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7. Normal modes

* This section is devoted to using symmetry considerations to help understand the vibrations

of molecules and spectra that arise due to transitions between the associated energy levels.

* The vibrations of a molecule: a finite number of special vibrations called normal modes.

, three normal modes of H,O and their fundamental transitions
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* Each normal mode has a set of energy levels, and the transitions between these levels
give rise to infra-red spectra of the type.



7. Normal modes

Here we will show 1deas about
1) how to classify normal modes according to symmetry,

11) how to predict which modes give rise to infra-red spectra and vibrational

Raman scattering.

* We will use the symmetry arguments to explain the occurrence of more
complex features of infra-red spectra, such as overtones and combination bands.




7.1 Normal mode analysis

 Vibrations involve the physical displacement of atoms from their equilibrium positions.

* Example, H,0O (C,), basis (x, y and z displacement vectors on each atom).

y(f—-x OV@—OX C21- E C; oc gz

: Y@ oz o A I 1 1 1] z X% y% 28
| A> 1 1 -1 -1
| -1 1 -1 X
]

21

R; XY
Lz o,z B Ry XZ
B» o 1 y R, VZ

Basis (9 vectors ) =2 a 9-D rep.!

* To simplify the problem, we first separate the displacement vectors into groups which

are mapped onto one another by the operations of the point group. XA
S5Z B R FEIEH

cOx~2?2 , Oy~?2 , Oz~ 7? TR TR SR

* Other groups of vectors: (H,,x, H,,x); (H;,z, H,,2); (H;,y, H,,»)



Vector(s) IR

O,x B, (from the table)
O7y BZ
O,z A,

(Hlax’ HZax) AI @‘B]
(H,,z, H,,2) A, @B,

(Hlaya HZ)y) AZ @BZ

—_—

(Hlxy, H2¢y) 1-'2 2

SALC

E C, o% o*
1 1 | 1 z x2: yz; z2
1 I -1 -1 R. Xy
1 -1 | | x R, Xz
I -1 -1 y R,x V<
0 2 0 =A4,B,

— ——Full set (3N)

3A, @ 3B,® A,® 2B,

Translations (x,y,z)

Rotations (R ,R,R,)

B, B,, A; (from the table)
B, B, A, (from the table)

Total 3A, @ 3B,&@ A,P 2B,

Vibrations (3N-6)

2A, @ B,

 3N-6 normal modes for non-linear molecules.




7.1.1 Form of the normal modes Ex.32

» In a normal mode, the centre of mass has to remain fixed. Accordingly, the atoms have to
move 1n ways which balance one another out and in addition the amount by which
each atom moves will be affected by its mass. (lower mass = larger displacement)

» However, it 1s rather fedious to derive the form of the normal modes 1n a basis of (x,y,z)
displacements even for simple molecules!

 Alternatively, use internal displacements to derive the forms of normal modes—izwo rules

(1) there is 1 stretching vibration per bond Internal coordinates( N 2L FR):

(11) we must treat symmetry-related atoms together bond lengths, bond angles,

dihedral angles

* H,O has two stretching modes and one angle bending mode.

A% N N
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Using internal displacements (coordinates)!

Example: H,O

 First use the two O-H bond stretches as a basis:

The A, stretching (z-like): (r;+ 1)

~Symmetric (in-phase) stretching
The B, stretching (x-like): (-T;+T,)

~anti-symmetric (out-of-phase) stretching

Cs, E C ; o' o
Al 1 1 | 1 z x2: yz; z2
A» | I -1 -1 R. Xy
B 1 -1 | =1 x Ry Xz
B> 1 -1 -1 ] vy R, vz
e 2 0 2 0 =A4,®B,
™ 1 1 1 1 =4,

* use the H-O-H angle a bending as a basis. A} W ﬁ(%

The angle bending transforms as 4, IR.

A v 3652 cm-1 A; v 2 1595 cm-! B; v, 3756 cm-!

'

The 4, bending & symmetric stretching mix!

Neither purely bending nor stretching.




7.1.2 Normal modes of H3

« Example: intersteller molecule H3 (point group D).

D3h E 2(:”5 3C2 ap 25’3 30’;:

Al 11 1 11 X +yhE
Al 1 -1 1 R R.

