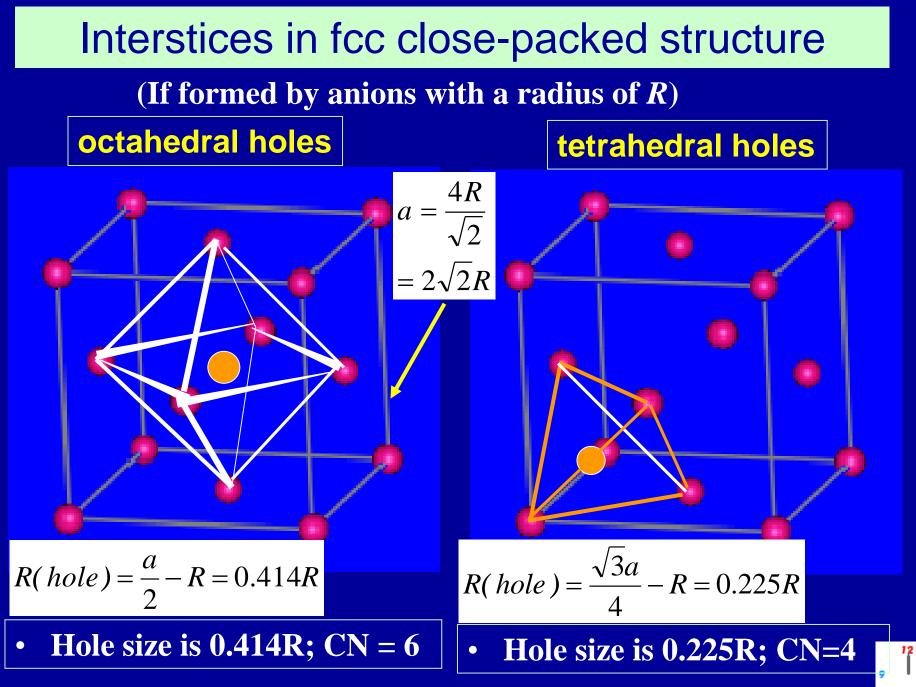
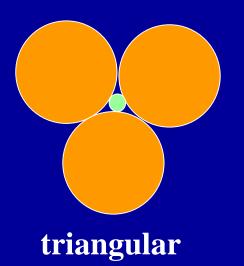
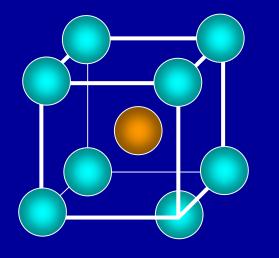
Chapter 9 Structural chemistry of ionic compounds

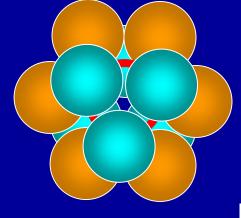

9.1 Ionic radius ratio & coordination polyhedra of ions

In *ionic crystals* the positions in the crystal lattice are occupied by cations and anions.

• In most cases, anions have much larger radii than cations, and form a close-packed structure.

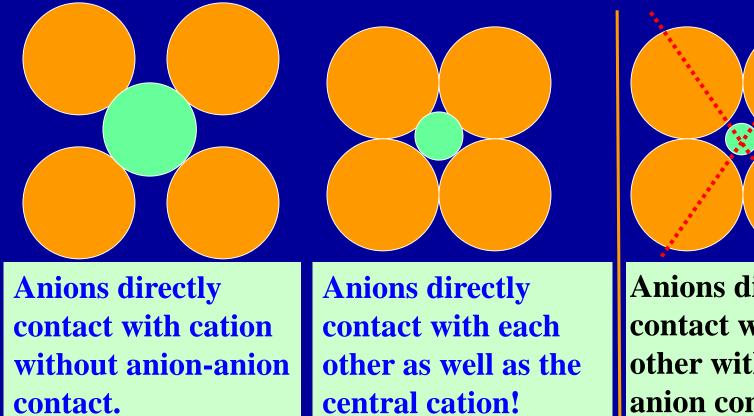

 Consequently cations occupy the interstices of the closepacked structure formed by anions.


Local motif around a cation: coordination polyhedron formed by cation and its surrounding anions.



Interstice type	C.N.	r _{hole} /R	
Triangular	3	0.155	
Tetrahedral	4	0.225	
Octahedral	6	0.414	
Cubic	8	0.732 R adiu	IS
Cuboctahedral	12	1.000 of anic	on

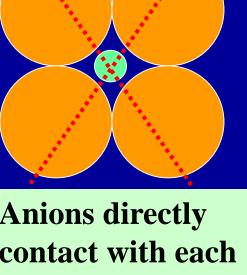
(**r**_{hole}: the radius of interstice formed by close-packing of anions)



Cubic

Cuboctahedral

The rule for the packing of ions


 $(\mathbf{R}_{+} > \mathbf{r}_{\text{hole}})$

central cation!

$$(\mathbf{R}_{+} = \mathbf{r}_{\text{hole}})$$

Strong C-A attraction! Strong C-A attraction! Weak A-A repulsion! Strong A-A repulsion!

 \rightarrow Condition of coordination polyhedron: $R_{+} \geq r_{hole}$

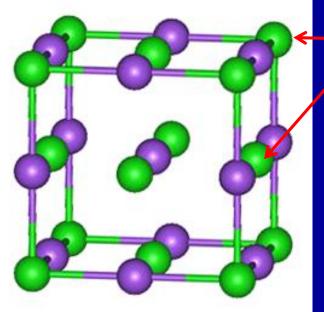
Anions directly contact with each other with no cationanion contact.

 $(\mathbf{R}_{+} < \mathbf{r}_{\text{hole}})$

weak C-A attraction! **Strong A-A repulsion!**

Table 1. The limiting R₊/R_{_} ratio of some coordination polyhedra

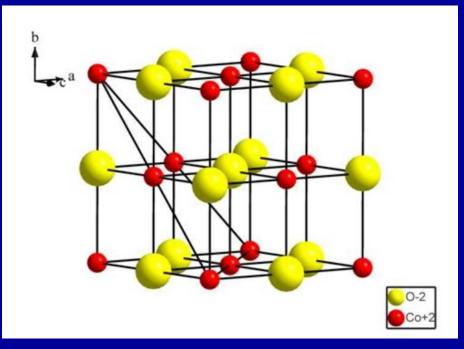
Coordination polyhedron	C.N.	minimum R ₊ /R_
Triangular	3	≥ 0.155
Tetrahedral	4	≥ 0.225
Octahedral	6	≥ 0.414
Cubic	8	≥ 0.732
Cuboctahedral	12	≥ 1.000

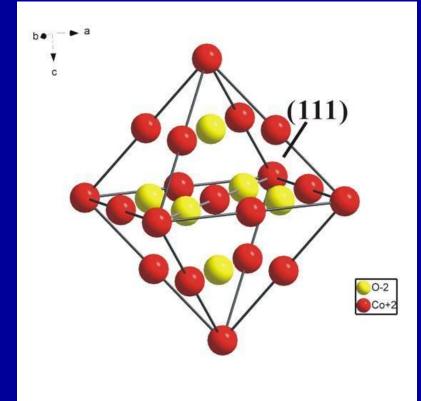

9.2 The crystal structures of some typical ionic compounds

Answer the following questions:

- The packing style of anions ?
- The position of cations ?
- Crystal System (or more precisely *Bravais Lattice*)?
- The CN's of anions and cations ?
- Number of atoms in a unit cell ?
- Structural formula ?
- Fractional coordinates of anions/cations

9.2.1 Binary ionic compounds (AB)Rocksalt structure,NaCl typeR_+/R_ ~ 0.732-0.414

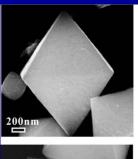


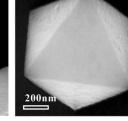

- **Position of cations: Octahedral holes**
- Bravais Lattice: Cubic F
- C.N. of A⁻ & B⁺: 6:6
- N_A:N_B in a unit cell: 4:4
- Structural motif: NaCl

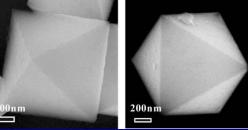
A: 0, 0, 0; 1/2, 1/2, 0; 1/2, 0, 1/2; 0, 1/2, 1/2 B: 1/2, 1/2, 1/2; 1/2, 0, 0; 0, 1/2, 0; 0, 0, 1/2

(0.732-0.414) KCl, KBr, SrS, RbI, BaTe, SrSe, CaS, KI, SrTe, MgO, LiF, CaSe, NaBr, CaTe, MgS, NaI, LiCl, (>0.732) KF, SrO, BaO, RbF, RbCl, BaS, CuO, CsF, RbBr, BaSe, NaF, (<0.414) MgSe, LiBr, LiF, NiO, CoO ...

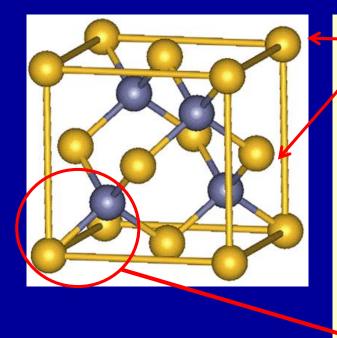

Example 1: CoO


- NaCl-type structure of CoO.
- Its (111) surface are charged, having higher surface energy than other non-polar surfaces.
- However, the charged (111) surface could be stabilized upon coordination of counterions from ionic liquids.


Control the surface by introducing electrostatic interactions!



