B/7-9F

Key points/concepts

1. Lattice of crystal structure: translation symmetry
a lattice point = a structure motif -- unit cell

2. Crystal systems (7), Bravais Lattice (14)

3. Symmetry operations (point & translation) Crystallographic
point groups(32), space groups (230), miller index of crystal
plane, d-spacing etc.

4. X-ray diffraction, Laue equation, Bragg’s Law, reciprocal
lattice, Ewald sphere, structural factor, system absence,
general process of x-ray crystal structure determination.

5. Close-packing of spheres (ccp/Al,hcp/A3,bcp/A2) in metals
and ionic compounds, coordination of cations.

6. Crystal structures of some typical ionic compounds.
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Example: p224, 7.2 -- concept of lattice

A structure motif (+ occupying space) = a lattice point
Each lattice point has identical surroundings.
A lattice fulfills translation symmetry.

Differences between a real crystal structure and its
lattice.

Key point is to find the structure motif (basis) that fulfills
translation symmetry!




0.227, 7.26
Sn: (0,0,0), (1/2,1/2,1/2)

F. (0,1/2,0), (1/2,0,0)
(0,0,0.237), (0,0,-0.237)

1) body-centred tetragonal

2 lattice point within a unit cell.

The black dots (2 Sn) and red balls
(4 F) are defined by the coordinates
given!

Other 4 F atoms can be obtained
by translation operation (2 LP).

2) Each Sn atom is located in a
distorted octahedral hole.

R(Sn-F), =0.237x 793 = 187.9pm; R(Sn-F), = 0.5x404=202 p

Key: Figure out the atoms within a LP!



Simple cubic crystal — example: CsCl
p.286 9.13

» Only one lattice point within a unit cell.
 Each lattice point contains 2 atoms,
Cl (0,0,0), Cs(1/2,1/2,1/2);

e The structural factor is 5
. 27l ( hx; +ky; +1z; )
F%m —-:E:‘?e
=1

= f, + f..€

i h+k+l)

Therefore, all possible diffractions are observable without system
absence! However,

If h+k+I =2n, Strongest diffraction

If h+k+1 =2n+1, FhkI — fCI — fC

S




Face-centered cubic crystal — general case p227, 7.21

» Lattice points (LPs): (0,0,0), (1/2,1/2,0), (0,1/2,1/2), (1/2,0,1/2)

» Suppose each lattice point contains n atoms, {(X;y;,z;)} (1=1,...,n)

 Each unit cell contains N=4n atoms, e.g., an atom A(X,Y;,z;) in one
LP has other three equivalent A atoms within the same unit cell!

e Then the structure factor is

N
_ 27 (hx +ky; +1z;)
Sum up over all atoms F = Z fie >
within a unit cell! i=1

.. h Kk . h 1 ko n
2mi(—+—=) 2mi(—+=) 2mi(—+=) Ti( hx. LIz
Fg =[1+e 22 4e 22 4g 22 ]xy femMimit)
From translation symmetry of fcc! =1
« Thus, when h,k,l are neither all even nor all odd

* Furthermore, when h,k,l are all even or all odd,
PR ey diffraction observable!
Foa =4 fie

Now sum up over all
3 atoms within a LP!

T

)=1



Face-centered cubic crystal —
Special case: NaCl p227, 7.23

 Unit cell contains 4 lattice points, or 4NaCl

« Each lattice point (LP) corresponds to a NacCl.

« Put Cl at (0,0,0), then a neighboring Na at (1/2,0,0).
* Only when h,k,l are all even or all odd can diffractions be observed!

2 . :
Fhkl _ 42 .I:je27ﬂ(hxj+kYJ+|Zj) _ 4[ fc| n .I:Naeyrhl]

j=1

Now sum up over all atoms within a LP!
Case 1:iIf h =2n (note we also have I=2n and k=2n)

Strong diffraction!
Foa =41 fo + fual :

Case 2: if h = 2n+1 (note we also have |=2n+1, k=2n+1)
Foa =41 oy — fNa] Weak diffraction!




Face-centered cubic crystal —
Special case: ZnS (sphalerite)

 Unit cell contains 4 lattice points, or 4ZnS

 Each lattice point corresponds to a ZnS.
S(0,0,0), Zn(1/4,1/4,1/4) (different elements!)

« When h,k,l are all even or all odd, diffractions observable,

2 i -
Fhk| _ 42 fjeZ7l'|(hXj+kyJ'+|Zj) :4[ fs n fznem(h+k+l)/2]
j=1
- (111),(200),(220),(311),(222),(400),(331),(420),(422),....
Case 1: if h+k+| =4n, e.g., (220),(400),(440)...
Fo =4[ f.+ 1, ] Strongest diffraction!

Case 2: if h+k+1 = 4n+2, e.g., (200),(222),(420),(442). ...
F. =4[ fs—f, ] Weakest diffraction!




Face-centred cubic crystal -- Derive the system

Special case: Diamond O, ’- Fd3m absence of diamond!

 Lattice points: (0,0,0)+, (1/2,1/2,0)+, (0,1/2,1/2)+, (1/2,0,1/2)+

« Each LP contains two C atoms (i.e., structure motif =2C)

C1-- (0,0,0), C2-- (1/4,1/4,1/4) (the same element)

« The other six C atoms within a unit cell can be derived as
(1/2,1/2,0), (3/4,3/4,1/4) ; (0,1/2,1/2), (1/4,3/4,3/4) ;
(1/2,0,1/2), (3/4,1/4,3/4)

« Such an arrangement of C atoms produces new translation
symmetry elements, i.e., screw axes and d glide planes, which in
turn introduce special system absence of diffractions (in addition

I
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Face-centred cubic crystal -- Derive the system
Special case: Diamond O, ’- Fd3m absence of diamond!

« Such an arrangement of C atoms produces new translation
symmetry elements, i.e., screw axes and d glide planes, which in
turn introduce special system absence of diffractions (in addition

4y

d glide
plane

1/8,3/8,
5/8,7/8

Let’s derive the structural factor of diamond to
unravel its system absence.

3



Face-centered cubic crystal —
SpeC|a| case: Diamond Now sum up over all atoms within a unit cell!

271 (hx +ky; +1z;)
th Z f €

Now sum up over all atoms within a LP!