E’ 2 -1 0o 2 -1 0 | (xy) (x* —y%, 2xy)
AY 1 -1 -1 -

A7 1 — | Z

E” 2 -1 0 -2 1 0 (Rx, Ry) (xz,yz)

* In a general axis system: (z,12,22,3), (x,1 x,2x,3, ¥,1%2%3) = a6-Drep.!

* In a local axis system: (z,12z2z73), (a,1a,2a3),and (b,1b,2b,3) = all 3-D reps.!

/N

Radial displacements Tangential displacements




Dy, E 2C3

1

/ 1
E’ 2
A |
Ay
E' | 2

1 1+ yz; 72
-1 R.

0 | (xy) (x* = y%, 2xy)

1 Z

0 (RJ.’& Ry) (-st }’Z)

Q: How does its three
normal modes look

(z,12223) (3

1) AZ”@E”

15t approx.:

’a
A, a,ta,ta,

20,-0,-0,

alalal 3 1

( ) ( ) @ E’, 2b,-b,-b,
(b,162b3) (3 ‘13 0 -1) 4, E’, b,b,
Total A/’ ®A, BIE'DA,” DE”
—translations (x,y,z) E"@DA,”

—rotations (R,,R,R,) E”"DA,

Vibrations @) E")



7.1.3 X—H stretching analysis

* On account of the low mass of the hydrogen atom, it 1s often the case that particular

normal modes are dominated by X—H stretching motions.

* Therefore 1t 1s practically useful to make a symmetry analysis using a basis consisting of
only X—H stretches, but not a general set of (x,y,z) displacements on each atom.

* Of course, such an approach will only reveal the symmetries of those normal modes
involving the X—H stretches.

« Example: the C-H stretches of ethene (point group D,,).

o?




T i Sy T T Sy Sy

A, Totally symmetric B,,, like xy

y

N d

> I'=A,®B, @B, @B,

Bzu ESu
‘like y’ like x’
B,,, like y B;,, like x

(r—-r,-1r3+71,) (F1+T,=T3-T4)



Ex.33

» These pictures arising from combination of internal displacements are only
approximations to the real normal modes. (In reality, the carbon atoms would also
need to move by small amounts in order to ensure that the centre of mass remain
fixed.)

 In the next two sections, we will see how a symmetry analysis helps us to determine
whether or not a particular normal mode will give rise to absorptions in the infra-red or
vibrational Raman scattering (1.e. whether or not a mode is ‘infra-red or Raman active’).

* We will start out by looking at the symmetry of the harmonic oscillator wavefunctions,
which are a first approximation to the vibrational wavefunctions of the molecule, and
then move on to discuss the selection rules for transitions between them.
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7.2 Symmetry of the vibrational wavefunctions

 If we assume that the vibrations are harmonic, each normal mode has associated with
a set of energy levels: (w; 1s the vibrational frequency of the ith normal mode).

1
Evi = (Ui + E) h(l)i Vi = O, 1,2

* The normal modes can be excited independently of one another so, for example, we
can have the first normal mode in the v,= 1 level, the second in the ground state (v,=0),
the third in the v,= 3 level and so on. '

The set of energy levels

energy

available for H,O0.

energy
Zero



o)

51 7.2 Symmetry of the vibrational wavefunctions

S Hermite polynomials

o . . . . /

For a dlat(?m1c, the harmonic oscillator y W, = Hy(q)exp(—q?/2) E,

wavefunctions depend only on the [ > "

: _ ~ 0 exp(—5q°) 5

displacement x, where x=(r-r,). 2 S g

In terms of the scaled coordinate q = x I 2q exp(=39°) 2

(km/h2)!’% the form of the first few 2 (44 -2) exp(-54*) 3

wavefunctions and their energies are: /\‘L{(S q3 — 12¢) exp (- % qz) %

Normal coordinate Q; in the place of g for complex molecules!

* In more complex molecules, a normal mode involves several atoms changing their positions,
but we can define a single normal coordinate Q, to describe the motion (of 7th normal
mode).