Growth of CoO in the absence of ionic liquid

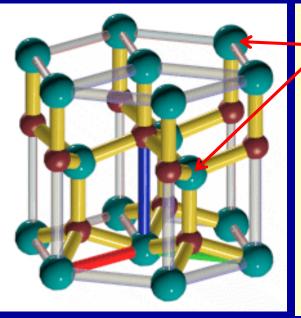


Growth of CoO in ionic liquid

R=1.73

1

β-ZnS (Sphalerite/闪锌矿/立方硫化锌) (R₊/R_: 0.225-0.414)

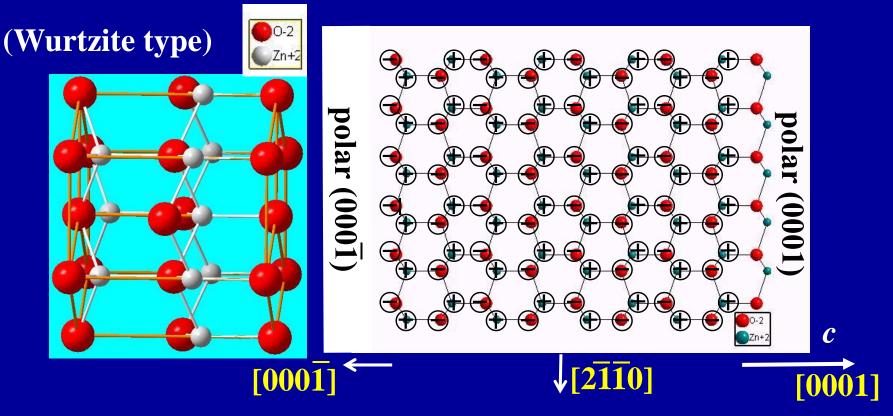

- Packing of anions: fcc/ccp
 - **Position of cations:**

Tetrahedral holes (1/2)

- Bravais lattice: cubic F
- C.N. of A⁻ & B⁺: 4:4
- N_A:N_B in a unit cell: 4:4
- Structural motif: ZnS

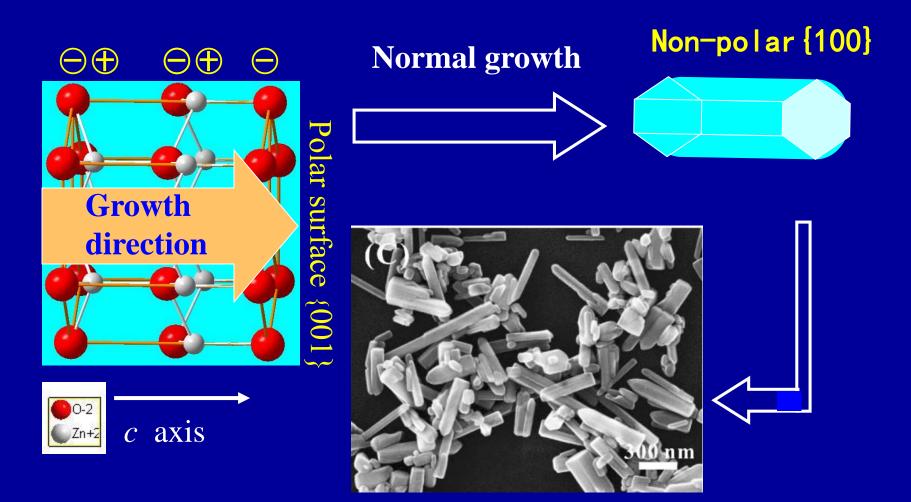
A: (0,0,0); (1/2,1/2,0); (1/2,0,1/2); (0,1/2,1/2)B: (1/4,1/4,1/4); (3/4,3/4,1/4); (3/4,1/4,3/4); (1/4,3/4,3/4)

α-ZnS (R⁺/R⁻ ~ 0.225-0.414) (Wurtzite/纤锌矿/六方硫化锌)

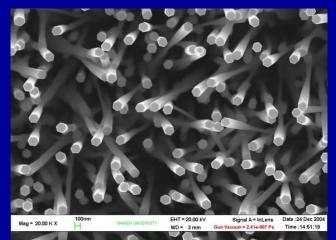


- **Packing of anions: hcp**
- Position of cations: Tetrahedral holes (1/2)
- Bravais lattice: hexagonal P
- C.N. of A⁻ & B⁺: 4:4
- N_A:N_B in a unit cell: 2:2
- Structural motif: Zn₂S₂

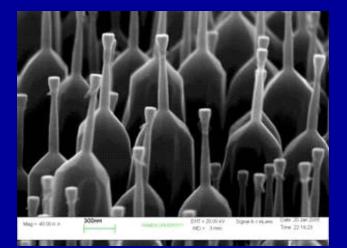
A: (0,0,0); (1/3, 2/3, 1/2) B: (0, 0, 3/8); (1/3, 2/3, 7/8)


CuF, CuCl, CuBr, CuI; AgI; ZnO, ZnS, ZnSe, ZnTe; CdO, CdS, CdSe, CdTe; HgS, HgSe, HgTe, (CoO, MnO)

Example: ZnO --- Growth of unusual morphologies Crystal structure of ZnO

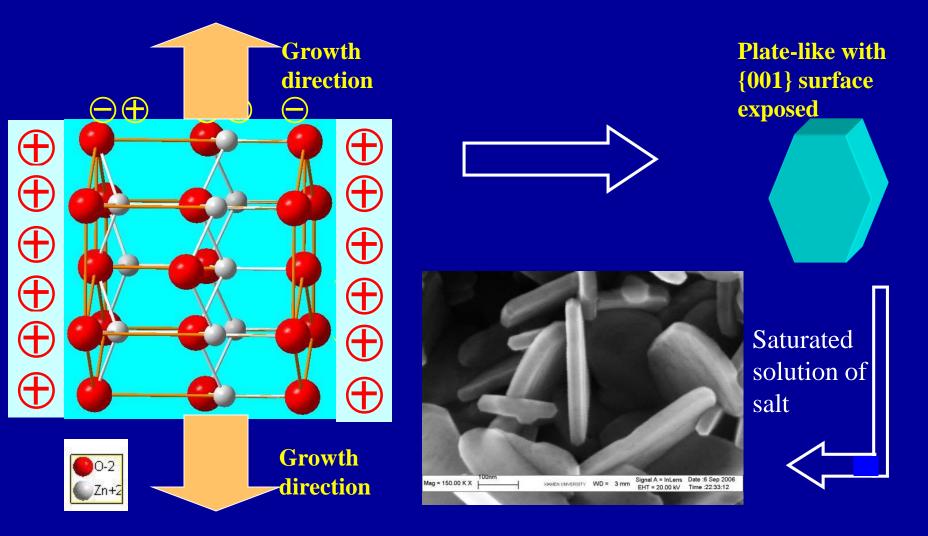


Non-polar surfaces: (1010), (0110), (1100), (2110)

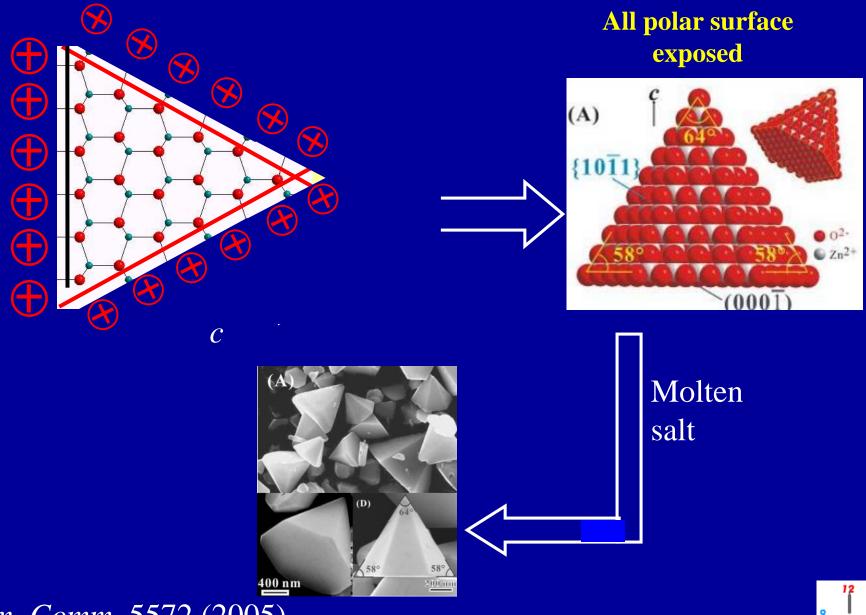

The polar surfaces (0001) and (0001) have higher surface energies than other non-polar surfaces do!


Growing into rod-like morphology along *c* axis to give rise to those stable non-polar surfaces exposed.

Thermo CVD of ZnO on Silicon surfaces


Micro-wave plasma CVD of ZnO on Silicon surfaces

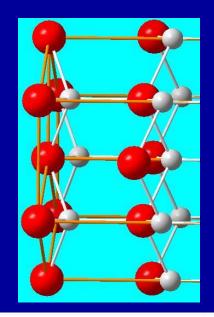
thermo-decomposing $Zn(CH_3COO)_2$

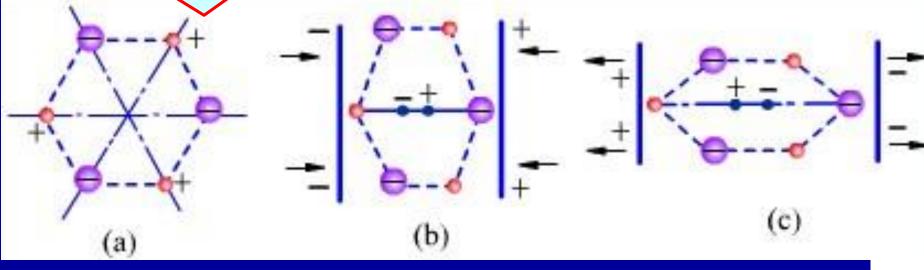

ZnO tends to grow into nanowires with [0001] as growth direction.

Control the surface energy by Electrostatic interaction

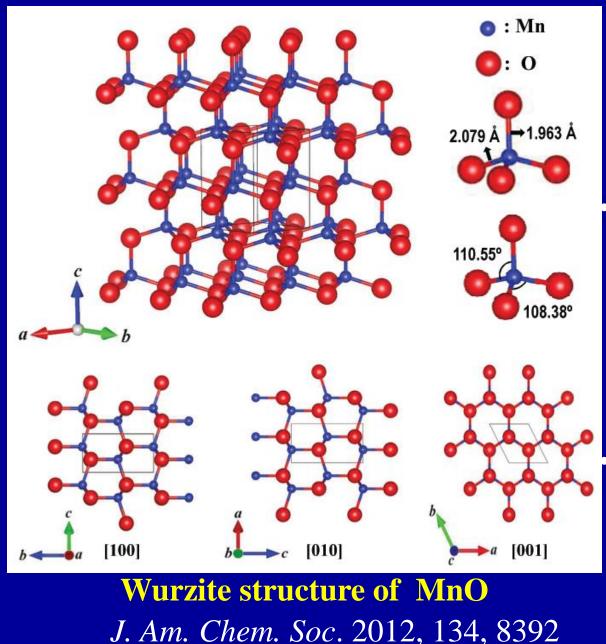
{001} surfaces exposed

Enhancing the electrostatic interactions



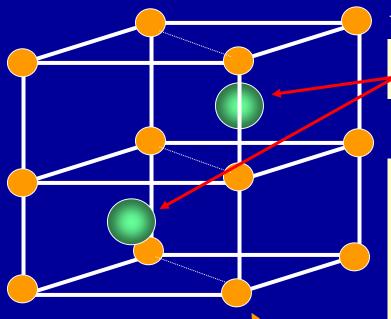

Chem. Comm. 5572 (2005)

Why do we need ZnO with polar surfaces exposed?


piezoelectric effect

Ionic crystals with polar surfaces exposed always exhibit piezoelectric effect, a physical property that can be exploited to turn mechanical energy into electricity.