..h k . h | :

h |

A5y 2y 2k
— fC[1_|_e 2 2 +e 2 2 _|_e 2 2 ](1+em(h+k+|)/2)

(Note: two carbon atoms within a lattice point: (0,0,0), (1/4,1/4,1/4))

—> System absence: il Bl R
a) [1+e 22 +e 22 +e 22] 0 or

b) (1+ ezzi(h+k+|)/2) _0
l.e., a) hk,lare neither all even nor all odd! & b) h+k+l = 4n+2
—> Observable diffractions: (111), (220),(311),(400),(331),(422) &
If h+k+l=4n, F,, = 8f-, (220),(400)... strongest diffraction!




Body-center crystal — p227, 7.22
General case: each lattice point contains n atoms

* The total number of atoms within a unit cell is 2n;
- For jth atom in a structure motif (a lattice point): (x;,Y;,Z;)
- Its body-center equivalent is: (0.5+x;, 0.5+y;, 0.5+z;)

2N
E =N fe2rl(hx+kyitlz) Sum up over all atoms
hid ; ! within a unit cell!

n oo 1 1 1

_ 27 (hx;+ky; +1z;) 2m[h(5+xj)+k(5+yj)+l(§+zj)]

= {fe + f.e 1
J=1

From translation-symmetry
_ [1_|_ e7zi(h+k+|)]zn: f_627z1'(hxj+kyj+lzj)
J :
j=1 Sum up over all atoms in a LP!

While h+k+| =2n+1,
System

ari(hk+l) _ q(2n)ri _ 4 F.. =0® absence




Body-center crystal — special case (p.227, 7.24)

 Each lattice point (LP) contains 2 atoms, A (0,0,0), B(X,y,z);
* Thus in another LP, A (1/2,1/2,1/2), B (x+1/2,y+1/2,z+1/2)

4
. 27i( hx +ky; +1z; )
Fo = Z fie

e The structural factor iIs

=1

2 :
=1+ em(h+k+|)] v Z ijZM(hxj+kyj+lzj)
j=1

_ [1_|_ e7zi(h+k+|)] > [ fA i fBeZ7zi(hX+ky+|z)]

Sum up over all atoms in a LP!

Translation-symmetry term!
While h+k+l =2n+1,
ai(h+k+1) _ A(2n+l)7i _ _

System absence



Example: diffraction data = indexing = cell parameter!

o« HEONSLTTR AR, Ho ARATH Z4E#HR N 110,200,211,220, 310,
222,321,400,.... &M S BERA ? X268 4=154.4 pm, 2201i1
H43.6° , WITHEMIESE. p.226,7.18

« Answer: h+k+I| =2n diffractions observed! =2n+1 system absence!
or (h?+k?+1°): 2:4:6:8:10:12:14:16..... > bcc lattice!

Bragg law: 2d,,, sin@=4 - d, = A/(2sin6)
since 0,,, = 43.6°
cell parameter:

a=d ,xvh*+k?+1?> = Avh? +k* +1° [ 2sin @,
=154.4x /8 /2sin(43.6) ~ 316.6 pm

The answer given in p. 317 is wrong!
Atomic radius of W atom: (bcc)

4R =+/3a = R =+/3a/4 = 316.6x+/3/4 ~137.1ppm




P227,7.27 Bragg’s law, d-spacing

« Number of Sg in a unit cell of orthorhombic crystal:

Ngg = IquIO/ Mgg = Iqo(a-bc),"/ Msg

=6.022 x10%° x (1048 x1292 x 2455) x10~*° x 2.07 /(32 x 8) ~ 16

For orthohombic crystal, 1/d,,,=[(h/a)? + (k/b)? + (I/c)?]¥?  p.200
According to Bragg’s Law, we have

sind = A/2d,,, = [(h/a)? + (k/b)? + (I/c)?]2 X A/2

= [(2/1048)2 + (2/1292)2 + (4/2455)2]2 X 154.18/2

= [(1/1048)2 + (1/1292)? + (2/2455)?]2X 154.18 = 0.2273

2 0=13.1°

(Cu Keyy x-ray, A=154.18 pm)

Note: the value of A is not given in question 7.27! !l




p.257, 8.8 Indexing of diffraction data!

Ta metal’s x-ray diffraction data, (sin20) is known.

1) Indexing:
Sin20,:5in%0,:5in%0,:5iN%0,,:5IN%0:SiN%0,4:SiN%0-:5IN%04:SIN%0,. . ..

= 1:2:3:4:5:6:7:8:9:... = 2:4:6:8:10:12:14:16:18.:...

=» body-centered cubic lattice, h+k+l =2n+1 system absence!
Observed hkl: (110)(200)(211)(220)(310)(222)(321)(400)(330)...

2) Cell parameter: d, = a/(h?+k?>+12)12 = a =d,,, (h2+k?+[?)1/?
According to Bragg’s Law, we have d, = A4/2sin@
2> a = A (h?+k?+1?)12/2sin@

Choosing the (330) diffraction with sin°6=0.97826 (A=154.1 pm), we
have a = A (h#+k2+19)12/2sin@

= 154.1 x (18)¥2 /(2x0.98907) = 330.5 pm
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0.259, 8.21

1) Statistically, the probability for a Cu o
atom to appear at a lattice point is
equal to the percentage (x) of Cu
doping. Thus the AuCu alloy
belongs to face-centered cubic lattice §
system. Each unit cell contains 4 |
lattice points and each of them is a
statistic atom (Au,_Cu,).

2) The ordered phase belongs to simple tetragonal lattice; each unit

cell/lattice point contains AuCu. Au(0,0,0), Cu (1/2,1/2,1/2);
3) Cell parameter for the ordered phase:

a'=b’' =alN2=272.23 pm, c’=a=385pm

The first observed diffraction is (001)
doo = 1/(h/a")?+(k/a’)>+(l/c")?)? =¢' = a

According to Bragg’s Law, we have

singd,,, = A2d,y, =A/2a= 0.2 =>60=115°




0.259, 8.21

The randomly doping phase belongs
to fcc lattice. Hence its first observable
diffraction is (111).

d,; = a/(h2+k2+[2)V2 = g/31/2
According to Bragg’s Law,
Sin@,;, = Al2dy,

=3V23/2a = 0.3464
0=223°

Note: In some cases, random/multiple
orientations/rotations of structural units (clusters,
molecules, or groups) exist within a single crystal, which
poses difficulty in the structural determination based on X-
ray diffraction data!