* Key point: @) =r®



7.2.1 Symmetry of the ground state vibrational wavefunction

* For a non-degenerate normal mode, 1ts ground-state wavefunction 1s P ,= exp (—% Q%).
RQ, = +/-Q; (effect of symmetry operation on Q)

S>RQ; = (+1) Q;

i.e. Q7 transforms as the totally symmetric IR, so does )= exp (— % Q%).

= The ground state wavefunction always transforms as the totally symmetric IR.

» For degenerate normal modes, the conclusion remains the same and the statement above
therefore applies to all normal modes.



7.2.2 Symmetry of excited states: non-degenerate normal modes

State  Wavefunction Symmetry
_ _ 1.2 The first excited state transforms as
v =0 Py =exp (- 2 Qi Lot sym. the same IR as the normal mode.
1 _ =
v,=1 ;= Qexp(-5Q}) ) @[or- sym- = [

v,=2 W, =(4Q}-2) exp(-3QF) [ sm @[ m [t m.

v,=3 ;= (8Q;-12Q) exp (—%Q%) J1) @[t sym. = JT0) Key point: 1) =0

For non-degenerate normal modes, vibrational wavefunctions with v =10, 2, 4, . . . (even v)

transform as the totally symmetric IR, and those with odd v have the same IR as does the

normal mode.




7.2.2 Symmetry of excited states: non-degenerate normal modes

For non-degenerate normal modes, vibrational wavefunctions withv =0, 2, 4, . . .
(even v) transform as the totally symmetric IR, and those with odd v have the same IR as

does the normal mode.

Ar E

3 A, 3 B,

2 A‘I 2 ’41
A
A 3 i

1 1 5 A 1 B,
A
_ A 1 1

’ D 1 Vp=0- ~A =04 | energy
zero
mode 1 mode 2 mode 3
A A, B

Normal Modes of H,O



Symmetry of excited states: degenerate normal modes

For degenerate normal modes,

* As for non-degenerate modes, the ground state (v = 0) transforms as the totally symmetric

IR, and the first excited state (v =1) transforms as the same IR as the normal mode.

* The symmetry properties of higher excited states follow a more complex pattern which

1s beyond the scope of this course but 1s considered in detail in Perturbation Theory.



7.2.3 Overall symmetry of the vibrational wavefunction

* The symmetry of the overall vibrational wavefunction for a molecule 1s given by the
product

1 2
I‘tot=1"§1)®1"§2)®'"
r ,(,11) ~ the IR of the wavefunction for the /st normal mode with quantum number v/;

I",(,zz) ~ the IR of the wavefunction for the 2nd normal mode with quantum number v,

* In H,O, suppose that for the three normal modes v,=0, v,=1 and v;=1, the IRs for
each of these wavefunctions are 4, , A4; and B, , respectively.

—> The IR of the overall vibrational wavefunction is therefore 4,84,6B, = B,.



7.2.3 Overall symmetry of the vibrational wavefunction

* For a molecule in which none of the vibrational modes are excited (all the v; are zero),
the overall vibrational wavefunction transforms as the totally symmetric IR.

 Also, if just one normal mode 1s excited to the v = I state, and all of the other normal
modes have v = 0, the overall vibrational wavefunction has t/e same IR as the normal
mode which 1s excited.



7.3 Using symmetry to determine which transitions are allowed

* The wavefunctions for a normal mode are the same as those for a harmonic oscillator
(but replacing the displacement x by the normal coordinate Q,). The usual selection
rules apply. That is, for a transition to be allowed

(1) The dipole must change as the normal coordinate changes about equilibrium.
(2) Av,= £1.
* The (2) implies that the quantum number of only one mode is allowed to change by %1.
* Due to anharmonicity, transitions with Aigher values of Av are weakly allowed

(overtones), as are transitions in which more than one mode changes quantum
number (combination lines).

* A symmetry analysis gives us a systematic way of determining which particular
transitions associated with particular normal modes are going to give rise to
absorptions in the infra-red or vibrational Raman scattering.



7.3.1 Transitions between the energy levels of a single normal mode

 Since all of the ground states transform as the totally symmetric IR, the symmetry of the
overall vibrational wavefunction 1s just determined by that of the one normal mode

which is being excited.

