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7. Normal modes 

• This section is devoted to using symmetry considerations to help understand the vibrations 

of  molecules and spectra that arise due to transitions between the associated energy levels. 

• Each normal mode has a set of  energy levels, and the transitions between these levels 

give rise to infra-red spectra of  the type.

e.g.,  three normal modes of  H2O and their fundamental transitions 

• The vibrations of  a molecule: a finite number of  special vibrations called normal modes. 



7. Normal modes 

Here we will show ideas about 

i) how to classify normal modes according to symmetry, 

ii) how to predict which modes give rise to infra-red spectra and vibrational 

Raman scattering. 

• We will use the symmetry arguments to explain the occurrence of  more 

complex features of infra-red spectra, such as overtones and combination bands.



7.1 Normal mode analysis

• Vibrations involve the physical displacement of atoms from their equilibrium positions.

• Example, H2O (C2v), basis (x, y and z displacement vectors on each atom).

• To simplify the problem, we first separate the displacement vectors into groups which 

are mapped onto one another by the operations of  the point group.  

Basis (9 vectors )  a 9-D rep.!

• O,x ~ ？ ,   O,y ~？ , O,z ~ ？

• Other groups of  vectors:   (H1,x, H2,x);  (H1,z, H2,z);  (H1,y, H2,y)

与之前对原子轨道进
行对称性分类相似！



7.1 Normal mode analysis

1 2 0 2 0 = A1  B1(H1,x, H2,x)

(H1,y, H2,y) 2 2 0 -2 0 = A2  B2O,x

O,y

O,z

(H1,x, H2,x) A1  B1

(H1,z, H2,z) A1  B1

(H1,y, H2,y) A2  B2

3A1  3B1 A2 2B2 • 3N-6 normal modes for non-linear molecules.

Vector(s) IR

Full set （3N)                         3A1  3B1 A2 2B2

Translations (x,y,z) B1, B2, A1 (from the table)

Rotations (Rx,Ry,Rz) B2, B1, A2 (from the table)

Vibrations （3N-6) 2A1  B1

B1 (from the table)

B2

A1

Total

SALC



7.1.1 Form of  the normal modes Ex.32

• H2O has ？ stretching modes and     ？ angle bending mode. 

• Alternatively, use internal displacements to derive the forms of  normal modes—two rules

(i) there is 1 stretching vibration per bond

(ii) we must treat symmetry-related atoms together

• In a normal mode, the centre of  mass has to remain fixed. Accordingly,  the atoms have to 

move in ways which balance one another out and in addition the amount by which 

each atom moves will be affected by its mass. (lower mass  larger displacement)

• However, it is rather tedious to derive the form of  the normal modes in a basis of  (x,y,z)

displacements even for simple molecules! 

two one

Internal coordinates(内坐标): 

bond lengths, bond angles, 

dihedral angles

v3



7.1.1 Form of  the normal modes

Example: H2O

• First use the two O-H bond stretches as a basis:  

O

H1 H2 𝑟1  𝑟2

(2r) 2 0 2 0 = A1  B1

x

z

y

The A1 stretching (z-like): ( r1+  r2)

The B1 stretching (x-like): (– r1+ r2)

~Symmetric (in-phase) stretching

~anti-symmetric (out-of-phase) stretching
()

• use the H-O-H angle  bending as a basis.    



1 1 1 1 = A1

The angle bending transforms as A1 IR. 

Using internal displacements (coordinates)!

The A1 bending & symmetric stretching mix! Neither purely bending nor stretching. 



7.1.2 Normal modes of  𝑯𝟑
+

• Example: intersteller molecule 𝑯𝟑
+ (point group D3h).

• In a general axis system: (z,1 z,2 z,3), (x,1 x,2 x,3, y,1 y,2 y,3)

• In a local axis system:   (z,1 z,2 z,3), (a,1 a,2 a,3), and (b,1 b,2 b,3)  all 3-D reps.!

 a 6-D rep.!