I
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Example:

o HRONSLTER R, FHCuK 87%k(A=154.18 pm){EXy RATHT, 1EhK
R, hKIF R G RFEHE . fTgLfEirit)s,
PEH333 fiThT 4k, 0=78.649 HilH Mm%, CHAg 1%
J57910.507 g €m3, AHX R B E8107.87, A @A LA
Ag 51 5 A F T Bk bR

Answer: when hk,l are neither all odd nor all even, system absence!
—> Cubic F-centred.

Bragg law: 2d,,, sin@=A4 =2d,,,= A/2sind

SRR - - ., xVh? + K2 +17 = 2Wh? + K2 +17 | 25in0
=154.18 x+/27 / 25in( 78.64 ) = 408.58 pm

atoms in a unit cell: WSLAZZAYINES \FE: V20" N

=6.022 x10*° x (408.58 x107*°)® x10.507/107.87 = 4

Thus each atom corresponds to one lattice point, atomic
coordinates: (0,0,0) (1/2,1/2,0) (1/2,0,1/2) (0,1/2,1/2)




Example:

e G JEMgsg HMgJR FIZASHERI M, CRIMgH) R 7122
160 pm, K&k HIZS2L.

Answer: Hexagonal close-packing mode
2> a=b=2R =320 pm,

The height of a tetrahedron with an edge
length of 2R s

h=2Rx+6/3

24 C = 2h = 4R x+/6/3




Example: p.286, 9.9

« KF crystal- cubic system, Mo Ka A=70.8 pm, diffraction sinZ0:
0.0132, 0.0256, 0.0391, 0.0514, 0.0644, 0.0769, 0.102, 0.115,
0.127, 0.139, ......,, 1) plz derive its lattice type and cell
parameter; 2) Suppose the F- adopts the simple cubic packing
with cubic interstices being occupied by K*; R, =133 pm and
R- =136 pm. plz derive the cell parameter.

Answer:
1) indexing: sin“0 = 1:2:3:4:5:6:8:9:10:11... - simple cubic
Bragg law: 2d,,, sin@=A4 =2d,,,= A/2sind

a=d  xvh®+k?>+1° = 1\/h* +k* +1? /2sin @

=70.8x+/11/(2+/0.139) = 314 pm

Z A1 f85 48
S 72/ /22— 0012716 — a — 313.9pm

||




2) For simple cubic packing of anions, cations occupy the cubic
Interstices. As such, both types of ions directly contacts with each
other along the diagonals of a cube, I.e.,

2(R- +Ry) = J3a=a= 2(R: + RK)/\@ =310.6pm




Example: p.286, 9.14

« Cell parameters of NaCl-type KBr, LIBr, KF, and LIF are 658,
550, 534, 402 pm, respectively. Please derive the ionic radii of
K, LI, F, and Br.

Answer:

1. Br anion is the largest and Li cation is the smallest! For LiBr, the
anions adopt ccp structure with Li cations occupying the octahedral
holes. Thus,

J2a . =4R, = R, =+/2a,, /4=194.5pm

For KBr, the K cation is large, thus, the anions may not closely contact
with each other. Instead, the cations and anions closely contact with

h other. Thus,
each other. Thus R, +R, =a,, /2=R, ~134.5pm

SINEAVG G R + R, ~a,. /2= R_ £132.5pm
For LiF, the ultimate case is Li-F closely contact with each other,

R-+R.<a./2=R,=685pm

T




Example: p.288, 9.32

» The cell parameters of monoclinic crystal of biphenyl: a = 824 pm,
b=573 pm, c= 951pm, = 94.5°; p= 1.16 gcm=,
Answer: 1) Number of molecules within a cell,
Ny, = N~0V,0/ My, = N~0p[b xaxcxcos(f—907)]/ M,

= (6.022 x107*°) x1.16 x (573 x 824 x 951 x c0s 4.5 x107°°) /154.2

=2

2)  When h is odd, hOl system absence
— a-glide (a/2) perpendicular to b-axis.
When k is odd, OkO system absence
— 2, screw axis parallel to b-axis. (P.215)
— c-centered monoclinic or P2,/c.

3) The molecule is D,y symmetric. Each
molecule corresponds to a lattice point, |
centering at (0,0,0), (1/2,1/2,0). n



* From this example, we know that some special
translation symmetry, elements e.g., screw axes or
glide planes, do Introduce specific system absence
In x-ray diffraction. So you need to keep in mind
the rules of system absence related to these
translation symmetry elements (see Table 7-6,

0.214-215)!




systematic absence and symmetry (p214-215)

Types of | Conditions for extinction Cause of extinction Centering and
reflection symmetry
elements

hkl h+k+l = odd |-centred I

h+k = odd C-centred C

h+l =odd B-centred B

k+] = odd A-centred A

h,k,I not all even and not all | Face-centred =

odd

-h+k+l not multiples of 3 R-centred R(hexagonal)
Okl k =odd Translation in (100) b/2 | b-glide la (b,c)
(or hOl, I =odd c/2 | c-glidela (b,c)
hk0) k+l =odd (100) glide (b+c)/2 | n-glidela (b,c)

k+l not multiples of 4 JERES (b+c)/4 | d-glidela (b,c)
00l | =odd Translation c/2 21, 4,, 65
(or 0O, | I not multiples of 3 Along c/3 3;, 3,, 6,,6,
or 0k0 || not multiples of 4 (001) cl4 4,, 4,

| not multiples of 6 Screw axis c/6 6., 65

T,




Example: p.288, 9.30

SiP,0,.

Answer: 1) Each Si(4+) Is surrounded

by 6 Oxygen anions. IIIIIIIIO—‘P_I_—IOZ-P—OIIIIIIII
> 5(Si-0,) = +4/6 = +2/3
- s(P-O,) =2 - (4/6) = +4/3 \\\\\\O Q////
> §(P-0,)= 5 (433 = +1 S S8+ %

> Z(0,) =2x(+1) =2
- P,0.* in SiP,0; solid is stable!
2) s(P-O,) > s(P-O,)

> R(P-0,) < R(P-0,)

3) Free P,0-,* anion is unstable!

s(P-O,) = +5/4
=2 Z(0,) = 2x(+5/4) = 2.5 > 2!
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Key points/concepts

1.