* The intensity I of a transition between two vibrational levels, v; 2 v;, is proportional

/OCRZ_ /

to the square of the transition moment R, _» between those levels, 1.e., I, -
l ivi ViV;

l

o This transition moment between states v; and v; of the ith normal mode is given by

+ 0o

Rv,-vé = lpvgihljvi do;

i 1s the dipole moment operator which just depends on the coordinates x, y and z, since it
simply describes the distribution of charge in space.



7.3.1 Transitions between the energy levels of a single normal mode

* The IR of the integrand can be found by first determining the IRs of ‘/’v;’ [ and ¥,

and then taking the direct product, . R
5 P function/operator by 1 Yy,

® @D _ . .
r v} QIr,Qr,; = irreducible representation FS{) I, rS,?

I

- rtotsym. _ Rv-

l

o, 720  Transition allowed, infra-red active
l

¢ Ttotsym. = R, 1= Transition forbidden, infra-red inactive

l

* The dipole moment operator |iL ~ a function of x, y and z,

> TI',: either the IR of x, or of y, or of z, all three possibilities should be considered.



The fundamental transition

» The fundamental transition (v=0-v’=1) of ith normal mode.

v=0state (I')),=T"™) > y=Istate (I'Y_ =,

The triple direct product for the transition moment 1s : The IR of the ith

r(z) ® r,® F(:) . I-.(l) I, ® tot.sym. normal mode.

_I"(l) ®I"

The fundamental transition 1s allowed in the infra-red when the IR of the normal mode
is the same as that of x, y or z.

A normal mode whose fundamental transition is allowed in the infra-red 1s said to be
infra-red active.



o
“E &
* £

/
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Example: H,O

The fundamental transition

Cy, E C5 o% o*
1 1 1 1 | Z X% y? 2
Ar 1 1 -1 -1 R, Xy
B -1 | x R, XZ
B> 1 -1 -1 1 y R, VZ

* The fundamentals of the 4, normal modes are allowed since z transforms like 4 ;

* The fundamental of the B, normal mode 7s allowed since x transforms like B,.

energy

— A-I%*A1

3 A1
2 A1
3 B,
1 T A, > A
1 B
Vo =0 A 1
___________________________________________________ 21V3=U4*“1 energy
Zero
mode 2, Ay mode 3, B,



Other symmetry allowed transitions within the same normal mode

» For transitions other than the fundamental, we would, in principle, need to work out the
triple direct product 1n each case.

Example: H,0,
1) A, modes: all transitions are due to 4, > A4, and symmetry-allowed.

i) B, mode: allowed transitions are A4,—~A;, A,—~ B, B,—~ A, and B,—~ B,.

— A > A
| E : overtones — A5 For a B, = B, transition, the triple
— B, 5B, L=~
' product 1s
__B
1 : ‘TAi B I, ® B, =4,
v,=0 T - A, o .
v3=0 Ay Thus it 1s IR-active.

Mode 1, A, Mode 2, A Mode 3, B,



A note of caution

» The symmetry argument 1s powerful:
I. All 1t does 1s to predict whether or not a transition is allowed.
I1. It does not predict how strong a transition will be in the spectrum.
II1. In harmonic oscillator model, the selection rule 1s Av =%£1.

» For a polyatomic molecule, the only allowed transitions are those in which the
quantum number for a particular normal mode changes by one.

» Furthermore, a transition will only have significant intensity if the lower level is appreciably
occupied. In practice, for small molecules, easily observable transitions will come from the
ground vibration states, 1.€., the symmetry allowed fundamental transitions are visible!

»H,0: The fundamentals of the 4, , B, normal modes are observable.



A note of caution: anharmonicity & overtones

 However, the vibrations of real molecules are not harmonic and so the Av=%1 rule does
not always apply strictly.

* Anharmonicity-induced visible transitions with |Av| >1 :
1) symmetry allowed !
11) transition from a significantly populated lower level.

* For example, 1n H,O the 0 — 2 transitions in each normal mode satisfy these criteria
(they are all A,— A,), and these first overtone bands are often seen.