Wurzite: New Solid phase of MnO


Most transition metal oxides (MO, M= Sc,Ni) have a cubic rocksalt crystal structure.

But ZnO and CoO are the only stable transition metal oxides known to possess a hexagonal structure.

Recently, the hexagonal structure of MnO has been synthesized by Park, J. T. et al.

NiAs (R⁺/R⁻: 0.732-0.414)

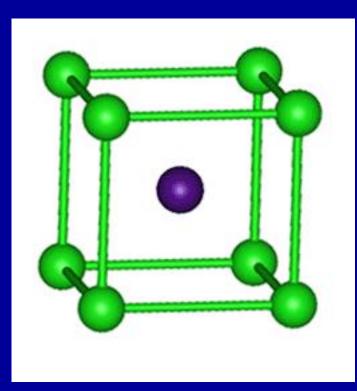
Normal picture

Packing of anions: hcp

(Two anions within a primary cell!)

- Cations: All octahedral holes
- Bravais Lattice: hP
- C.N. of A⁻ & B⁺: 6:6
- N_A:N_B in a unit cell: 2:2
- Structural motif: Ni₂As₂

Alternative picture:


Cations ~ layered hexagonal structure

Anions: triangular prism holes (1/2)

Ni: 0, 0, 0; 0, 0, 1/2 As: 1/3, 2/3, 1/4; 2/3, 1/3, 3/4;

CsCl cubic, **C.N.**⁺**:C.N.**⁻ 8:8

CsBr, CsI $(R_{+}/R_{-}: 1-0.732)$

A: 0,0,0

B: 1/2,1/2,1/2

• The packing of anions:	Cubic
•Bravais Lattice :	Cubic P
•The position of cations:	Cubic holes
The C.N. of cation and anion:	8:8
• Atom number in	1:1

Please think about the coordination-polyhedra representation for this type of crystals! (co-edge or cofacial stack?)

one unit cell:

The crystal structures of some typical ionic compounds

AB₂: TiO₂, CaF₂, etc.

Answer the following questions:

- The packing style of anions ?
- The position of cations ?
- Crystal System (Bravais Lattice) ?
- The CN's of anions and cations ?
- Number of atoms in a unit cell ?
- Structural formula ?
- Fractional coordinates of anions/cations

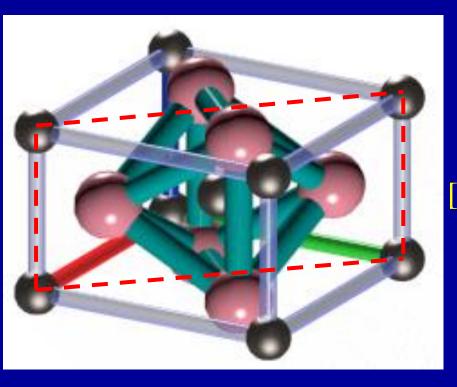
TiO ₂ : Rutile		
$\sqrt{2}ua$	• The packing of	Distorted
u u	anions:	hcp
	•Bravais Lattice :	Tetragonal P
	•The position of cations:	1/2 distorted octahedral
¹ /2+u a ¹ /2-u	Cations.	holes
	The C.N. of	6:3
	cation and anion:	
A: 0,0,0; 1/2,1/2,1/2 (Ti)	• Atom number in one unit cell:	Ti:O = 2:4

B: u,u,0; -u,-u,0; 1/2+u, 1/2-u, 1/2; 1/2-u, 1/2+u, 1/2. (O) {TiO₂,u=0.31}

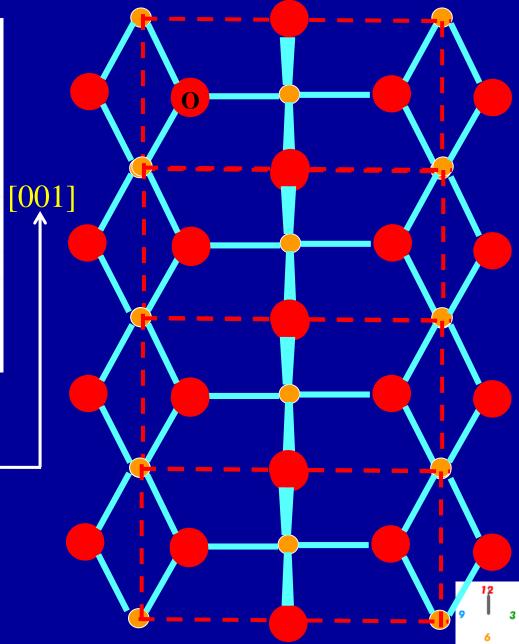
(0.732-0.414) TeO₂, MnF₂, PbO₂, FeF₂, CoF₂, ZnF₂, NiF₂, MgF₂, SnO₂, NbO₂, MoO₂, WO₂, OsO₂, IrO₂, RuO₂, TiO₂, VO₂, MnO₂, GeO₂

Rutile TiO₂

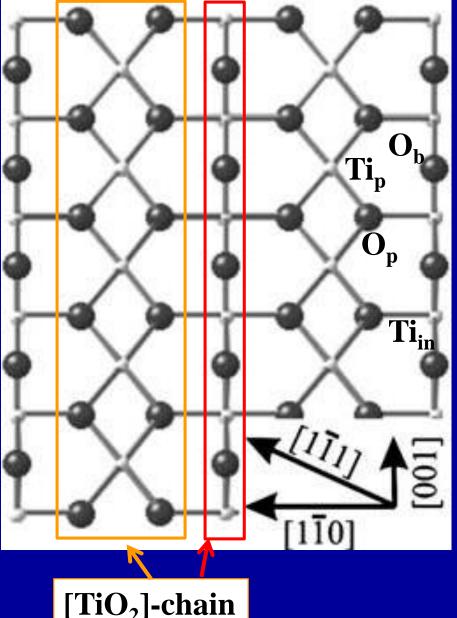
Wine-red, adamantine luster

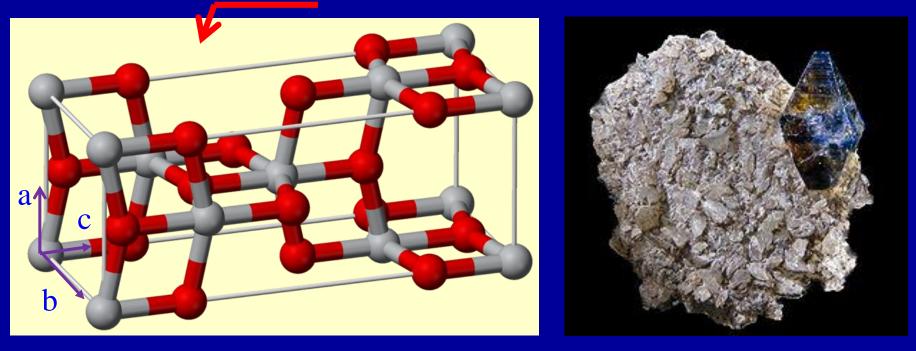

Group space: P 4/mmm

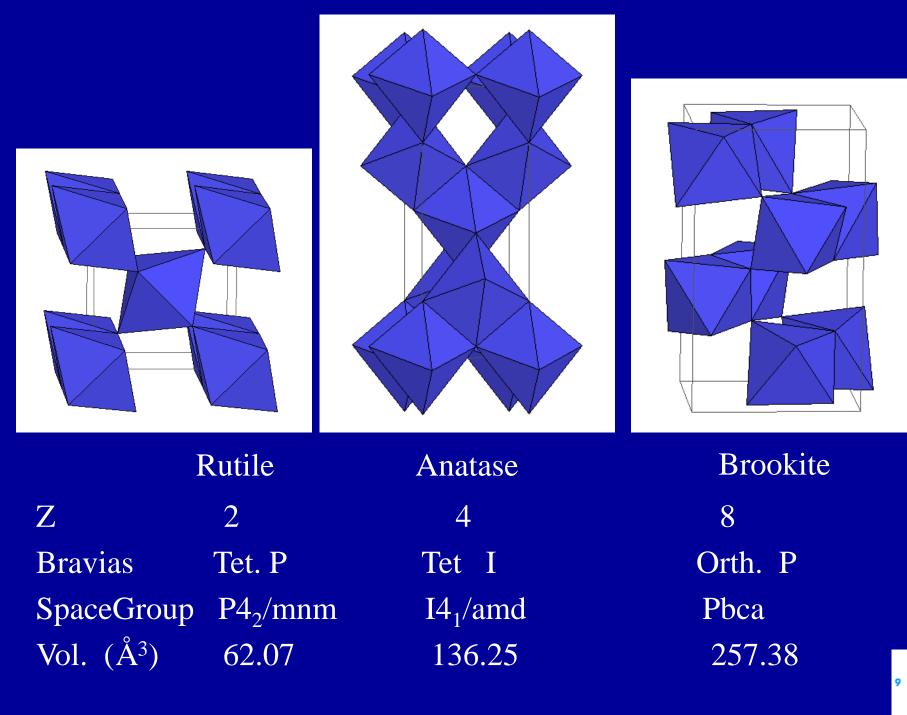
a = 4.5937 Å, c = 2.9587 Å; Z = 2


Selected applications:

- Powdered: white pigment!
- Nano-sized: highly effective in absorption of UV-radiation (sunscreens)

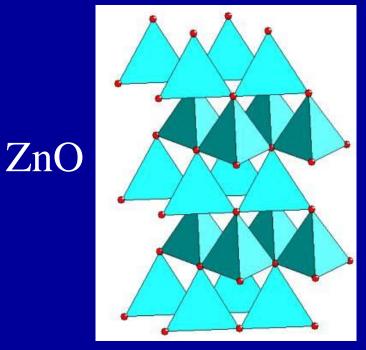

(110) Surface of Rutile (SnO₂, TiO₂) crystal

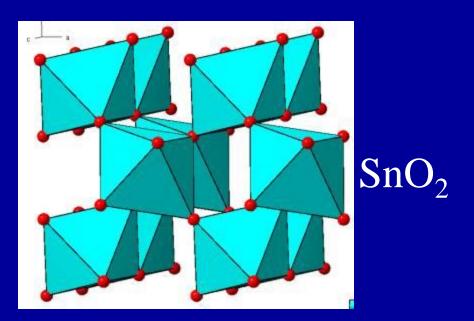

(110) Surface of Rutile (SnO₂, TiO₂) crystal


- O_b: out-of-plane bridging O O_p: in-plane O atom Ti_p: in-plane Ti atom Ti_{in}: subsurface Ti atom
 - In TiO₂ crystal, the planes of neighboring [Ti-O₂]-chain are perpendicularly aligned with each bridging O coordinated to a Ti atom of a neighboring chain.
 - Thus, each lattice O is 3coordinate and each lattice Ti being 6-coordinate.
 - In the (110) surface, there are two types of O atoms exposed .