2.

Hybrid orbital theory and VSEPR

HMO, HMO treatment of n-conjugated systems and
graphical method to predefine coefficients of HMO of &-
conjugated systems.

Symmetry rules for molecular reactions.

Chemical bonds in electron-deficient molecules (boranes
and carboranes etc), styx method & Wade’ (N+1) rules

Chemical bonding in coordination complexes, crystal-field
theory, ligand-field theory; 18e rule and its application In
transition-metal cluster compounds.




VSEPR and Hybrid orbital theory p.149, 5.8, 5.12

1) SCl;*:  S* (5Ve), each Cl provides 1e to form a S-Cl bond;
thus SCI;* has a lone pair on S. Pyramidal structure like PCl;. S
sp? hybridization. S(4+)

2) ICl,: 1-(8Ve), each Cl provides 1e to form a I-Cl bond; thus
ICl,~ has two lone-pairs on | with a square planar structure. |
atom adopts sp3d? hybridization. 1(3+).

3) ICl;: 1 (7 Ve), each Cl provides le to form a I-Cl bond; thus ICl,
has two lone-pairs on | with a T-shaped structure. | atom adopts
sp3d hybridization. 1(3+), non-polar

4) SO;: S (6 ve), sp? hybridization, trigonal planar; three S-O
sigma bond, and a IT,°

5) SOz%: S (6 ve), sp* hybridization, Pyramidal structure like PCl;
three S-O sigma bond.

6) CO,%: C(4 ve), sp? hybridization, trigonal planar; a IT,° 1




MO theory p.149, 5.12

Suppose the bonding MO of AB is

Wag = CaPa T Cp®y

Igﬂ*a 0,07 = jw*b p,dr =0

Iw*AB W agdT = jca2¢*a ,dt +ICb2¢*b 0, dt
—c,“+¢, =1

0¢,° =90%..° =10% = ¢, ~ +0.95;¢c, ~ +0.32
= .z = 0.95¢, £0.32¢,




Possible structures of XeO,F, (n,m=1,2,3)? P.150, 5.19

Any stable XeO,F,, (n,m=0,1,2,3) compound should have even
number of valence electrons. So m =even.

If n=0, a) m=2, XeF,, Xe has three lone pairs, linear structure of
D_.; b) m=4, XeF,, Xe has two lone pairs, planar square D,,; C)
m=6, XeF;, Xe has one lone pair, thus being C;; d) m=8, XeF,,
tetragonal antiprism structure of D,4 symmetry.

If m=0, a) n=1, XeO, Xe has 3 lone pairs, C_,; b) n=2, XeO,, Xe

has 2 lone pairs, H,O-like structure of C,,; c) n=3, XeO,, Xe has
one lone pair, C,,; c) n=4, XeO,, tetrahedral structure, T;

If n=1, a) m=2, XeOF, , Xe has two lone pairs, C,, symmetry; b)
m=4, XeOF,, Xe has one lone pair, C,,; c) m=6, XeOF, Xe has
no lone pair, C..

If n=2, a) m=2, XeO,F,, Xe has one lone pair, C,, symmetry; b)
m=4, XeO,F,, Xe has no lone pair, Dy;

If n=3, a) m=2, XeO,F,, Xe has no lone pair, Dg;.

I
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P.150, 5.20

1) R CMEBEFES) - PO IR N T IGE (WP,
S0 G 2 AN I 7 [R) 08 T e LA B, o Ji 7 Rl I R B
Sp3d(22)%}:f%ﬁ2ﬁ, M R EIE RS T OREInd(22) 14 57,
1T i P e W) R AL EnsAinp s 4 4y, dck a8 by 7R iE
NI EESRAE K. 28 PR (VSEPR) B [n) S RN iR 168 1] 28 1)
FHNEA, Hj‘fiaiﬁ%iﬁa(lzor“ ) 70N, DRIt B e i R0 A2
PIFIHE R KT 7R E IS X, e b /s R e K .

2) SHR—FERE (VSEPR) : Y40 E-F R 4 JE IR i, o U
& B R T EdEuE Elﬁsﬁ/\ SRR B 5 BARHEF
a)[Ni(CN):]3- 2 VU £ A4 1Y, tlﬂwa{'%l\n%msd(xz Z)iﬁm (FF
HEEN) FEEHETFHE, He3dE- iy b, ZIN
iéﬂ?ﬁﬁﬂ@ﬂd&%iﬂﬁ@ﬂkﬁtﬁmmﬁaﬂzlxxiumﬂk)%d\ ﬁﬁuﬂhm
MK TREIE. b) [Cu(CDPP-N=/AXHE, LR T
3d(A)FhiE N H4E, HeldE THaEw S, Bk, el
52 B B HE e B 7R T P B S2 2 EHE RN, B DU ) o4 g
TR IE .

[FIREHL, T RLARRE Y [Cu (CN]3 VU fAHERS, il a) gt Hﬁ%ﬁﬂ
A K !




P.150, 5.20

2) MR CrieBlE )« a)[Ni(CN) ]%ﬁlﬂﬁ%ﬁ’ﬁ”ﬁi
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3dJR FHUIE R S PE, LA TR EdspRasit, R IE
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A

R ALK T AREEE. b) [Cu(CN=MAXHE, FORET
3mﬂﬁﬁﬁéﬁﬁ,ﬁﬁwﬁ¥%ﬁﬁﬁﬁ,¢@E?mwm
(4dz2) =1k, AEFh R BCAAR S 2 ) N JE3d B+ I HEF BE 7R & T N AR
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From 2e, 8e, 18e rules to electron counting
rules for metal cluster compounds and styx

method for electron-deficient molecules.

e 2e, 8e, 18e rules govern the stability of such molecules/groups
AX, and accounts for their geometries in combination with the
VSEPR or hybrid orbital theory.

* Yet, there are exceptions of these rules, e.g., PCl, and PtCl,*
whose structures can be well-understood with use of the VSEPR
and hybrid orbital theory (or more precisely the generalized octet
rule).