Radial displacements Tangential displacements



7.1.2 Normal modes of  𝑯𝟑
+

(z,1 z,2 z,3) ( 3 0  -1 -3 0 1）A2  E

(a,1 a,2 a,3) ( 3 0  1 3 0 1) A1  E

(b,1 b,2 b,3) ( 3 0  -1 3 0 -1) A2  E

Total A1  A2  2E A2  E

–translations (x,y,z) E  A2

–rotations (Rx,Ry,Rz) E  A2

Vibrations A1  E

Q: How does its three  

normal modes look 

like?

A1’:   a1+a2+a3

E’y 2a1-a2-a3

E’x a2-a3

1st approx.:

x

y

E’y 2b1-b2-b3

E’x b2-b3



7.1.3 X–H stretching analysis

• On account of  the low mass of  the hydrogen atom, it is often the case that particular 

normal modes are dominated by X–H stretching motions. 

• Therefore it is practically useful to make a symmetry analysis using a basis consisting of  

only X–H stretches, but not a general set of  (x,y,z) displacements on each atom. 

• Of course, such an approach will only reveal the symmetries of  those normal modes 

involving the X–H stretches. 

• Example: the C–H stretches of  ethene (point group D2h).

𝒓𝟒 𝒓𝟏

𝒓𝟐𝒓𝟑



7.1.3 X–H stretching analysis

 4 0 0 0 0 4 0 0

  = Ag  B1g  B2u  B3u  

Ag, Totally symmetric B2u , like y B3u , like xB1g , like xy

𝒓𝟒 𝒓𝟏

𝒓𝟐𝒓𝟑

(𝒓𝟏– 𝒓𝟐 – 𝒓𝟑 + 𝒓𝟒)(𝒓𝟏 + 𝒓𝟐 + 𝒓𝟑+ 𝒓𝟒) (𝒓𝟏 + 𝒓𝟐 – 𝒓𝟑 – 𝒓𝟒)(𝒓𝟏 - 𝒓𝟐 + 𝒓𝟑- 𝒓𝟒)



• These pictures arising from combination of  internal displacements are only 

approximations to the real normal modes. （In reality, the carbon atoms would also 

need to move by small amounts in order to ensure that the centre of  mass remain 

fixed.）

• In the next two sections, we will see how a symmetry analysis helps us to determine 

whether or not a particular normal mode will give rise to absorptions in the infra-red or 

vibrational Raman scattering (i.e. whether or not a mode is ‘infra-red or Raman active’).

• We will start out by looking at the symmetry of  the harmonic oscillator wavefunctions, 

which are a first approximation to the vibrational wavefunctions of  the molecule, and 

then move on to discuss the selection rules for transitions between them.

Ex.33



多原子分子的振动指的是分子中原子间周期性运动（不包括分子整体的平动和转动），振

动过程中存在原子偏离平衡位置的物理位移。通常由一定数量的简正振动(模)来描述，直线

形分子有3N-5个，非直线形分子有3N-6个。

每个简正振动均有一系列能级，对称性许可时，其振动能级的跃迁可在红外光谱(或振动拉

曼散射光谱）中产生特征峰(信号); 

简正(振动)模的对称性分析----基于所使用的基，有两类方法：

i）基于每个原子偏离平衡位置的位移矢量，可以是直角坐标系下的(x,y,z)，也可以是便于

对称性分类处理而设置的局域坐标系下的(a,b,c); （缺点：不便于想象振动模式）

ii）基于分子的内(坐标)位移，甚至是部分内坐标如X-H键伸缩位移。（缺点：近似图像）

前一节回顾：简正(振动)模的对称性分析及其形式

简正振动(模)对称性分析时须注意两个一致性：1）自由度数量一致性；2）对称性一致性



7.2 Symmetry of  the vibrational wavefunctions

• If  we assume that the vibrations are harmonic, each normal mode has associated with 

a set of  energy levels: (ωi is the vibrational frequency of the ith normal mode). 