7.3.2 Raman scattering

» For Raman scattering, the transition moment depends on the polarizability operator &

+00

Rviv§ = Ipv{ ay,, do; function/operator ¢, & Y,
_ oo ;

with @ < pq (p,q ~ x,y, 2) irreducible representation Ff? I, Fg,?

1

The IR of the integrand 1s thus given by the triple product, I"l(y? XIr,Qr ,(,?

—> Vibrational Raman scattering occurs when this direct product contains the totally
symmetric IR.

» For the fundamental transition of ith normal mode, the triple product is

rw(tlr)n ® ra ® rTot.sym _ rTot.sym if F1(1l3n _ Fa (_._rgiil _ rw(:r)n & rf}iio _ rTot.sym)

The fundamental transition will be Raman allowed when the symmetry of the normal
mode matches that of pq. (p, g ~ x, y or 2)




Example: H,O(C,,), three normal modes.

X% y%: 2

]

Xy
XZ

y<

energy

* Normal modes 1&2: A4, IR,
Normal mode 3: B, IR,

All three modes Raman active!

— A1—}A1

—e A




7.3.3 Features and coincidences

 If we concentrate on just the fundamental transitions (which are likely to be the
strongest), each normal mode which 1s infra-red active will give rise to a band or
‘feature’ 1n the infra-red spectrum.

» Similarly, each normal mode which 1s Raman active will give rise to a feature 1n the
Raman scattering spectrum.

e.g, H,O:
three normal modes are both infra-red and Raman active,

=  three features in both IR and Raman scattering spectrum



[FlE) and coincidences

+
* Three normal modes of Hg Do | E 20, 3C, or 251 3o
Aj Ramanactive a4 | 1 1 1 1 1 1 2+ 22
, ) . Ag 1 | -1 1 1 -1 R.
E IR active  Raman active E 2 -1 0 2 -1 0| (xy (x2 =2, 2xy)
AY 1 1 1 -1 -1 -1
A 1 -1 -1 -1 1 z
- Raman spectrum ~ two features o | 5 | o 2 1 o RuR)  (x2y2)

infra-red spectrum ~ 07€ feature
* Coincidence: The same normal mode 1s active 1n both the infra-red and Raman,
exhibiting a feature of the same frequency.
H,0: Three coincidences

HY :  One coincidence (from the E’mode).



7.3.4 Combination lines

* A combination line 1s a transition in which the quantum numbers associated with two or

more normal modes change.

* (V,, Vy Vs . .): anotation gathering the vibrational quantum number for each normal
mode describes the overall vibrational state of a molecule.

* The symmetry of the overall state can be found by taking the direct product of the IRs
of the individual vibrational wavefunctions:

r(l) R F(Z) R F(B) R -
* For a vibrational state (7,0,1) in H,O, the overall symmetry1s A; ®A; XB, =
Q: Isthe double-excitation transition, (0,0,0)= (1,0,1), in H,0O symmetry-allowed?
The overall symmetry of the ground state (0,0,0)1s A, XA, XA, =A,.

We have shown that 4, B, transition 1s allowed.



7.3.5 Rule of mutual exclusion

Molecules having a centre of symmetry (i) have two distinct classes of IRs:

IRs labelled with a subscript g

~symmetric with respect to :

IRs labelled with a subscript u

~anti-symmetric with respect to :

Functions pq (p,q ~x,y,z)
i(pq) = (+1)pq =2 g-class IR

Functions x, y, z.
lqg =(—1)g 2 u-class IR

Raman scattering active normal
modes match functions pq in IR.

Infra-red active normal modes match the

functions x,y,z in IR.

Fundamental
transition(v=0-21)

The rule of mutual exclusion: for a molecule with a centre of inversion, the fundamental

of a particular normal mode cannot both give rise to an absorption in the /nfra-7ed and
vibrational Raman scattering. In other words, 1f the transition 1s allowed 1n the infra-red it

will not also give rise to Raman scattering.




7.3.5 Rule of mutual exclusion Exs.34-39

* For a molecule with a centre of inversion, a normal mode which is active in the
infra-red will not be active in the Raman.

* Example: the C—H stretching normal modes for ethane.