* The electron counting rule for transition-metal cluster compounds
Is actually a natural extension of the 18e rule, which states that
when the valence electrons provided by the ligands of a TM
center are not enough to fulfill the 18e rule, valence electrons
from neighboring TM center(s) should be involved to maintain

the TM center to have 18 VE. 1
b= 2 (18n—Q)
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 For electron-deficient molecules/ions, the (styx) method is also a
natural extension of the 8e/2e rule. In case that the total valence
electrons of a molecule are inadequate to maintain the essential
number of 2c-2e bonds, formation of one or more 3c-2e (or nc-ne)
bonds can make all component atoms fulfilling the 8e/2e rule.
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X = Mm-S _
:> P sets of styx :> p isomers

t=n-s

y = (2s-m)/2

Styx method o1




General rule for stability of molecules/ions

« The molecules/ions should have a large HOMO-LUMO gap to
enforce kinetic stability!

» The 2e/8e/18e rules work well because molecules adopting such
electron configurations always have a large HOMO-LUMO gap.

* Following this general rule, the Wade’s (n+1) rule accounts for the
stability of closo-boranes/carboranes, whose skeletal bonding
electrons are actually delocalized over the whole molecule.

Similarly, the Huckel (4n+2) rule
accounts for the stability of cyclic 7-
conjugated systems that have
delocalized electrons.

radial tangential
1 bonding nbonding
n-1 antibonding n antibonc, | ,




The chemical bonding in B,H_ % (n=5,6,7)? P.184, 6.4
According to Wade’s (n+1) rule,

In B:H:%#, there are 5 B-H o-bonds, one radial bonding skeletal
MO and 5 tangential bonding skeletal MOs.

In B;H¢>, there are 6 B-H o-bonds, one radial bonding skeletal
MO and 6 tangential bonding skeletal MOs.

In B.H-%, there are 7 B-H o -bonds, one radial bonding skeletal
MO and 7 tangential bonding skeletal MOs.

It is known that [Co(NH;)Cl,] has two isomers. P.184, 6.9

If the complex has a planar hexagonal structure, there should be 3
Isomers depending on the relative position of two CI ligands.

If the complex has a trigonal prismatic structure, there should be
three Isomers.

If the complex has a trigonal antiprismatic structure (or octahedral
structure), there should be only two isomers. Therefore the i
complex has this structure. T




Examples p.185, 6.17, 6.24,
e 18-erule, TM cluster

b=(18n-g)/2 b= number of M-M bonds.
Or b=(18n+8m —q)/2 (m = non-metal in-cluster atom).
« Ni(CO),:

1) Ni (10ve) + 4(CO) (8ve) = 18ve; sp? hybridization. Tetrahedral

structure, T -symmetry.
2) Ni (3d'9), 3d orbitals split into (3d,,, dez_yz)“(?adxy,dez,dez)6

3) no d-d excitation can be observed in such a case.

« Fe.C(CO),:: g=5x8 + 4 + 15x2 = 74; b= (18n-g)/2 =8
Square pyramid with 8 Fe-Fe bonds. (in-cluster C atom?!)

 Ru,C(CO),: g=6x8 +4 + 16x2 = 84; b= (18n-g)/2 = 12
Octahedron with 12 Ru-Ru bonds!
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Examples p.185, 6.17, 6.24,
« [RhC(CO)]*: g=6x9 +4 + 15x2 +2 = 90; b= (18n-g)/2=9
trigonal prism with 9 Rh-Rh bonds!
« [NigC(CO),]*: g =8x10 + 4 +16x2+ 4 = 120, b = (18n-g)/2 = 12
cube-shaped with 12 Ni-Ni bonds.
* [NigC(CO),]7:g=8x10+4 +16x2 + 2 =118, b = (18n-g)/2 =13
square antiprism. (actually synthesized! )

Froure 4. Structure of [NigC(CO), 0%




Examples p.185, 6.26,

Fes(CO)5: g= 6Xx8 + 18x2 = 84; b= (18n-g)/2 =12

Octahedron with 12 Fe-Fe bonds.

[Fe,RhC(CO),]: g=4x8+9+4 +14x2+1 = 74; b= (18n-g)/2 =8
square pyramid with 8 M-M bonds!

[CoN(CO) ] g=6X9 + 5+ 15x2 +1 = 90; b= (18n-g)/2=9
trigonal prism with 9 Rh-Rh bonds!

Nig(CO)g(PPh3),,: g = 8x10 + 8x2+12x2 = 120, b = (18n-g)/2 =12
cube-shaped with 12 Ni-Ni bonds. (wrong ligand in text book!)

Nig(PPh)s (CO)g: g = 8x10 + 6x4 + 8x2 = 120, b = (18n-g)/2 =12
cube-shaped with 12 Ni-Ni bonds. Each PPh ligand is u,-ligated!
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Examples p.185, 6.25,
* Fey(u-CO);5(CO)g:

1) g=2x8 + 9x2 = 34; b= (18n-g)/2=1

There exists one Fe-Fe bond.

2) The CO(u,) forms two Fe-C bonds with the Fe atoms, adopting

)

C=0 double bond. On the contrary, a terminal CO forms a
donative Fe-CO o-bond and, meanwhile, get backdonation from
Fe(3dn) arising from the 3dr(Fe)—>2x*(CO) bonding, which
results in a partially weakened C=0 triple bond. Thus the C-O
bond in a terminal CO is strong than that in a bridging CO(u,).

Why are there three p,-CO ligands? To fulfill the 18e rule, all
valence AQOs of a Fe center should be involved, demanding each Fe
center being 6-fold coordinated (excluding Fe-Fe bond). Thus for
Fe,(CO),, three u,-CO ligands are required to keep both Fe cen
being 6-fold coordinated. [ﬁ


http://upload.wikimedia.org/wikipedia/commons/7/7a/Diiron-nonacarbonyl-3D-balls.png

Re-Re bond order =? Why are there two p,-CO ligands?

1) g=2x7 +4x2 + 2x5 = 32; b= (18n-g)/2 =2
Re-Re bond order is 2.