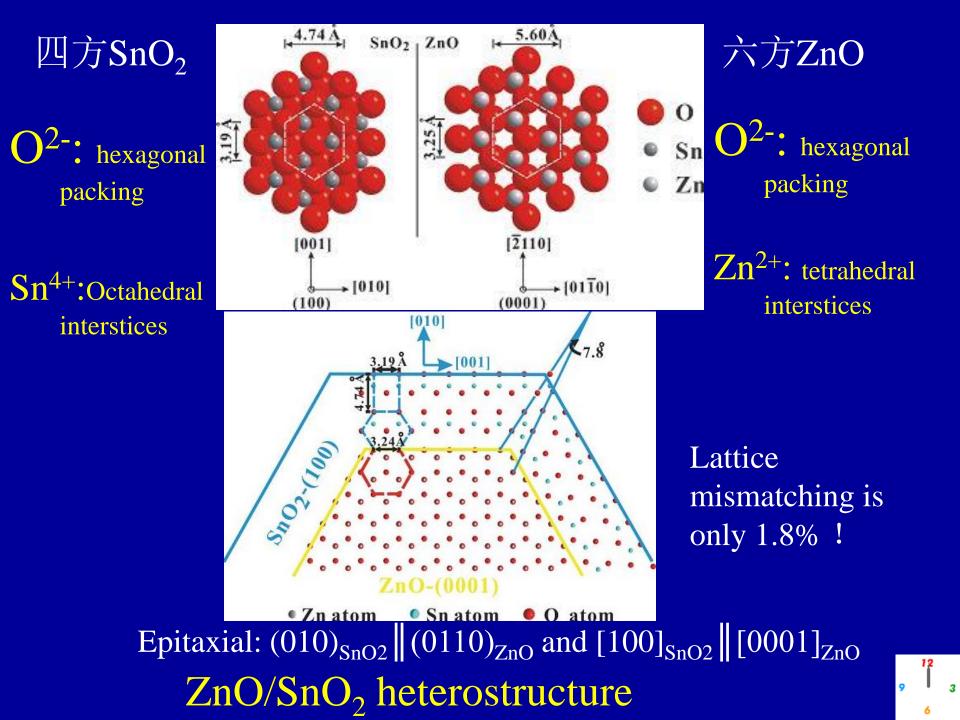
5

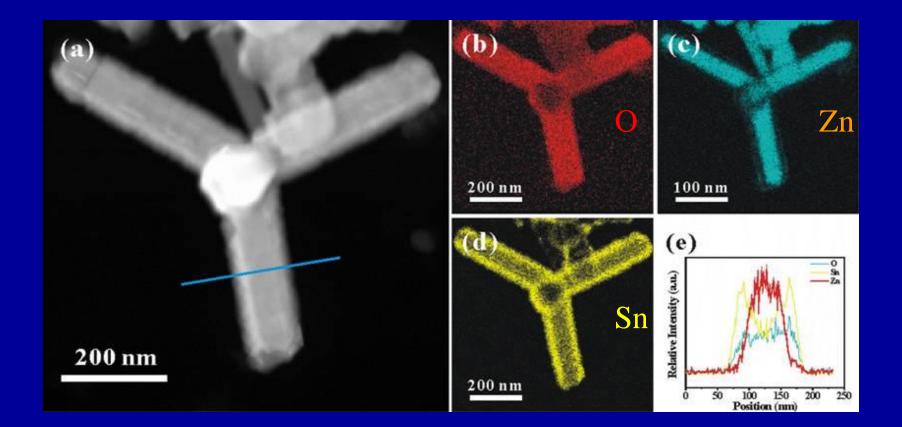
TiO₂: Rutile, Anatase, brookite




- Tetragonal I (Body-centred tetragonal), I4₁/amd a = 3.7845 Å, c = 9.5143 Å; Z = 4. (where is the 4₁ screw axis?)
- Less hard and dense than rutile TiO_2 .
- Photoactive with well-known application as component of dyesensitized solar cell (Gr ätzel cell).
 M. Gr ätzel, *Nature* 1991, 353, 737.

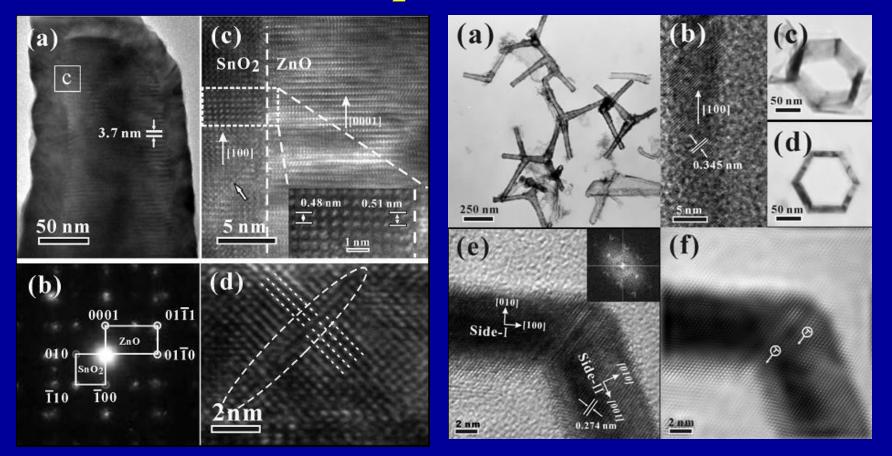
Example 3


Crystal structures of ZnO and SnO₂ Wurtzite ZnO Rutile SnO₂



Hexagonal , Zn²⁺ : tetrahedral coordination Tetragonal, Sn⁴⁺ : octahedral coordination

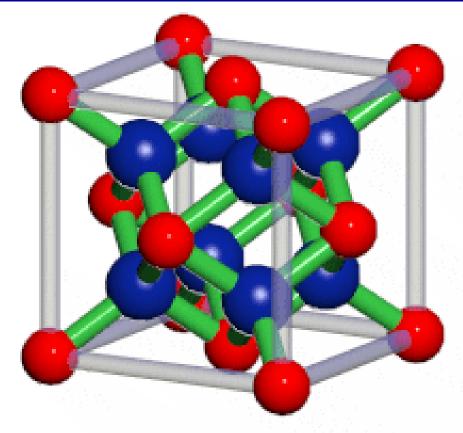
Coordination-polyhedra representation of ionic compounds


Core-shell structure of tetrapod-like ZnO/SnO₂ heterostructure

$(SnH_4 flow rate = 10 sccm, deposition time = 5 min)_{\frac{1}{2}}$

.

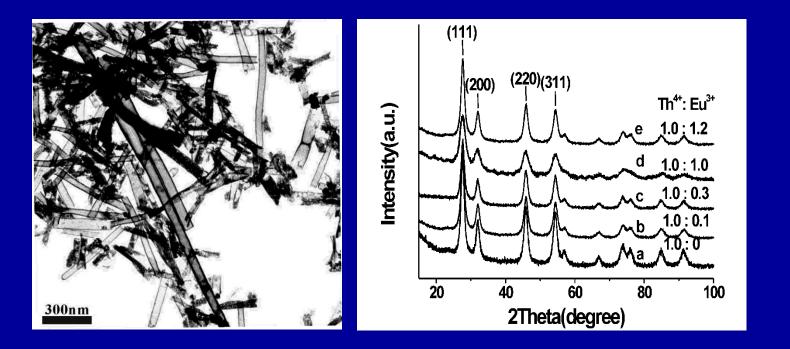
Microstructure of the interface of ZnO/SnO₂ heterostructure


Epitaxial relationship : $(010)_{SnO2}$ (0110)_{ZnO} and [100]_{SnO2} [0001]_{ZnO}

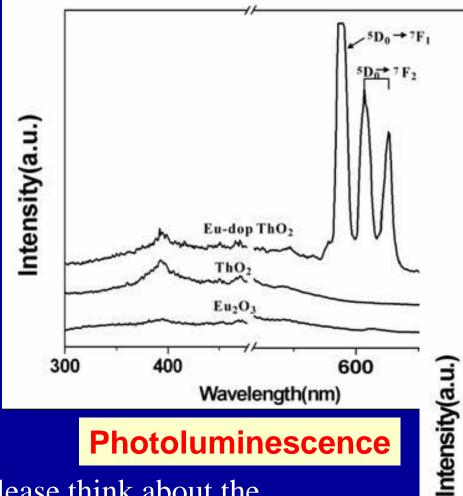
Optical properties of ZnO/SnO₂ heterostructure

> Most of the ionic compound can be described as that cations occupied in the interstices of the close-packing of anions with certain type, and therefore, it is reasonable to design the complicated epitaxial interfaces from the viewpoint of the packing type of anions of ionic crystals.