𝑬𝒗𝒊 = 𝒗𝒊 +
𝟏

𝟐
ℏ𝝎𝒊 𝒗𝒊 = 𝟎, 𝟏, 𝟐…

• The normal modes can be excited independently of  one another so, for example, we 

can have the first normal mode in the v1= 1 level, the second in the ground state (v2=0), 

the third in the v3= 3 level and so on. 

The set of energy levels 

available for H2O.

B1



7.2 Symmetry of  the vibrational wavefunctions

• For a diatomic, the harmonic oscillator 

wavefunctions depend only on the 

displacement x, where x=(r-re). 

In terms of  the scaled coordinate q = x 

(km/ħ2)1/4, the form of  the first few 

wavefunctions and their energies are:

• In more complex molecules, a normal mode involves several atoms changing their positions, 

but we can define a single normal coordinate Qi to describe the motion (of  ith normal 

mode). 

Normal coordinate Qi in the place of  q for complex molecules!

• Key point:  
(𝑸

𝒊
)
= 

(𝒊)

= 𝑯𝒗 𝒒 exp(−𝑞2/2)

Hermite polynomials



7.2.1 Symmetry of  the ground state vibrational wavefunction

• For a non-degenerate normal mode, its ground-state wavefunction is ψ0= exp (–
𝟏

𝟐
𝑸𝒊
𝟐).

 𝑹Qi = +/Qi (effect of  symmetry operation on Qi)

 𝑹𝑸𝒊
𝟐 = (+1) 𝑸𝒊

𝟐

i.e. 𝑸𝒊
𝟐 transforms as the totally symmetric IR, so does ψ0= exp (−

𝟏

𝟐
𝑸𝒊
𝟐).  

 The ground state wavefunction always transforms as the totally symmetric IR.

• For degenerate normal modes, the conclusion remains the same and the statement above 

therefore applies to all normal modes.



State

7.2.2 Symmetry of  excited states: non-degenerate normal modes

ψ1 =  Qi exp (–
𝟏

𝟐
𝑸𝒊
𝟐) (i)

tot. sym.

= (i)

ψ2 = (4𝑸𝒊
𝟐–2) exp (–

𝟏

𝟐
𝑸𝒊
𝟐)

ψ3 = (8𝑸𝒊
𝟑–12Qi) exp (–

𝟏

𝟐
𝑸𝒊
𝟐)

vi =0 ψ0 = exp (–
𝟏

𝟐
𝑸𝒊
𝟐 )

vi =1 tot. sym.

vi =2

Wavefunction Symmetry

vi =3

tot. sym.tot. sym. =tot. sym.

(i) = (i)tot. sym.

For non-degenerate normal modes, vibrational wavefunctions with v = 0, 2, 4, . . . (even v) 

transform as the totally symmetric IR, and those with odd v have the same IR as does the 

normal mode.

Key point:  (Qi ) =  (i)

The first excited state transforms as 

the same IR as the normal mode. 



7.2.2 Symmetry of  excited states: non-degenerate normal modes

E

Normal Modes of  H2O

For non-degenerate normal modes, vibrational wavefunctions with v = 0, 2, 4, . . . 

(even v) transform as the totally symmetric IR, and those with odd v have the same IR as 

does the normal mode.



Symmetry of  excited states: degenerate normal modes

For degenerate normal modes,

• As for non-degenerate modes, the ground state (v = 0) transforms as the totally symmetric 

IR, and the first excited state (v =1) transforms as the same IR as the normal mode.

• The symmetry properties of  higher excited states follow a more complex pattern which 

is beyond the scope of  this course but is considered in detail in Perturbation Theory.