2) For a TM complex fulfilling the 18e rule, all the
valence AOs of a TM center should be involved in
the chemical bondings. As such the coordination |
number of a Re center should be 6 (excluding the
Re-Re bond). As a C-H. ligand makes use of 3
valence AOs of Re, there should be 3 CO ligands
coordinated to a Re center. Thus, two p,-CO
ligands are required to keep both Re center being
6-fold coordinated!




RiEHUckeliEL, BH T4 FHInBEFoFHHEAITHA:
a) 4[% b) [I]] c) H;ﬁﬂcm
3

p.150,
5.21

Answer: Generally, these three molecules all have a [1,*
bond, the MO of which can be expressed as

Accordingly to HMO, the seqular determinant of molecule
a is

Key point: In the framework of HMO, the resonance integral
B exists only when two centers are directly connected! f







C:H: and its anion: p.150, 5.24

symmetric MOs, boundary condition cosO 050
2c0s 6 cos(26)=cos(260)+cos(8)
c0s20 c0s20

— C0S 3¢ = cos 20
= 2sIn(50/2)sin(6/2)=0=6=2mz/5 (m=0,1,2)

5
Ey =a+2Byy =AY o
k=1

E., =a+2pcos(2x/5),

Wso = A[%"'COS(Z”/S)(% +¢4)+COS(47T/5)(§05 +§01)]
E.,=a+2pcos(4x/5),

Wes = ALos+cos(4x /5)(p, +¢,)+cos(2r/5)(ps +¢,)]




C:H: radical and its anion: 0
asymmetric MOs, boundary condition sino sind
2c0s6sin(260)=sin(—26)+sin(6) | |

_ _ sin20 -sin26
= SIn30 = —sin 20

= 2sIn(50/2)cos(6/2)=0=60=2mx/5 (m=1,2)
E..=a+2pcos(2x/5),

Waa = AISIN( 27 /5)( 0, — @, )+ SIN(4m 1 5) (@, + 5 )]
E..,=a+2pcos(4x/5),

Was2 = AlSIN( 47 15) (9, — ¢, ) +sIN(27 / 5)( o, — 5 )]
> Three symmetric and two asymmetric MOs!

-> slis the lowest occupied MO (LOMO) with E,, = a +28
> E = E,,E,, =Ey; (doubly degenerate MOs)




C:H: and its anion: ——— =, +2Bc0s(47/5)
1) For neutral C.H;, 5ne in total.
4—% o +2pBcos(27n/5)
Eita = 2(a + 2B) +3[a+2Bcos(2n/5)]
= 5Sa + 4P + 6Bcos(2n/5) o +2

For the localized system: E, . = 2x2(a + [3) +a=5a + 4
> Edeloc - Etotal N EIoc - 6[3COS(211:/5) ~ 1-85B

2) For C:H. anion, 6e In total.

The s1,s2 and as1 MOs are fully occupied.
E. iy = 6a + 4B[1+2c0s(2n/5)]
For the localized system: E, . = 6a + 4

2 Egeoe = Eiotal — Eioe = 8BC0S(27/5) = 2.47f3




HMO---More complex systems (p.138,)

The seqular determinant of this molecule:

cp+c,pf+c(a—E)+c,f=0=2cosfc,=c,+C,+C,
For symmetric MOs X
c,=c,=cos(f/2);c,=cos(30/2); o - >

5/2)-(1/2
) (5/2)-(1/2)

(1/2)

.C, =2c0sdc, —c, —C, = 2c0SHCos S 2COSQ = COS L cosg
2 2 2 2

— 2c0sd[cos 529 - cosg 1= COS% ( boundary condition!)

For asymmetric MO
It Is the antibonding n-MO of a C=C bond!

c0s0=-1




Linear carbon chain with 2n carbon atoms: HOMO and LUMO

sing sin26 sin34 sin(2n—-1)60 sin2nd
E — a+2fc0sh, where =" (m=123,...2n)
2n+1
(m=1,2,3,...,2n)
2ne_, noccupled n-MOs;so HOMO (m=n), LUMO (m=n+1).
= Zn:sm Knz E =+ 2/ CoS r
gt 2n+1 2N +1¢k’ HOMO 2n+1
2 k(n+1 7r n+1)x
Yiumo = Z ( ) E umo =+ 2pCOS ( i




Linear carbon chain with 2n carbon atoms: HOMO

kn7r
2n+1

Dy »

an2n+1yp—mr
2n+1
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Linear carbon chain with 2n carbon atoms: LUMO

sin@ sin260 sin30

k( n +1)7r
2n+ 2n+1

Yiomo =

C2n_Sm(2n +2n)7r _ sin[ n(2n+1)z + nz

2n+1 2n+1

If 2n=4l,

Similarly,

If 2n=41+2,

: N7 . Nm
C,, = Ssin(nz — sin =—

2n+1 2n+1

sin (n+1)x

2n +1
Similarly, [N 5 | (J)\0 is asymmetric! RN

n+

1




Linear carbon chain with 2n carbon atoms: HOMO and LUMO

mel\lelc, =c,, ,=C,,....,C ., =C IRluige

“1¥n+1

symmetric!

asymmetric!

p,-AO of terminal
carbon atom

Symmetric! Asymmetric with
respect to Cs operation!
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Linear carbon chain with (2n+1) p_-orbitals.

sin@d, sin260, sin3d, sin4g, sin(2n+1)0

E:a+2ﬁcose O=mz/(2n+2) (m=123,..,2n+1)

2n+1
2: K Pr (m=123,..,2n+1)
2N+ 215 2N +2

N.,=2n+1 = n doubly occupied MOs (m=1,..,n), and a singly
occupied MO (SOMO, m= n+1). O;op0=72, Egomo=a, Non-bonding!