CaF₂ (Fluorite) AB_2 type C.N.+:C.N.⁻ =8:4

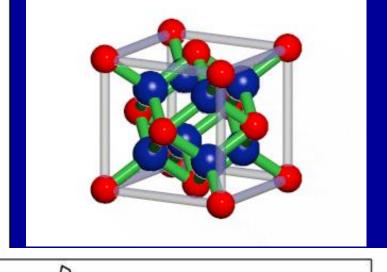

• The packing of anions:	Cubic
•Bravais Lattice :	Cubic F
•The position of	1/2 Cubic
cations:	holes
The C.N. of cation and anion:	8:4
• Atom number in one unit cell:	Ca:F = 4:8

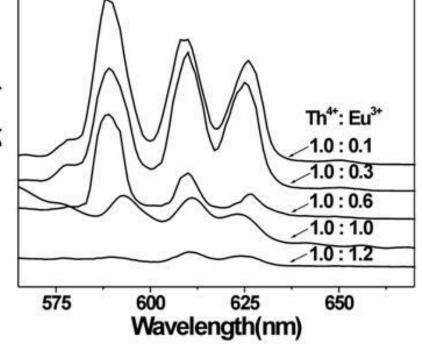
A: 0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2 (Ca – red) B: 3/4,1/4,1/4; 1/4,3/4,1/4; 1/4,1/4,3/4; 3/4,3/4,3/43/4,3/4,1/4; 3/4,1/4,1/4; 1/4,3/4,3/4; 3/4,1/4,3/4 (F-deep blue)


 $(R_{+}/R_{-} > 0.732) BaF_{2}, PbF_{2}, SrF_{2}, HgF_{2}, ThO_{2}, CaF_{2}, UO_{2}, CeO_{2}, PrO_{2}, CdF_{2};$ (0.67) ZrF_{2}, HfF_{2}

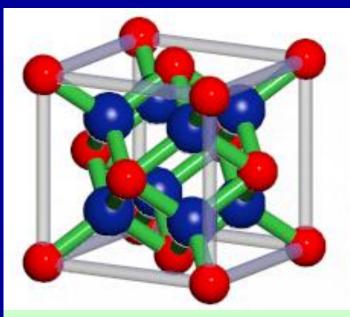
Eu-doped ThO₂

Example 4


Th ⁴⁺ : Eu ³⁺	1.0:0	1.0:0.1	1.0:0.3	1.0 : 1.0	1.0:1.2
<i>a</i> value (nm)	0.5596	0.5595	0.5591	0.5586	0.5574
	±0.0001	±0.0002	±0.0002	±0.0003	±0.0002



Photoluminescence


Please think about the coordination-polyhedra representation of Fluorite crystal!

Cubes? Cofacial or co-edge stack?

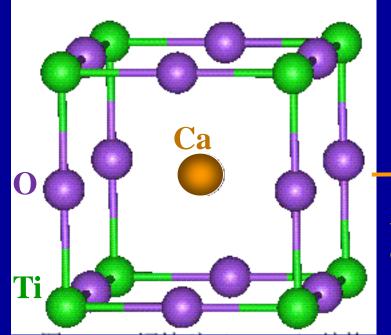
Rb₂O, Li₂O --- anti-Fluorite structure type

Anions: red

Cations: deep blue

- The packing of anions: fcc
- The position of cations: tetrahedral holes
- Bravais Lattice: Cubic F.
- The C.N. of anion and cation: 8:4
- •Atom number in one unit cell? $4(M_2O)$

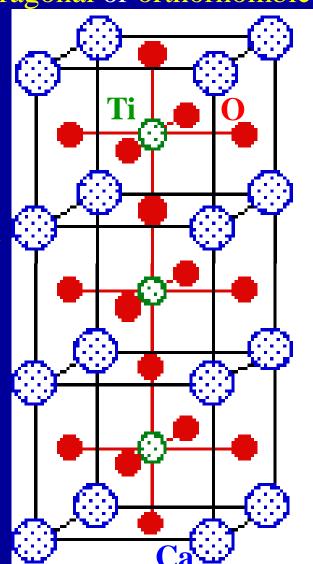
Typical Crystal Structures of Binary Component

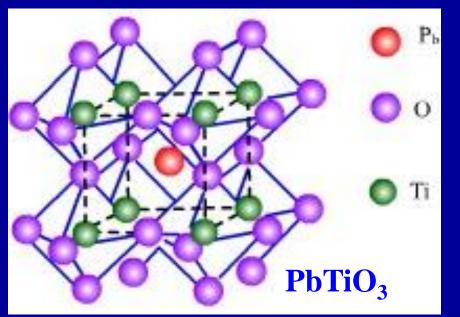

Structure Name	Туре	Anion Packing	Lattice Type	Cation position	Coordination Numbers Cations Anions		Examples
Soldium Chloride	AB	FCC	C-F	All octahedral holes	6	6	NaCl, MgO, FeO,LiF, CaO, NiO
Cesium chloride	AB	Simple cubic	C-P	All cubic holes	8	8	CsCl
Zinc blende (sphalerite)	AB	FCC	C-F	1/2 tetrahedral holes	4	4	ZnS, SiC
Wurzite	AB	НСР	H-P	1/2 tetrahedral holes	4	4	ZnS
Fluorite	AB ₂	Simple cubic	C-F	1/2 cubic holes	8	4	CaF ₂ ,ZrO ₂
Anti-Fluorite	A ₂ B	FCC	FCC	All tetrahedral holes	4	8	Li ₂ O
Rutile	AB ₂	НСР	T-P	1/2 octahedral holes	6	3	TiO ₂ , MnO ₂ , SnO ₂

9.2.2 Ternary and more complicated ionic compounds

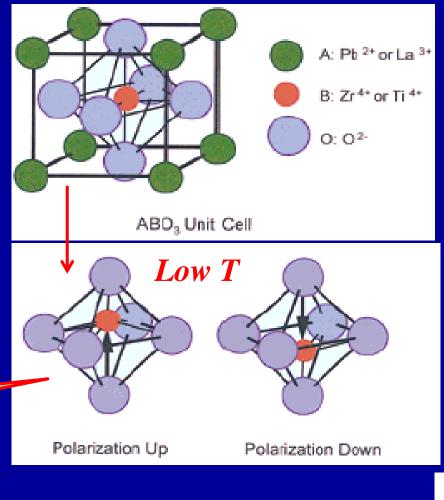
a) CaTiO₃ -- perovskite -- ABX₃

Ideally *cubic*, but actually tetragonal or orthorhombic!


Cubic-P

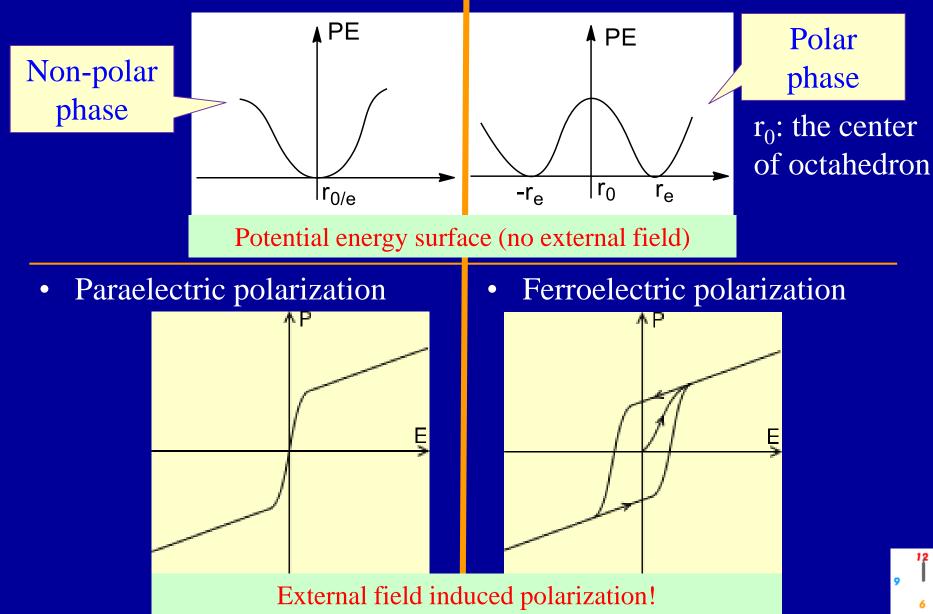

1. Shift of origin to Ca.

2. Stacking of 3 cubic units

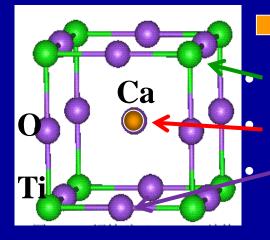

O (X): "ccp/fcc" (4) - (1) = (3)
Ti (B): 1/4 octahedral holes (1)
Ca(A): cuboctahedral hole (1)

Perovskite structure and Ferroelectric effect

 Low T, tetragonal, spontaneous polarization, overall polarity, μ(total) ≠0! High T, cubic P, non-polar phase (paraelectric!) μ(total) =0

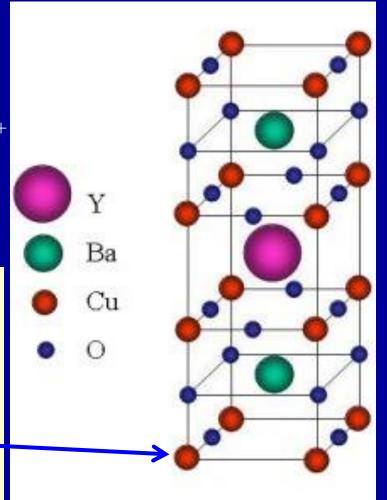


Two polar phases with distorted octahedra around the B cations!


4

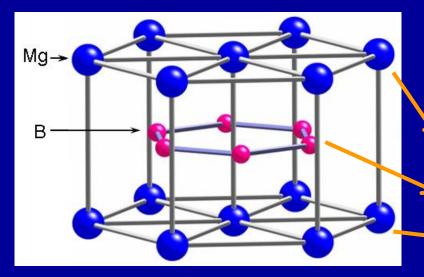
Potential energy surfaces of two phases of Ferroelectric solid

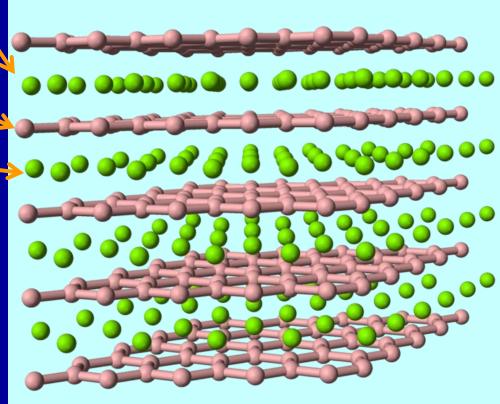
• No spontaneous polarization • Spontaneous polarization



Perovskite structure and H-T superconductor

Substitution of Cuⁿ⁺
 Doping of Y³⁺ & Ba²⁺
 Partial loss of O²⁻


- 1986, Bednorz and Müller at IBM Zurich discovered the Y-Ba-Cu-O solid exhibits superconductivity up to 93 K.
- x=0: Mixture of Cu²⁺ and Cu³⁺.
- Up to now, related oxides exhibits superconductivity up to 125 K.