Normal  similar Infra-red Raman A Bz,
Mode IR  function scattering (
2 o o [
A q inactive active
g ‘like y’
B inactive active
Ig Xy Dy | E C C ¢ i o9 o% o~
B,, y active inactive A, L1 1 1 1 111 22y 22
B, | 1 1 -1 -1 1 1 -1 -1 | R  x
B;, X active inactive By | 1 -1 1 -1 1 -1 1 -1 | R  xz
By, | 1 -1 -1 1 1 -1 -1 1| R
A 1 1 1 1 -1 -1 -1 -1
Q: Please work out the symmetry allowed B | 1 1 -1 -1 -1 -1 1 1| 2
overtones and combination lines in both types ~ B» | 1 -1 1 =1 =11 =11y
By, | 1 -1 -1 1 -1 1 1 -1 | «x

of spectra.



Overtones and combination lines of C-H stretches in C,H,

';\\g T Ag D Ag D Ag Doy, E C‘i C Cg i oV o% ¢*
1 B B B
; A Al A e Ag |11 11 110 2533 2
g g g g B, 1 1 -1 -1 | I -1 -1 R. Xy
NM A B B, 1 -1 1 -1 1 -1 1 -1 |R
g 1g BZU B3“ BBZ 1 -1 -1 | 1 -1 -1 1 R, vz
A, | | 1 I -1 -1 -1 -1
e Overtones: (022) B, | 1 1 -1 -1 -1 -1 1 1] 2
By | 1 -1 1 -1 -1 1 -1 1
NM ‘Ag B,; B,, B.‘;’u By, | 1 -1 -1 1 -1 1 1 -1 | «x
Y
v=0>1=2 A, 2 A, Raman active Combining with A, normal mode does not
o . affect the symmetry of the state.
 Combination lines: (0=21&0->1)
B,,&B,, A, >B,, ®B,, =B;, IR active! A,&B,, A, >A,®B,, =B, IR activel
B, &B3, A, 2B;, ®B;,=B,, IR active! A,&B;, A, 2A,®By, =B;, IR active!

B,, & By, A, ?B,, ®B;, =B;; Ramanactive! A,&B,, A >A,®B, =B, Raman active!



7.4 Summary

* Symmetry properties of vibrational wavefunctions:

1. The ground state wavefunction (v = 0) for any normal mode transforms as the totally
symmetric IR.

2. The first excited state wavefunction (v = 1) for any normal mode transforms in the
same way as does the normal mode 1.e. its IR 1s the same as that of the normal mode.

3. For non-degenerate normal modes the states with even v (0, 2, 4 . . . ) transform as
the totally symmetric IR, whereas the states with odd v (1, 3, 5. . .) transform 1in the
same way as the normal mode 1i.e. their IR is the same as that of the normal mode.

4. The overall symmetry of the vibrational wavefunction is found by taking the direct
product of the irreducible representations for the wavefunction associated with each
normal mode.



7.4 Summary

* The fundamental of a particular normal mode 1s allowed in the infra-red if the IR of
the normal mode matches that of x, y or z.

* The fundamental of a particular normal mode gives vibrational Raman scattering if
the IR of the normal mode matches that of pg, where p and g are any of x, y or z.

« Whether or not a general transition from v; to v; is allowed in the infra-red can be
found by examining the direct product

0 (0
r)®r,®r,

If this product contains the totally symmetric IR the transition 1s symmetry allowed. (I,
itself transforms as x, y or z.)



7.4 Summary

« Whether or not a general transition from v; to v; gives rise to Raman scattering can be
found by examining the direct product

ry®r,r,

If this product contains the totally symmetric IR the transition is symmetry allowed. (I,
transforms as pq.)

* A symmetry-allowed transition may nevertheless not be observed on account of it
having low intensity.

* The rule of mutual exclusion states that for a molecule with a centre of 1nversion the
fundamental of a particular normal mode cannot both give rise to an absorption in the
infra-red and vibrational Raman scattering.