2 2n+1
—C— —C— IIIIIIIIIIC
2n+1

=31 symmetric

m

Kz
chgok where c, —sm7

2nN+2 4

If 2n+1=4]+1 (e.g., 5),

n(4| +1)7

If 2n+1=4l+3 (e.q., 7),

(4l+3)r _ =1 asymmetric

C, = sin— > =1;c,,., =SIn



linear system, C5H7 anion. P.150, 5.24

sing, sin260, sin30, sin46, sin56
Boundary :sin60=0=6=ma6 (m=1,23,...,5)

Es=a-1.732f
E.=a+2pcosd O=ma6 (m=1.23,...5) Es=a-p

2n+1
\F km” (Mm=1,2,3,...5)

Ge, three doubly occupied MOs (m=1-3)
E. .. =2(E,+E,+E;)=6a+4p[cos(x/6)+cos(2z/6)+cos(z/2)]

= 60 +5.4643

IE3::(X

I32==(1—F[3
E=ot1.732B

For localized system,
E =2%2(a+p)+20=6a+4p

Delocalization energy
= By — Eioeas = 14643

E

total local

local —



Cyclic system with 2n carbon atoms: HOMO and LUMO

Symmetric MOs [1/2] [1/2]
/1 2n\
— 2N —1(9 - 2n+1 [3/2] \2 Zn_l/ [3/2]
2 2 \n nt+l/

N/

[(2n-1)/2] [(2n-1)/2]

:Zsin(ne)singzo

=0=mz/n(m=012,..,.n-1)
E.=a+2pcos(mz/n) (m=012,..,n-1)

n-1
l//sm — AZ(¢1+k +¢2n—k )COS [( 2k +1)m77:/ 2n] (m — 01’21""n)
k=0




Cyclic system with 2n carbon atoms: HOMO and LUMO

Asymmetric Mos, boundary condition: [1/2] [-1/2]
1

2n
sin2" Ly _sin 2Nty 32 2n-B3)
2 2

\ /
\n n+1/,

| W—

= 25sin( nH)cosg =0 [(2n-1)/2] [(-2n-1)/2]

=0=mz/n(m=12,...n)
E.=a+2pcos(mz/n) (m=12,.,n)

n—1
Waem = AY (G — o )SIN[(2k+1)mz/2n]  (m=12,..,n)
k=0

So the w-conjugated molecule has 1 LOMO(s), 1 HUMO(as) and (n-
1) doubly degenerate MOs. HOMO --doubly degenerated!

For 2n =41 +2, the two degenerate HOMOs are fully occupied!

E.ovo =a+26cos[(nN—1)x/2n]

I
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Cyclic system with 2n carbon atoms: HOMO and LUMO

For 2n =4I, the two degenerate HOMOSs are singly occupied!

E.ovo =0 +2pc0s[nz/2n] =«

e.g., cyclobutadiene, the HOMO:s are singly occupied!

Thus,

E. = 2(a + 2B) + 20 = 4(a +B)

For localized system: E, . = 4(a +B)
2 Egetoc = Etotat = Eioc =0

No delocalization stability! Antiaromatic!




Cyclic system with 2n+1 carbon atoms: HOMO and LUMO
Symmetric MOs

Boundary: cosnd =cos(n+1)4

E.=a+2pcos[2mz/(2n+1)] (m=012,..,n)

'7”sm — A2¢n+1 + ( ¢n—k+1 + ¢n+k+1 )COS [ 2km7[ /( 2n + 1)]
k=1




Cyclic system with 2n+1 carbon atoms: HOMO and LUMO

Asymmetric MOs

sinnd =—-sin(n+1)6

:ZsinwcosgzO

=0=2mz/(2n+1) (m=12,...,n)
E..=a+2pcos|2mz/(2n+1)] (m=12,..,n)

- S0 the w-conjugated molecule has 1 LOMO, and n doubly-
degenerate MOs (one is symmetric, one is asymmetric).

HOMO - doubly-degenerate!




Cyclic system with 2n+1 carbon atoms: HOMO and LUMO

HOMO —doubly-degenerate!
a) For 2n+1 =4l +1, the doubly degenerate HOMOs hold 3

|
electrons! E, oo =a+23cos[nz/(2n+1)]

Thus, such type of cyclic pi-conjugation systems tends to accept
one more electron to have a stable closed-shell electronic
configuration, which also fulfills the (4N+2) Huckel rule of
aromaticity!

b) For 2n+1 =4] +3, the doubly degenerate HOMOs hold 1
electrons!
E.ovo =@ +28cos[(N+1)z/(2n+1)]

Thus, such type of cyclic pi-conjugation systems tends to lose one
electron to have a stable closed-shell electronic configuration,
which also fulfills the (4N+2) Huckel rule of aromaticity! i




Cyclic system with 2n+1 carbon atoms: HOMO and LUMO
e.g., C3H; MOs!
Symmetric MOs,

cos20=cos0 = 0=027/3E,=a+2B,E,=a—-p (0)

va=Alp +9, +p;) (A=13) m/ \()
v, = Alp,cos(2z/3) + @, + @, cos(2x / 3)]

Asymmetric MOs,
Sin20=-sinf=0=rnl3E =a—-pf
W.q =Alp, sSIN(2z [3) — @, sin(2x [ 3)]
1
= ﬁ (P, — @5)




e.g., C;H;, the HOMO s singly occupied!

Thus, E. i =2(a+2B)+ (a-B) =3(a +P)

For localized system: E, .. = 2(a +B) + o = 3o +23
> Edeloc = Etotal B EIoc = B

For C,H, cation, E,..., = 2(c. + 2P)
For localized system: E, .. = 2(c. +B)
Edeloc = Etotal i EIoc = ZB

Enhanced delocalization fulfilling the HCckel rule! o




Cyclic system with 2n+1 carbon atoms: HOMO and LUMO

e.g., C,H, cation, m— 0 +2Pc0s(67/7)
Delocalized system — —, +2Bc0S(47/7)
Eiota = 2X(a+2B) + 4(a+2Bcos(27/7)) #— 4+ o +2Bcos(2n/7)
= 60 + 4B(1+2cos(2r/7)) 4+ a +2PB

For localized system: E, . = 3x2(a +f)

-> Delocalization energy:
Edeloc = Etotal i EIoc = 8[3COS(275/7)—2[3 = 2'99l3

O

delocalized localized
structure structure




O; - cyclic or linear geometry?

Suppose either geometry has a Il;* conjugation system.

For cyclic form, the three n-MOs,

E -a+2f

ECP®™ —2E +2E, =40 +2p

cyc

For linear form, the three n-MOs,

E,t,?fja{r 2E, + 2E, = 4a + 223

Eyenr — Egyene = 28 (2 -1) <0
So the linear form is more stable than the cyclic form.

Note: such atreatment is not too reasonable as there i
are acturally 6 pi-electrons in the cyclic form! T




H,* - cyclic or linear geometry?