7.2.3 Overall symmetry of  the vibrational wavefunction

𝜞𝒕𝒐𝒕 = 𝜞𝒗𝟏
(𝟏)

⊗𝜞𝒗𝟐
(𝟐)

⊗⋯

• The symmetry of  the overall vibrational wavefunction for a molecule is given by the 

product

𝜞𝒗𝟏
(𝟏)

~ the IR of the wavefunction for the 1st normal mode with quantum number ν1; 

𝜞𝒗𝟐
(𝟐)

~ the IR of the wavefunction for the 2nd normal mode with quantum number ν2

… 

• In H2O, suppose that for the three normal modes ν1=0, ν2=1 and ν3=1, the IRs for 

each of  these wavefunctions are    ? ,   ? and   ? , respectively. 

A1⊗A1⊗B1 = B1. The IR of the overall vibrational wavefunction is therefore 

A1 A1 B1



7.2.3 Overall symmetry of  the vibrational wavefunction

• For a molecule in which none of  the vibrational modes are excited (all the νi are zero),  

the overall vibrational wavefunction transforms as the totally symmetric IR. 

• Also, if  just one normal mode is excited to the v = 1 state, and all of  the other normal 

modes have v = 0, the overall vibrational wavefunction has the same IR as the normal 

mode which is excited.



7.3 Using symmetry to determine which transitions are allowed

• The wavefunctions for a normal mode are the same as those for a harmonic oscillator 

(but replacing the displacement x by the normal coordinate Qi). The usual selection 

rules apply. That is, for a transition to be allowed

(1) The dipole must change as the normal coordinate changes about equilibrium.

(2) ∆νi= ±1.

• A symmetry analysis gives us a systematic way of  determining which particular 

transitions associated with particular normal modes are going to give rise to 

absorptions in the infra-red or vibrational Raman scattering.

• The (2) implies that the quantum number of  only one mode is allowed to change by ±1. 

• Due to anharmonicity, transitions with higher values of  ∆v are weakly allowed 

(overtones), as are transitions in which more than one mode changes quantum 

number (combination lines).



7.3.1 Transitions between the energy levels of  a single normal mode

• Since all of  the ground states transform as the totally symmetric IR, the symmetry of  the 

overall vibrational wavefunction is just determined by that of  the one normal mode 

which is being excited. 

• The intensity I of a transition between two vibrational levels, νi  𝒗𝒊
′, is proportional 

to the square of  the transition moment 𝑹𝒗𝒊𝒗𝒊
′ between those levels, i.e., 𝑰𝒗𝒊𝒗𝒊

′ ∝ 𝑹
𝒗𝒊𝒗𝒊

′
𝟐

• This transition moment between states νi and 𝒗𝒊
′ of the ith normal mode is given by

𝑹𝒗𝒊𝒗𝒊
′ =  

−∞

+∞

𝝍𝒗𝒊
′ 𝝁𝝍𝒗𝒊 𝒅𝑸𝒊

 𝝁 is the dipole moment operator which just depends on the coordinates x, y and z, since it 

simply describes the distribution of  charge in space.



7.3.1 Transitions between the energy levels of  a single normal mode

• The IR of the integrand can be found by first determining the IRs of  𝝍𝒗𝒊
′,  𝝁 and 𝝍𝒗𝒊

and then taking the direct product,

𝜞
𝒗𝒊
′

(𝒊)
⊗𝜞𝝁 ⊗𝜞𝒗𝒊

(𝒊)
= 

• The dipole moment operator  𝝁 ~ a function of  x, y and z,

 Γµ:  either the IR of x, or of  y, or of  z, all three possibilities should be considered.

 𝒕𝒐𝒕.𝒔𝒚𝒎. → 𝑹𝒗𝒊𝒗𝒊
′  0 Transition allowed, infra-red active

 𝒕𝒐𝒕.𝒔𝒚𝒎. → 𝑹𝒗𝒊𝒗𝒊
′ = 0 Transition forbidden, infra-red inactive



The fundamental transition

• The fundamental transition (v=0v=1) of ith normal mode. 

