. Chen, *Angew. Chem.* 2004, *116*, 4794; *Angew. Chem. Int. Ed.* 2004, *43*, 4690.
- [7] a) C.-R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, M. Sakata, H. Shinohara, *Angew. Chem.* 2001, 113, 411; Angew. Chem. Int. Ed. 2001, 40, 397; b) M. Krause, M. Hulman, H. Kuzmany, O. Dubay, G. Kresse, G. Seifert, C.-R. Wang, H. Shinohara, *Phys. Rev. Lett.* 2004, 93, 137403.
- [8] a) K. Tan, X. Lu, *Chem. Commun.* 2005, 4444; b) B. Cao, M. Hasegawa, K. Okada, T. Tomiyama, T. Okazaki, K. Suenaga, H. Shinohara, *J. Am. Chem. Soc.* 2001, *123*, 9679; c) T. Yumura, Y. Sato, K. Suenaga, S. Iijima, *J. Phys. Chem. B* 2005, *109*, 20251.
- [9] a) T. Inone, T. Tomiyama, T. Sugai, H. Shinohara, *Chem. Phys. Lett.* 2003, 382, 226; b) T. Inone, T. Tomiyama, T. Sugai, T. Okazaki, T. Suematsu, N. Fujii, H. Utsumi, K. Nojima, H. Shinohara, J. Phys. Chem. B 2004, 108, 7573.
- [10] Y. Iiduka, T. Wakahara, T. Nakahodo, T. Tsuchiya, A. Sakuraba, Y. Maeda, T. Akasaka, K. Yoza, E. Horn, T. Kato, M. T. H. Liu, N. Mizorogi, T. Kobayashi, S. Nagase, J. Am. Chem. Soc. 2005, 127, 12500.
- [11] D. M. P. Mingos, T. Slee, Z. Lin, *Chem. Rev.* **1990**, *90*, 383, and references therein.
- [12] a) H. W. Kroto, *Nature* 1987, 329, 529; b) P. W. Fowler, *J. Phys. Chem. Solids* 1993, 54, 1825; c) M.-F. Fan, Z. Lin, S. Yang, *J. Mol. Struct.* 1995, 373, 231; d) P. W. Fowler, F. Zerbetto, *Chem. Phys. Lett.* 1995, 243, 36.
- [13] Sc²⁺ was long supposed in Sc@C₈₂ and Sc₂@C₈₄, but recent theoretical and experimental investigations revealed it is Sc³⁺ in either endofullerene: a) J. Lu, X. W. Zhang, X. G. Zhao, S. Nagase, K. Kobayashi, *Chem. Phys. Lett.* **2000**, *332*, 219; b) T. Pichler, Z. Hu, C. Grazioli, S. Legner, M. Knupfer, M. S. Golden, J. Fink, F. M. F. de Groot, M. R. C. Hunt, P. Rudolf, R. Follath, C. Jung, L. Kjeldgaard, P. Bruhwiler, M. Inakuma, H. Shinohara, *Phys. Rev. B* **2000**, *62*, 13196, and references therein.
- [14] J. J. P. Stewart, J. Comput. Chem. 1989, 10, 209.

- [15] For the hybrid density functional B3LYP method, see a) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648; b) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785.
- [16] For each anion, the total energy was computed at the B3LYP/6-31G level with use of its PM3 optimized geometry. The calculations were performed with the Gaussian 98 suite of programs: Gaussian 98 (Revision A.7), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
- [17] For GGA-PBE density functional theory, see J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, 77, 3865.
- [18] DNP refers to double numerical basis sets plus polarization. The GGA-PBE/DNP calculations were performed with the Dmol³ code implemented in Material Studio, Accelrys Inc.: a) B. Delley, J. Chem. Phys. **1990**, 92, 508; b) B. Delley, J. Chem. Phys. **2000**, 113, 7756.
- [19] F. A. Cotton, G. C. Wilkinson, A. Murillo, M. Bochmann, *Advanced Inorganic Chemistry*, 6th ed., Wiley-Interscience, New York, **1999**, p. 221.
- [20] a) J. U. Reveles, T. Heine, A. M. Köster, J. Phys. Chem. A 2005, 109, 7068; b) T. Heine, K. Vietze, G. Seifert, Magn. Reson. Chem. 2004, 42, 199; c) "Fullerenes": T. Heine in Calculation of NMR and EPR Parameters: Theory and Applications (Eds.: M. Kaupp, V. G. Malkin, M. Bühl), Wiley-VCH, Weinheim, 2004.
- [21] K. Wolinski, J. F. Hilton, P. J. Pulay, J. Am. Chem. Soc. 1990, 112, 8251, and references therein.
- [22] The GIAO-B3LYP/6-31G* theory proved to be sufficiently accurate in reproducing ¹³C NMR chemical shifts of fullerenes (e.g., C₆₀, C₇₀, C₇₆, and C₇₈) and the endofullerene Sc₃N@C₈₀ (II):
 a) G. Sun, M. Kertesz, *J. Phys. Chem. A* 2000, *104*, 7398; b) J. C. Duchamp, A. Demortier, K. R. Fletcher, D. Dorn, E. B. Iezzi, T. Glass, H. C. Dorn, *Chem. Phys. Lett.* 2003, *375*, 655.
- [23] J. M. Campanera, C. Bo, J. M. Poblet, Angew. Chem. 2005, 117, 7396; Angew. Chem. Int. Ed. 2005, 44, 7230.