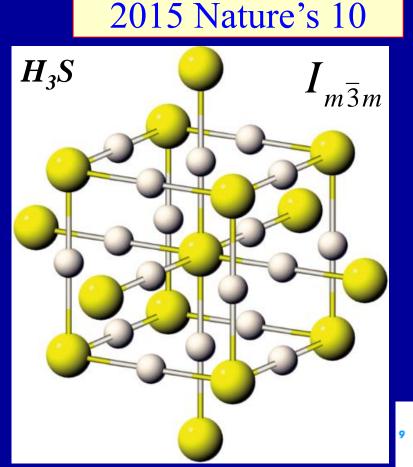

YBa₂Cu₃O_{7-x}

• Tetragonal or orthorhombic

Another type of HT superconductive solid $-MgB_2$

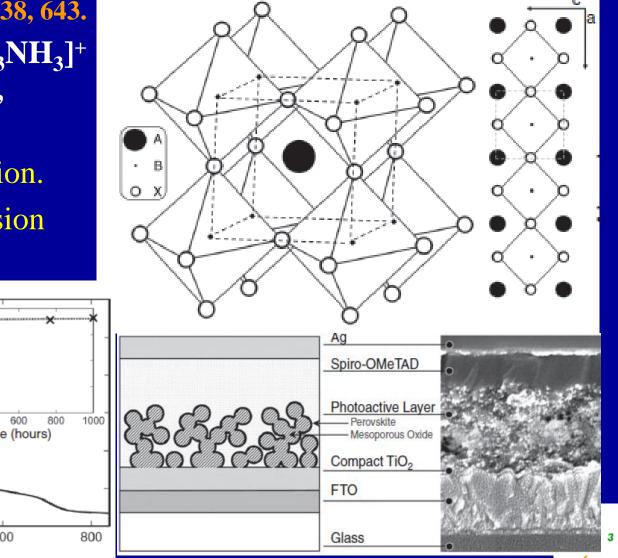
- First synthesized in 1953.
- HTS (Tc ~39K) discovered in 2001.
- Lattice: Hexagonal hP3
- Space Group: P6/mmm

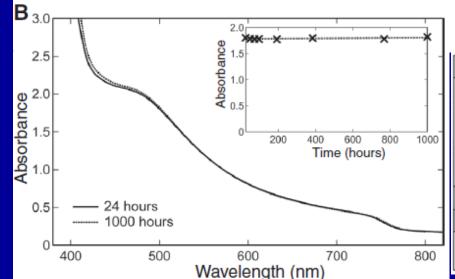
Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

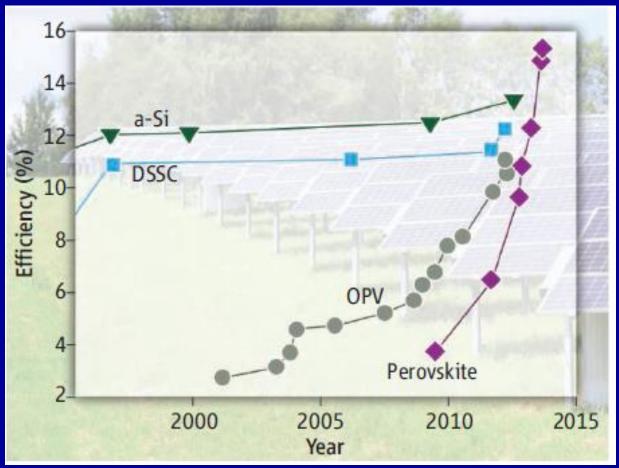

 $P > \sim 150$ Gpa, $H_2S(s) \rightarrow ? ! H_3S(s)$

Drozdov et al., Nature, 2015, 525, 73.

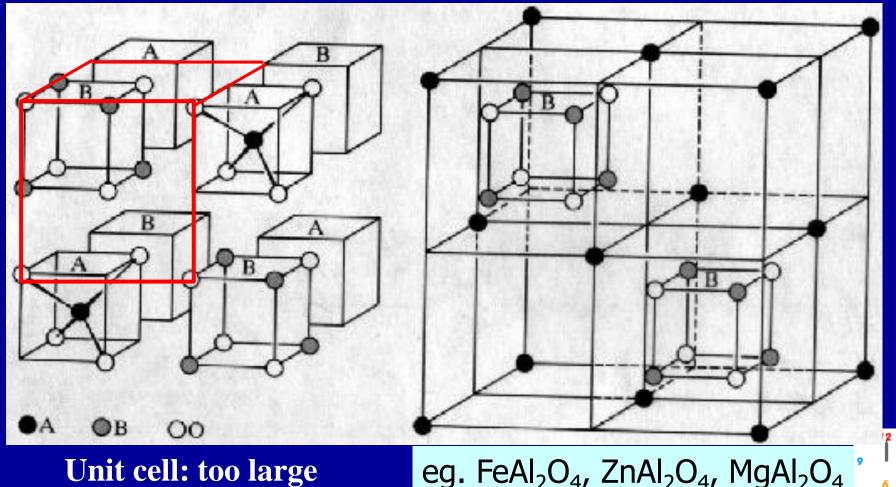
Theoretical predictions:


P > 180Gpa, (H₂S)H₂ (s) → H₃S (s) $T_c > \sim 200K$


Strobel T A et al, Phys Rev Lett, 2011, 114, 157004; Cui T et al, Sci. Rep. 2014, 4, 6968; Phys. Rev. B 2015, 91, 180502(R)


Photoactive Organometal Halide Perovskite ABX₃ in Meso-superstructured Solar Cell (MSSC).

- Snaith et al., Science, 2012, 338, 643. Photoactive $A = [CH_3NH_3]^+$ $CH_3NH_3PbI_3 = Pb^{2+},$ X = I
- Broad band of absorption.
- Optimal power conversion efficiency ~ 10.9%.


Perovskite-based Solar Cell.

- Up to now, the Perovsite-based Solar Cell can reach an optimal efficiency ~ 20%, higher than that of commercial a-Si solar cell.
- Its drawback: not water-resistant at all!

$MgAl_2O_4$ (spinel) AB_2X_4 Lattice type: Cubic-P

- O anions form fcc lattice (2x2x2 of O-fcc cells, O: 8x4=32) ightarrow
- Mg^{2+} cations (A) in 1/8 tetrahedral holes (8x8/8); Al³⁺ cations (B) igodolin half of octahedral holes $(8x4/2) \rightarrow A:B:O = 8:16:32$

Unit cell: too large

http://www.chemtube3d.com/solidstate/_spinel(final).htm

Spinel crystals

12 6 anti-spinel B[AB]O₄ --- the Magnetic property

magnetite (Fe_3O_4) = spinel (Fe^{3+} , Fe^{2+}) O_4 = B(AB) O_4

- O anions form fcc lattice
- Fe³⁺(B) cations in 1/8 tetrahedral holes,
- (Fe²⁺, Fe³⁺) (AB) cations in half of octahedral holes

Spinel	[A] _t [BB] _o O ₄
Anti-spine	I [B] _t [AB] _o O ₄
eg. FeFe ₂ O	4, FeMgFeO ₄

Summary of Some Common Crystal Structures

Structure Name	Structure Type	Anion Packing	Cation position	Coordination Numbers Cations Anions		Examples
Rock Salt	AB	FCC	All octahedral holes	6	6	NaCl, MgO, FeO,LiF, CaO, NiO
Cesium chloride	AB	Simple cubic	All cubic holes	8	8	CsCl
Zinc blende (sphalerite)	АВ	FCC	1/2 tetrahedral holes	4	4	ZnS, SiC
Wurtize	AB	НСР	1/2 tetrahedral holes	4	4	ZnS
Fluorite	AB2	Simple cubic	1/2 cubic holes	8	4	CaF ₂ ,ZrO ₂
Rutile	AB2	НСР	1/2 tetrahedral holes	6	3	TiO ₂ , MnO ₂ , SnO ₂
Perovskite	ABX ₃	FCC(A and X)	All octahedral holes for B	12(A) 6(B)	6	BaTiO ₃ , SrTiO ₃
Spinel	AB ₂ X ₄	FCC	1/8 octahedral holes for A 1/2 tetrahedral holes	4(A) 6(B)	4	MgAl ₂ O ₄ FeAl ₂ O ₄

6

9.3 Lattice energy

The calculation and determination of lattice energy

 $Na^+(g) + Cl^-(g) \rightarrow NaCl(s) + U(Lattice Energy)$

Overall electrostatic interaction energy exerted on a cation

$$\varepsilon(Na^{+}) = \frac{Z_{+}Z_{-}e^{2}}{4\pi\varepsilon_{0}r} \left[6 + \frac{12}{\sqrt{2}}\frac{Z_{+}}{Z_{-}} + \frac{8}{\sqrt{3}} + \frac{6}{\sqrt{4}}\frac{Z_{+}}{Z_{-}} + \dots\right]$$
$$= \frac{Z_{+}Z_{-}e^{2}}{4\pi\varepsilon_{0}r} \left[6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{\sqrt{4}} + \dots\right]$$
$$= \frac{Z_{+}Z_{-}e^{2}}{4\pi\varepsilon_{0}r}A, A = \left[6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{\sqrt{4}} + \dots\right]$$
$$Structure-dependent$$
$$A \approx 1.7476, Madelung constant of NaCl - type$$

Point-charge model!

Madelung potential on a cation!