The fundamental transition is allowed in the infra-red when the IR of the normal mode 

is the same as that of  x, y or z.

v = 0 state  (𝜞𝒗=𝟎
(𝒊)

=  𝜞𝒕𝒐𝒕.𝒔𝒚𝒎.)  v = 1 state (𝜞
𝒗′=𝟏

(𝒊)
=        𝜞𝒏𝒎

(𝒊)
)

𝜞
𝒗=𝟏
(𝒊)

⊗𝜞𝝁 ⊗𝜞𝒗=𝟎
(𝒊)

= 𝜞𝒏𝒎
(𝒊)

⊗𝜞𝝁 ⊗𝜞𝒕𝒐𝒕.𝒔𝒚𝒎.

The IR of the ith

normal mode. 

= 𝜞𝒏𝒎
(𝒊)

⊗𝜞𝝁

The triple direct product for the transition moment is :  

• A normal mode whose fundamental transition is allowed in the infra-red is said to be 

infra-red active.



The fundamental transition

Example:  H2O

• The fundamentals of  the A1 normal modes are allowed since z transforms like A1; 

• The fundamental of  the B1 normal mode is allowed since x transforms like B1. 



Other symmetry allowed transitions within the same normal mode

• For transitions other than the fundamental, we would, in principle, need to work out the 

triple direct product in each case. 

Example:  H2O, 

i) A1 modes: all transitions are due to A1  A1 and 

ii) B1 mode:  allowed transitions are

𝑩𝟏 ⊗𝜞𝝁 ⊗𝑩𝟏 = 𝑨𝟏

For a B1  B1 transition, the triple 

product is

Thus it is IR-active.

E
.
.
.
.

v1 =0 A1

A1

A1

A1

Mode 1, A1

.

.

.

.

A1

A1

A1

A1

Mode 2, A1

.

.

.

.

A1

B1

A1

B1

Mode 3, B1

v2=0 
v3=0 

A1  A1

A1  B1

B1  B1

symmetry-allowed. 

A1→ A1, A1→ B1, B1→ A1, and B1→ B1.

overtones



A note of  caution 

• The symmetry argument is powerful:

I. All it does is to predict whether or not a transition is allowed.

II. It does not predict how strong a transition will be in the spectrum. 

III. In harmonic oscillator model, the selection rule is ∆v =±1. 

For a polyatomic molecule, the only allowed transitions are those in which the 

quantum number for a particular normal mode changes by one.

Furthermore, a transition will only have significant intensity if  the lower level is appreciably 

occupied. In practice, for small molecules, easily observable transitions will come from the 

ground vibration states, i.e., the symmetry allowed fundamental transitions are visible!

H2O:  The fundamentals of  the A1 , B1 normal modes are observable.



A note of  caution:   anharmonicity & overtones 

• However, the vibrations of  real molecules are not harmonic and so the ∆v=±1 rule does 

not always apply strictly. 

• Anharmonicity-induced visible transitions with |∆v| >1 : 

i) symmetry allowed ! 

ii) transition from a significantly populated lower level. 

• For example, in H2O the 0 → 2 transitions in each normal mode satisfy these criteria 

(they are all A1→ A1), and these first overtone bands are often seen.



7.3.2 Raman scattering

𝑹𝒗𝒊𝒗𝒊
′ =  

−∞

+∞

𝝍𝒗𝒊
′ 𝜶𝝍𝒗𝒊 𝒅𝑸𝒊

The IR of  the integrand is thus given by the triple product,

• For Raman scattering, the transition moment depends on the polarizability operator  𝜶

𝜞
𝒗𝒊
′

(𝒊)
⊗𝜞𝜶 ⊗𝜞𝒗𝒊

(𝒊)

 Vibrational Raman scattering occurs when this direct product contains the totally 

symmetric IR.