Let’s consider the MOs consisting of three H1s AO by
using the HMO theory!

Similar to the O; case, we have the following MO
energies for the cyclic and linear forms of the H; system.

EC® =2E, =20 +4p

cyc

For the linear form, [SRSpEENEY;

Efne, = 2E, =2a+2725 [MESS —ESS =25(2-4/2)>0

linear

linear

So H;* prefers the cyclic form!

How about H; and H;?




Which isomer of C,H; is more stable, 1,3-butadiene (BD) or
trimethylenemethane(TMM)? H,C_ 3

Hj l\j \>_’CH2
1) For BD (see textbook), \4 /

(m=1,2,3,4)

E=a+2pc0sd, where 6 = 7z
5 a—1.618p

0—0.618pB
0+0.618PB

JJF a+1.618p

X=(ax—E)/p
orE=a—-xp

4
ngmkm—ﬂ¢K (m=1,2,3,.4)
=1

EBD

totaltotal

=2E, +2E, =40 +4.4720

2) For TMM, the seqular determinant is
a—E 0 p
0 a-E 0 B | [0 x O
0 0 ao-E B | |0 0 x
)i, J;; B a-E |1 1 1
= x2(x*=3)=0 = x=++/3,0,0

=0

e e




Which isomer of C,H; is more stable, 1,3-butadiene (BD) or
trimethylenemethane(TMM)?

2) For TMM,

a—E 0 i
0 a-E O S
0 0 a—E S
B p B a-

E

= x2(x*-3)=0 = x=1/3,0,0
:>E1:05+\/§:B’E2:E3:05’E4:05_\/§:B a—1.732p

= x°(x*=3)=0 — X =++/3,0,0 4| b o
# a+1.732B

—E, =a++36,E,=E,=a,E, =a—/3f

EMMM — 2E, +E, + E, =4 + 2+/38 = 4ar + 3.4643

total
= E_- (IT;) < E;YV(TT) = BD is more stable than TMM

total




C,H, + Br, > CH,Br-CH,Br is not an elementary rxn!  P.150, 5.29
LUMO (Brz) _Gu* HOI\/IO(Br2 ) — Ttg*

- -@

. .
Symmetiy incompatible! Symmetry compatible! Wrong
Overlap=0 e 7.
H ~_direction of electron transfer!
HOMO(C,H,) -, LUMO(C,H,) —m*

LUMO (Br,) and HOMO(C,H,) are symmetry-incompatible!

The interaction between HOMO (Br,) and LUMO(C,H,), though
being symmetry-compatible, leads to electron transfer incompatible

with the relative electronegativity of the reactants!

The reaction can not be an elementary rxn.




pP.150, 5.32
Key points:

1. Frontier molecular orbital theory.
2. HOMO of hydroquinone interacts with LUMO of quinone!

Both molecules have similar 8-center n-conjugations, I.e.
8c-10e in molecule a and 8c-8e in molecule b.

Thus, the LUMO of molecule b resembles the HOMO of
molecule a, i.e., both are symmetry-compatible!

Hence, the LUMO of molecule b can interact effectively
with the HOMO of molecule a, leading to electron-
transfer from a to b.

(You may figure out the diagrams of these MOs with use of
the HMO theory)

Let’s consider a simpler case in the next page! o




The reaction of [Et4AN]I and tetracyanoethylene (TCNE) forms
[Et4N],[TCNE],, which possesses [TCNE],2~ with a 2.827(3) A

Intradimer CC bond distance (CrystEngComm, 2001, 47,1). Plz
analyze the intradimer bonding.

> The LUMO of neutral TCNE Is the =*
MO of the C=C moiety.

> This MO becomes the SOMO of TCNE

monoanion! NC CN
NC

symmetry-compatible and can

effectively interact with each other!




Please derive the =-MOs of cyclopentadiene and explain why the
reaction of two cyclopentadienes gives rise to [4+2] cycloaddition
product, but not the [2+2] or [4+4] cycloaddition product.

Answer: 1) The n-MOs of cyclopentadiene are similar to those of 1,3-
butadiene; the MO coefficients are given in the diagram. Thus

The boundary condition is sin20 sin30
sin5s9=0=0=mrx/5 (M=1,2,3,4)

The four =-MQOs are

sin0 sin40

4
m=21y, =(1/2)) sin(kz/5)¢,E, = +1.6183
k=1

4
m=2,y, =(1/2)) sin(2kz /5)¢,, E, =  +0.618 3 jz[e]V/[6]
k=1

4
m=3,y, = (1/2)> sin(3kz /5)d, E, = o — 0.618 3 JEEELLC
k=1

4
m=4,y, =(1/2)) sin(4kz /5)¢,E, = —1.618
k=1




Symmetry-
aIIowed [4+2]

HOMO LUMO
A) For [4+2] cycloaddition of two cyclopentadlenes, the 1,4-site of
molecule a interacts with the 1,2-site of molecule b. The 1,4-site of
HOMO (a) is compatible with the 1,2-site of LUMO(b); meanwhile,
the 1,4-site of LUMO(a) Is compatible with the 1,2-site of
HOMO(b). So the [4+2] cycloaddition is symmetry-allowed.

B) For [4+4] cycloaddition, the 1,4-site of molecule a should interact
with the 1,4-site of molecule b. However, the 1,4-site of HOMO (a) Is
not compatible with the 1,4-site of LUMO(b); likewise, the 1,4-site of
LUMO(a) is not compatible with the 1,4-site of HOMO(b). So the
[4+4] cycloaddition is symmetry-forbidden. Similarly, the [2+2] i
cycloaddition is symmetry-forbidden and could not occur! T




More exercises of chapter 5-9 can be found at:

http://ctc.xmu.edu.cn/jiegou/wlkch/Chapter5/exercise.htm
http://ctc.xmu.edu.cn/jiegou/wlkch/Chapter6/exercise.htm
http://ctc.xmu.edu.cn/jiegou/wlikch/Chapter7/exercise.ntm
http://ctc.xmu.edu.cn/jiegou/wlikch/Chapter8/exercise.ntm

http://ctc.xmu.edu.cn/jiegou/wlikch/Chapter9/exercise.ntm
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