 $EP(Na^+) = \frac{Z_e}{4\pi\varepsilon_o r}A$

CI

Na

$$\varepsilon(Na^+) = \frac{Z_+ Z_- e^2}{4\pi\varepsilon_0 r} A$$

 $A \approx 1.7476$, Madelung constant

Similarly,

$$\varepsilon(Cl^{-}) = \frac{Z_{+}Z_{-}e^{2}}{4\pi\varepsilon_{0}r}A$$

Total ion-ion attraction energy:

$$E_{c} = \frac{N_{A}}{2} \left[\varepsilon (Na^{+}) + \varepsilon (Cl^{-}) \right]$$

$$=\frac{Z_{+}Z_{-}e^{2}}{4\pi\varepsilon_{0}r}AN_{A}$$

Ion-ion pauli repulsion:

$$\varepsilon_R = Br^{-m} \Longrightarrow E_R = N_A Br^{-m}$$

Lattice energy

$$U = Ec + E_R = \frac{Z_+ Z_- e^2}{4\pi\varepsilon_0 r} AN_A + N_A Br^{-m}$$

(*B* is unknown yet!)

$$\left(\frac{\partial U}{\partial r}\right)_{r=re} = -\frac{Z_+ Z_- e^2}{4\pi\varepsilon_0 r_e^2} AN_A - \frac{mN_A B}{r_e^{m+1}} = 0$$

$$\Rightarrow B = -\frac{Z_+ Z_- e^2 A}{m 4 \pi \varepsilon_0} r_e^{m-1}$$

$$U = \frac{N_A Z_+ Z_- e^2 A}{4\pi\varepsilon_0 r_e} (1 - \frac{1}{m})$$

NaCI: m = 8, r_e = 2.8197*10⁻¹⁰m U = -753 kJ/mol

۲. ه The lattice energy calculated from the Born-Haber cycle (Experimental determination) Na(s) + 1/2 Cl₂(g) $\xrightarrow{\Delta H_{f}}$ NaCl(s) $\begin{vmatrix} S & \downarrow D & \uparrow U \\ Cl(g) & \underline{Y} \rightarrow Cl^{-}(g) + Na^{+}(g) \\ Na(g) & I & \end{vmatrix}$

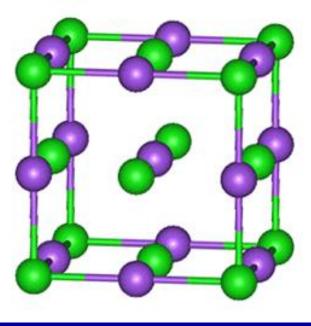
- 1) $Na(s) \rightarrow Na(g)$
- 2) Na(g) \rightarrow Na⁺(g) + e
- 3) $1/2Cl_2(g) \rightarrow Cl(g)$
- 4) $Cl(g) + e \rightarrow Cl(g)$

 $S = +108.4 \text{ kJ.mol}^{-1}$

- $I = +495.0 kJ.mol^{-1}$
- $D = +119.6 kJ.mol^{-1}$
- $Y = -348.3 \text{ kJ.mol}^{-1}$
- 5) $Na(s) + 1/2 Cl_2(g) \rightarrow NaCl \Delta H_f = -410.9 kJ.mol^{-1}$
- $\Rightarrow \Delta H_f = S + I + D + Y + U$ (to be determined!)
- → U = $\Delta H_f (S + I + D + Y) = -785.6 \text{ kJ.mol}^{-1}$

9.4 Ionic radii

9.4.1 How to determine ionic radii


Lande: (1920)

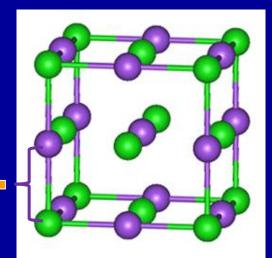
•The cell parameters for MnS and MgS (a=5.2 Å) as well as MgSe and MnSe (a=5.46 Å, NaCl-type) are nearly identical.

•Lande suggested that the anions in the structure were contacted with one another. Then

$$4r_{anion} = \sqrt{2}a \Rightarrow r_{anion} = \sqrt{2}a / 4$$
$$r_{s^{2-}} = 2.60 / \sqrt{2} = 1.84 \dot{A}$$

$$r_{Se^{2-}} = 2.73 / \sqrt{2} = 1.93 \dot{A}$$

Pauling (1927):


•Pauling deduced many ionic radii from the internuclear separations of five different crystal (NaF, KCl, RbBr, CsI and Li_2O) using a semi-empirical method.

•The size of an atom are determined by the valence sell electron distribution which is inversely proportional to the effective nuclear charge.

 $\mathbf{r} = \mathbf{c}_{\mathbf{n}}/(\mathbf{Z} \cdot \boldsymbol{\sigma}) = \mathbf{c}_{\mathbf{n}}/\mathbf{Z}^*$

c_n is a constant dependent on the principal quantum number *n*. for NaF: by Slater rule $\sigma = 2x0.85 + 8x0.35 = 4.5$ Pauling gave σ a value of 4.52 for Ne type ions;

$$r_{Na^{+}} = c_n / (11 - 4.52)$$
$$r_{F^{-}} = c_n / (9 - 4.52)$$
$$\therefore r_{Na^{+}} + r_{F^{-}} = a / 2 \longleftarrow$$

 $a = 4.62 \text{ \AA}$ - the cell parameter of NaCl.

$$\therefore r_{Na^+} = 0.95; r_{F^-} = 1.36; c_n = 6.15$$

From the value of c_n , one can calculate the radii of all univalent Nelike ions. However, for divalent ions, for example,

$$r_{Mg^{2+}} = 6.15/(12 - 4.52) = 0.82; r_{O^{2-}} = 1.76$$

leading to unreasonable prediction

$$r_{Mg^{2+}} + r_{O^{2-}} = 2.58 >> 2.10A$$
 (exptl. value)

Hence, correction based on the charge state is required for those multiply-charged ions.

Let's consider the expression of lattice energy at equilibrium structure,

$$\left(\frac{\partial U}{\partial r}\right)_{r=re} = -\frac{Z_{+}Z_{-}e^{2}}{4\pi\varepsilon_{0}r_{e}^{2}}AN_{A} - \frac{mN_{A}B}{r_{e}^{m+1}} = 0$$
$$\Rightarrow -mB = \left[Z_{+}Z_{-}e^{2}A\right]\left[r_{e}^{m-1}\right]/(4\pi\varepsilon_{0})$$

For NaCl-type structures (e.g., NaCl and MgO), mB value remains to be a constant. Thus

$$Z^{2}r_{z}^{m-1} = 1^{2}r_{1}^{m-1} \Longrightarrow r_{z} = r_{1}(Z)^{\frac{-2}{m-1}}$$

For Ne-like ions, m=7,

when Z=2, $r_2 = 0.794r_1$

$$r_{O^{2-}} = 0.794 \times 1.76 = 1.40A$$

$$r_{Mg^{2+}} = 0.794 \times 0.82 = 0.65A$$

12 3 6

9.4.2 Effective ionic radii

•*Shannon* and *Prewitt* recompiled the cation-anion separation data for over a thousand oxides and fluorides.

•"*Effective*" here means that these data were deduced from experimentally determined values and the sum of the ionic radii is the most consistent with the measured separation between ions.

The Database is continuously updated!

9.4.3. The trend of variation of ionic radii

1. In each of the groups IA, IIA, IIIA-VIIA in the periodic table, the ionic radius of the elements in the same group increases with the atomic number.

Li⁺ Na⁺ K⁺ Rb⁺ Cs⁺

0.76 1.02 1.38 1.52 1.67

2. Within the same period of the periodic table, the ionic radius of the isoelectronic cations decreases as the positive charge increases.

 Na^{+} 1.02 Mg^{2+} 0.72 Al^{3+} 0.535

 Au^+ 1.37 Hg^{2+} 1.02 Tl^{3+} 0.885 Pb^{4+} 0.775

3. The ionic radii of the various valence states of a particular ion vary proportionally to the number of electrons present.

 Cr^{2+} 0.80 Cr^{3+} 0.62 Cr^{4+} 0.55 Cr^{6+} 0.44

4. For an isoelectronic pair of anions, the radius increases slightly as the negative charge increases.

- F- 1.33 O²⁻ 1.40
- Cl⁻ 1.81 S²⁻ 1.84
- Br 1.96 Se²⁻ 1.98

5. "Lanthanide contraction" effect: The six-coordinate trivalent ionic radii of the lanthanides decreases with increasing atomic number from 1.032 Å of La³⁺ to 0.861 Å of Lu³⁺.

- 6. For cations in diagonal position (top-left to bottom-right) of the periodic table, the radii are similar. E.g.,
- Li⁺ 0.60, Mg²⁺ 0.65;

Na⁺ 0.95, Ca²⁺ 0.99; Sc³⁺ 0.81, Zr⁴⁺ 0.80

9.4.3 Polarization of ions

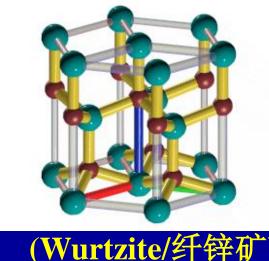
1. The polarization of a molecule in an external electric field is measured by the induced dipole moment:

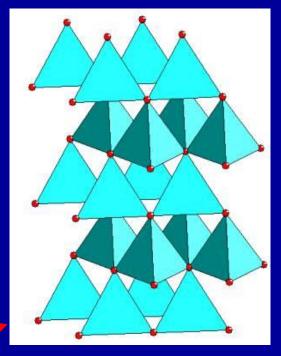
$$\overline{\mu} = \mu_E - \mu_0 = \alpha F$$

α: polarizability, **F:** strength of electric field.

2. Ions in an ionic crystal are also polarized by the crystal field.

 \rightarrow Stronger crystal field induces enhanced polarization of a given ion.


3. Some trends regarding ionic polarization:


- The larger the ionic radius, the higher polarizability the ion has. $I^- > Br^- > CI^- > F^-$, trication: $La^{3+} > Y^{3+} > Sc^{3+}$
- Generally anions have larger polarizability than cations.
 e.g. F⁻>> Na⁺
- The higher formal charge of a cation, the lower polarizability it has, e.g., $Ca^{2+} < K^+$
- The higher formal charge of an anion, the larger polarizability it has, e.g., O²⁻ > F⁻
- 4. Effects of ion polarization: ionic bond \rightarrow covalent bond.

9.5 The Pauling rule of Coordination polyhedra for ionic crystals

1. The nature of coordination polyhedra

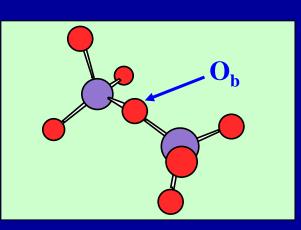
- In ionic crystals, each cation is surrounded by anions, forming a coordination polyhedron.
- The nearest cation-anion distance is the summation of ionic radii.
- •The coordination number of the cation is determined by the radius ratio R_{+}/R_{-} .