• For the fundamental transition of ith normal mode,  the triple product is

with  𝜶 ∝ 𝒑𝒒 (𝒑, 𝒒 ~ 𝒙, 𝒚, 𝒛)

The fundamental transition will be Raman allowed when the symmetry of  the normal 

mode matches that of  pq. ( p, q ~ x, y or z)

𝜞𝒏𝒎
(𝒊)

⊗𝜞𝜶 ⊗𝜞
𝑇𝑜𝑡.𝑠𝑦𝑚

= 𝜞
𝑇𝑜𝑡.𝑠𝑦𝑚

if 𝜞𝒏𝒎
(𝒊)

= 𝜞𝜶 (⸪𝜞𝒗=𝟏
(𝒊)

= 𝜞𝒏𝒎
(𝒊)

& 𝜞𝒗=𝟎
𝒊

= 𝜞
𝑇𝑜𝑡.𝑠𝑦𝑚

)



7.3.2  Raman Scattering

Example： H2O(C2v), three normal modes.

• Normal modes 1&2:  A1 IR, z2

• Normal mode 3:  B1 IR, xz

• All three modes Raman active!



7.3.3 Features and coincidences

• If  we concentrate on just the fundamental transitions (which are likely to be the 

strongest), each normal mode which is infra-red active will give rise to a band or 

‘feature’ in the infra-red spectrum. 

e.g, H2O:  

three normal modes are both infra-red and Raman active, 

 three features in both IR and Raman scattering spectrum

• Similarly, each normal mode which is Raman active will give rise to a feature in the 

Raman scattering spectrum.



7.3.3 Features (特征峰）and coincidences 

• Three normal modes of  𝑯𝟑
+

• Coincidence:  The same normal mode is active in both the infra-red and Raman, 

exhibiting a feature of  the same frequency.

 Raman spectrum ~    ?      features 

infra-red spectrum ~ ?        feature

𝑨𝟏
′

𝑬′

Raman active

Raman activeIR active

two

one

H2O:  

𝑯𝟑
+ :     One coincidence (from the E mode).

Three coincidences



7.3.4 Combination lines
• A combination line is a transition in which the quantum numbers associated with two or 

more normal modes change. 

• (ν1, ν2, ν3. . .) : a notation gathering the vibrational quantum number for each normal 

mode describes the overall vibrational state of  a molecule.

• The symmetry of  the overall state  can be found by taking the direct product of  the IRs 

of  the individual vibrational wavefunctions:

𝜞𝒗𝟏
(𝟏)

⊗𝜞𝒗𝟐
𝟐
⊗𝜞𝒗𝟑

𝟑
⊗⋯

• For a vibrational state (1,0,1) in H2O, the overall symmetry is A1 ⊗B1⊗A1 =B1.

Q： Is the double-excitation transition, (0,0,0) (1,0,1) , in H2O symmetry-allowed? 

The overall symmetry of  the ground state (0,0,0) is A1 ⊗A1⊗A1 =A1.

We have shown that A1 B1 transition is allowed.



7.3.5 Rule of  mutual exclusion

Molecules having a centre of  symmetry (i) have two distinct classes of  IRs:

IRs labelled with a subscript g

~symmetric with respect to i

IRs labelled with a subscript u

~anti-symmetric with respect to i

Functions x, y, z.

 𝑖q = (–1)q   u-class IR

Functions pq (p,q ~x,y,z)

 𝑖(pq) = (+1)pq  g-class IR

Infra-red active normal modes match the 

functions x,y,z in IR.

Fundamental 

transition(v=01)

Raman scattering active normal 

modes match functions pq in IR.

The rule of  mutual exclusion:  for a molecule with a centre of  inversion, the fundamental 

of a particular normal mode cannot both give rise to an absorption in the infra-red and 

vibrational Raman scattering. In other words, if  the transition is allowed in the infra-red it 

will not also give rise to Raman scattering.



7.3.5 Rule of  mutual exclusion

• For a molecule with a centre of inversion, a normal mode which is active in the 

infra-red will not be active in the Raman.

• Example: the C–H stretching normal modes for ethane.