 Example: S1H,Cl, (point grou _ _
P 2L, (pomt group ¢, )~ T, C o o
Z
| . | .Y A 11 1 [1]] ¢z 2 y% 2
H— Ho— x As e R.
\' / B, - 1 |[-1 ] x R, Xz
7 3N-6=9 B, | 1 -1 -1 [T] y R x

rcLxChLx)2 0 0 2 A,®B,

- F(Cll’y’ CIZ’Y) 2 0 O 2 Al@BZ
Cl |2_> F(Cll’za CIZaZ) 2 0 O 2 Al@BZ
* (lassify the 15 vectors:

i) Si,x; Siy; Si,z: Full set 5A, @ 4B, @ 2A,P 4B,

(HI?X? HZ’X); (th’ HZ?Y) a (HI’Z7 HZaZ) Translations (x,y,z) Bl’ BZ’ A1
; B, B, A
(CII’X? CIZ’X); (Cll,y, Clz,Y) , (CII,Z, CIZ,Z) Rotations (Rx)Ry)Rz) r =1 772

- SiH, similar to H,O: 3A,@38,PA,»28, Vibrations 4A, @ 2B,® A, & 2B,



Vibrational modes of SiH,(l,

Two rules
(1) there is 1 stretching vibration per bond

(11) we must treat symmetry-related atoms together

We therefore have:-
two stretching modes of the Si1Cl, group
two stretching modes of the S1H, group

The remaining five modes must be deformations (angle bending vibrations)



Vibrational modes of SiH,(Cl, N

« Two stretching modes of the SiCl, group RI/ 1R,

We can stretch the two Si1-Cl bonds: together i# Cl, Cl,
phase or together out of phase!

1) use the two Si-Cl bond stretching as basis set:

E CZ Oy, O-yz
Iosic 2 0 02 DIgy=4, @B,

2) Get the combinations of bond stretching:

A, stretching = (R, + R,)/2  ~symmetric stretching

B, stretching = (R, -R,)/2  ~anti-symmetric stretching



H,

HI
Vibrational modes of SiH,(Cl, QS, /R,

« Two stretching modes of the SiH, group /

We can stretch the two Si1-H bonds: together i# Cl, Cl,
phase or together out of phase!

1) use the two Si-H bond stretching as basis set:

E C, o, 0,
Iosig 20 20 2Ig,=A4, @B,

2) Get the combinations of bond stretchings:

A, stretching = (R; + R,)/2 ~symmetric stretching

B, stretching = (R;-R,)/2  ~anti-symmetric stretching



Vibrational modes of SiH,Cl,

We now have:-
two stretching modes of the Si1Cl, group
two of the S1H, group
The remaining five modes must be deformations (angle bending vibrations)

As with stretches, we must treat symmetry-related atoms together.

 Take S1H, (or S1Cl,) as a whole when considering the deformations
(related to change of bond angles and dihedral angles).



SiCl, scissors: ZCl-S-Cl as a basis

F C, o, ©

Xz yz

+1 +1 +1 +1

From the character table, this belongs to the symmetry

species 4,

We call the mode of vibration o

sym

SiCl, (or SiCl, scissors)

.
Py )
-“‘
Py )



SiH, scissors: /H-Si-H as a basis

F C, o, ©

Xz yz

+1 +1 +1 +1

From the character table, this belongs to the symmetry

species 4,

We call the mode of vibration o

sym

SiH, (or SiH, scissors)

.
"
-“‘
"




* Concerted move of SiH, group ~ wag within the xz
plane.

E C2 Oy 0-yz

+1 -1 +1 -1

From the character table, this belongs to the symmetry species B,

We call the mode of vibration wg;y, (or S1H, wag).

a®
“““
a®



SiH, rock

* Concerted move of the SiH, group~ rock within the
yz plane.

E C, o, C
+1 -1 -1 1

YZ

From the character table, this belongs to the symmetry species B,

We call the mode of vibration pg;y, (or S1H, rock).

a®
“““
at®



SiH, twist

* Concerted move of SiH, group ~ rotating around
the z-axis.

E C, o, Oy,

+1 +1 -1 -1

From the character table, this belongs to the symmetry species 4,

We call the mode of vibration tg;y, (or SiH, twist).




Vibrational modes of SiH,(l,

Overall, we now have:-

two stretching modes of the SiCl, group 4, @ B,

two of the S1H, group A, @B,

five deformation modes 24, DA, PB, @B,
Together, these account for all the modes we expect: 44,0 A, @ 2B, P 2B,