Normal 

Mode IR

Ag

B1g

B2u

B3u

inactive active

Infra-red
Raman 

scattering

activeinactive

active inactive

active inactive

similar

function

q2

xy

y

x

Exs.34-39

Q: Please work out the symmetry allowed 

overtones and  combination lines in both types 

of  spectra.



Overtones and combination lines of  C-H stretches in C2H4

• Overtones: (02)

0

1

2

NM Ag

Ag

Ag

Ag

B1g

Ag

B1g

Ag

B2u

Ag

B2u

Ag

B3u

Ag

B3u

Ag

NM Ag B1g B2u B3u

=0=2 Ag  Ag Raman active

• Combination  lines: (01&01)

B1g & B2u Ag B1g  B2u IR active!

B1g & B3u Ag B1g  B3u IR active!

B2u & B3u Ag B2u  B3u Raman active!

Ag & B2u Ag Ag  B2u IR active!

Ag & B3u Ag Ag  B3u IR active!

Ag & B1g Ag Ag  B1g Raman active!

= B3u

= B2u

= B1g

= B2u

= B3u

= B1g

Combining with Ag normal mode does not 

affect the symmetry of  the state.



7.4 Summary

• Symmetry properties of  vibrational wavefunctions:

1. The ground state wavefunction (v = 0) for any normal mode transforms as the totally 

symmetric IR.

2. The first excited state wavefunction (v = 1) for any normal mode transforms in the 

same way as does the normal mode i.e. its IR is the same as that of  the normal mode.

3. For non-degenerate normal modes the states with even v (0, 2, 4 . . . ) transform as 

the totally symmetric IR, whereas the states with odd v (1, 3, 5 . . . ) transform in the 

same way as the normal mode i.e. their IR is the same as that of  the normal mode.

4. The overall symmetry of  the vibrational wavefunction is found by taking the direct 

product of  the irreducible representations for the wavefunction associated with each 

normal mode.



7.4 Summary

• The fundamental of  a particular normal mode is allowed in the infra-red if  the IR of  

the normal mode matches that of  x, y or z.

• The fundamental of  a particular normal mode gives vibrational Raman scattering if  

the IR of  the normal mode matches that of  pq, where p and q are any of  x, y or z.

• Whether or not a general transition from 𝒗𝒊 to 𝒗𝒊
′ is allowed in the infra-red can be 

found by examining the direct product

𝜞
𝒗𝒊
′

(𝒊)
⊗𝜞𝝁 ⊗𝜞𝒗𝒊

(𝒊)

If  this product contains the totally symmetric IR the transition is symmetry allowed. (Γµ

itself  transforms as x, y or z.)



7.4 Summary

• Whether or not a general transition from vi to vi
′ gives rise to Raman scattering can be 

found by examining the direct product

𝜞
𝒗𝒊
′

(𝒊)
⊗𝜞𝜶 ⊗𝜞𝒗𝒊

(𝒊)

If  this product contains the totally symmetric IR the transition is symmetry allowed. (Γα
transforms as pq.)

• A symmetry-allowed transition may nevertheless not be observed on account of  it 

having low intensity.

• The rule of  mutual exclusion states that for a molecule with a centre of  inversion the 

fundamental of  a particular normal mode cannot both give rise to an absorption in the 

infra-red and vibrational Raman scattering.



7.1.4 Normal modes of  more complex molecules

• Example: SiH2Cl2 (point group ? )C2v

Si

Cl2

H1

Cl1

H2

z

x

y

• Classify the 15 vectors: 

i)  Si,x; Si,y; Si,z; 

(H1,x, H2,x); (H1,y, H2,y) ; (H1,z, H2,z)  

(Cl1,x, Cl2,x); (Cl1,y, Cl2,y) ; (Cl1,z, Cl2,z) 

(Cl1,x, Cl2,x)

(Cl1,y, Cl2,y)

(Cl1,z, Cl2,z)

2 0 0 -2 A2 B1

2 0 0 2 A1 B2

2 0 0 2 A1 B2

Full set                     5A1  4B1 2A2 4B2

Translations (x,y,z) B1, B2, A1

Rotations (Rx,Ry,Rz)
B2, B1, A2

Vibrations  4A1  2B1 A2 2B2

3N-6=9 

vibrational modes!

• SiH2 similar to H2O: 3A1 3B1 A2 2B2



Vibrational modes of  SiH2Cl2

Two rules

(i) there is 1 stretching vibration per bond

(ii) we must treat symmetry-related atoms together

We therefore have:-

two stretching modes of  the SiCl2 group

two stretching modes of  the SiH2 group

The remaining five modes must be deformations (angle bending vibrations)



Vibrational modes of  SiH2Cl2

• Two stretching modes of  the SiCl2 group

We can stretch the two Si-Cl bonds:  together in 

phase or together out of  phase!

1) use the two  Si-Cl bond stretching as basis set:  

2SiCl 2    0     0   2 

Si

Cl2

H1

Cl1

H2

R1 R2

E   C2 xz yz

 2SiCl = A1  B2

2) Get the combinations of  bond stretching: 

1 stretching =  (R1 + R2)/2       ~symmetric stretching

B2 stretching =  (R1 - R2)/2  ~anti-symmetric stretching



Vibrational modes of  SiH2Cl2

• Two stretching modes of  the SiH2 group

We can stretch the two Si-H bonds:  together in 

phase or together out of  phase!

1) use the two  Si-H bond stretching as basis set:  

2SiH 2    0     2   0 

Si

Cl2

H1

Cl1

H2

R3
R4

E   C2 xz yz

 2SiH = A1  B1

2) Get the combinations of  bond stretchings: 

1 stretching =  (R3 + R4)/2       ~symmetric stretching

B1 stretching =  (R3 - R4)/2  ~anti-symmetric stretching



• Take SiH2 (or SiCl2) as a whole when considering the deformations 

(related to change of  bond angles and dihedral angles).

Vibrational modes of  SiH2Cl2

We now have:-

two stretching modes of  the SiCl2 group

two of  the SiH2 group

The remaining five modes must be deformations (angle bending vibrations)

As with stretches, we must treat symmetry-related atoms together.



From the character table, this belongs to the symmetry 

species A1

We call the mode of vibration sym SiCl2 (or SiCl2 scissors) 

E C2 xz yz

+1 +1 +1 +1

x

z

y

SiCl2 scissors： Cl-S-Cl as a basis



From the character table, this belongs to the symmetry 

species A1

We call the mode of vibration sym SiH2 (or SiH2 scissors) 

E C2 xz yz

+1 +1 +1 +1

x

z

y

SiH2 scissors： H-Si-H as a basis



SiH2 wag

• Concerted move of  SiH2 group ~ wag within the xz

plane. 

From the character table, this belongs to the symmetry species B1

We call the mode of  vibration SiH2 (or SiH2 wag).

E C2 xz yz

+1 -1 +1 -1

x

z

y



SiH2 rock

• Concerted move of  the SiH2 group~ rock within the 

yz plane. 

From the character table, this belongs to the symmetry species B2

We call the mode of  vibration SiH2 (or SiH2 rock).

E C2 xz yz

+1 -1 -1 1

x

z

y



SiH2 twist

• Concerted move of  SiH2 group ~ rotating around 

the z-axis. 

From the character table, this belongs to the symmetry species A2

We call the mode of  vibration SiH2 (or SiH2 twist).

E C2 xz yz

+1 +1 -1 -1

y

x



Vibrational modes of  SiH2Cl2

Overall, we now have:-

two stretching modes of  the SiCl2 group A1  B2

two of  the SiH2 group A1  B1

five deformation modes      2A1  A2  B1  B2

Together, these account for all the modes we expect: 4A1 A2  2B1  2B2