ZnO

Hexagonal , Zn²⁺ : tetrahedral coordination

12 3 6

2. The electrostatic valence rule

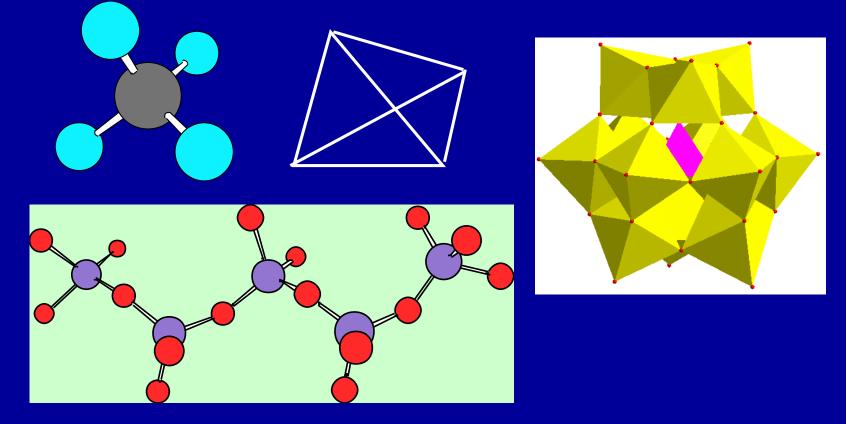

The charge of each anion is equal or close to the sum of the strengths of the electrostatic bonds to it from the adjacent cations.

Cation :
$$S_i = Z_i^+ / C N_i^+$$
; Anion : $Z^- = \sum_i S_i$

e.g., Stability of bridging O in

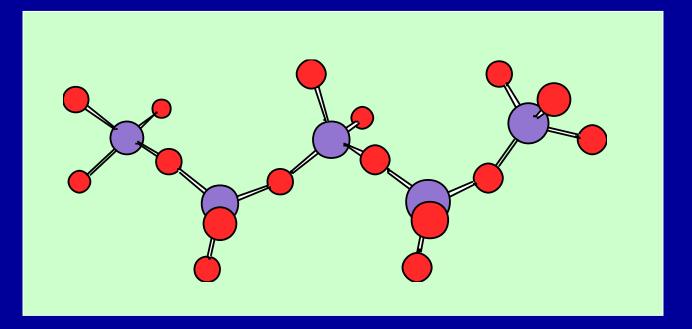
 $Si_2O_7^{6-}$ Z⁻ = 4/4 + 4/4 = 2 (stable)

 $S_2O_7^{2-}$ Z⁻ = 6/4 + 6/4 = 3 (unstable)

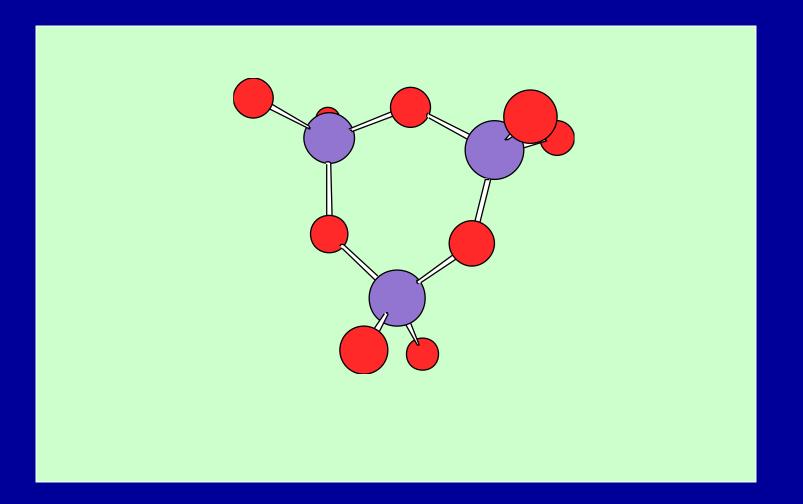

 CO_3^{2-} $S_i = 4/3 \sim < 2$

→ The O atom can not
bond to another C atom.
→ Being Isolated group
•So do PO₄³⁻, SO₄²⁻ etc.

SiO₄⁴⁻ S_i = 1 << 2 → Non-isolated group → The O atom should bond to another Si atom. → Silicates!

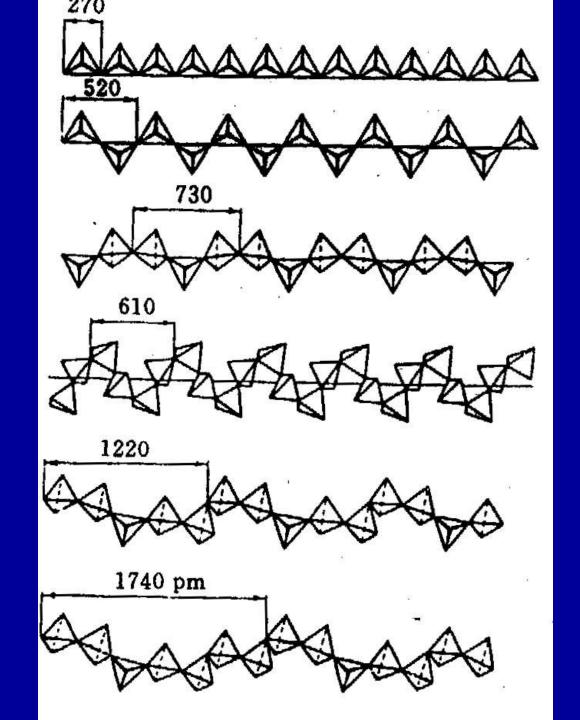

3. The rule of vertex-, edge- and face-sharing

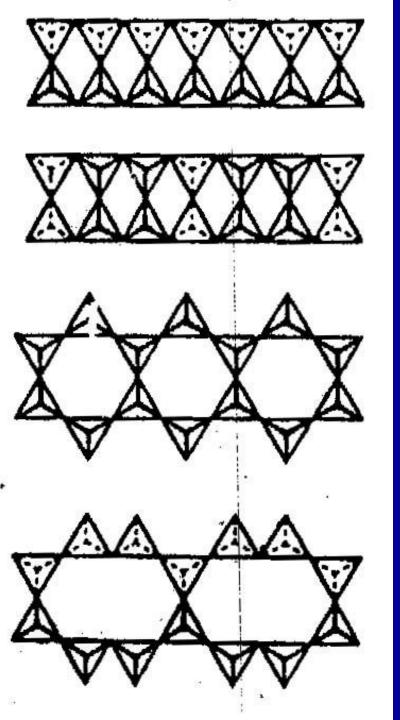
- The presence of shared edges and especially of shared faces in a coordinated structure introduces larger cation-cation repulsion and, as a result, decreases its stability.
- Thus, vertex-sharing of coordination polyhedra is preferred!



9.6 Structural chemistry of silicates

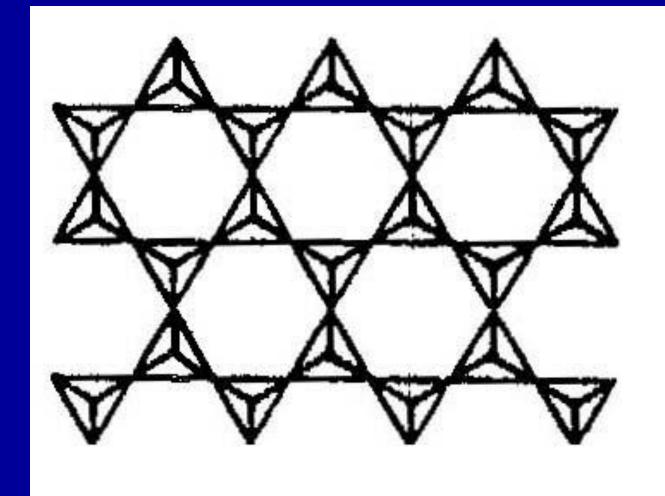
1. Discrete silicates consisting of several SiO₄ coordination-tetrahedra



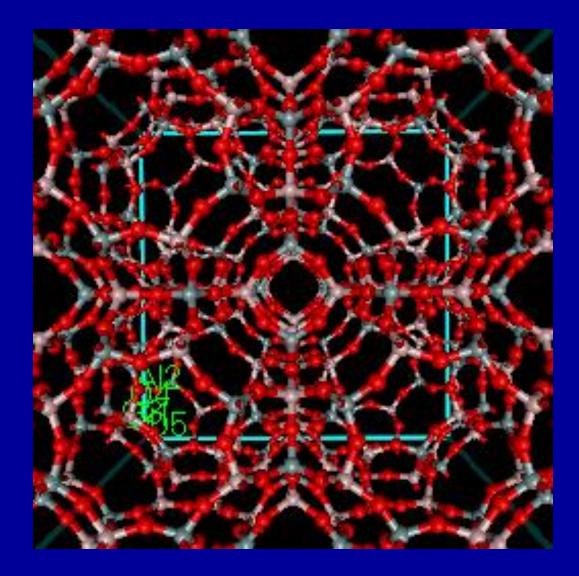


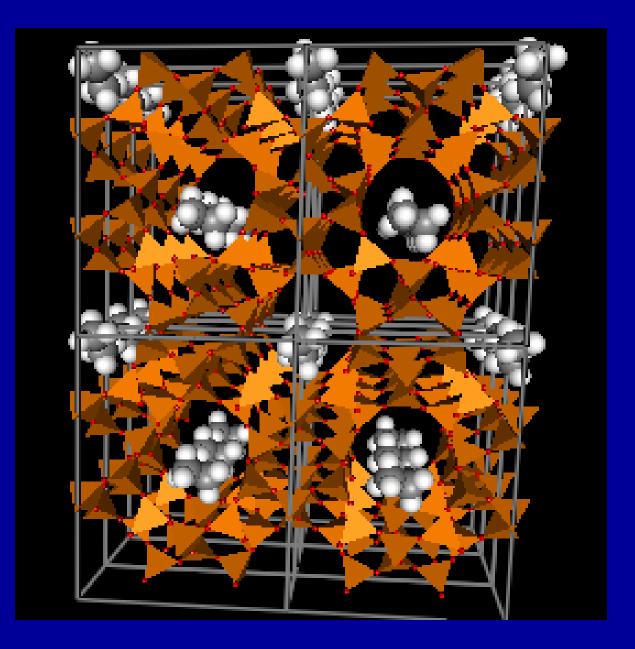
2. Infinite chain silicates

1D cases



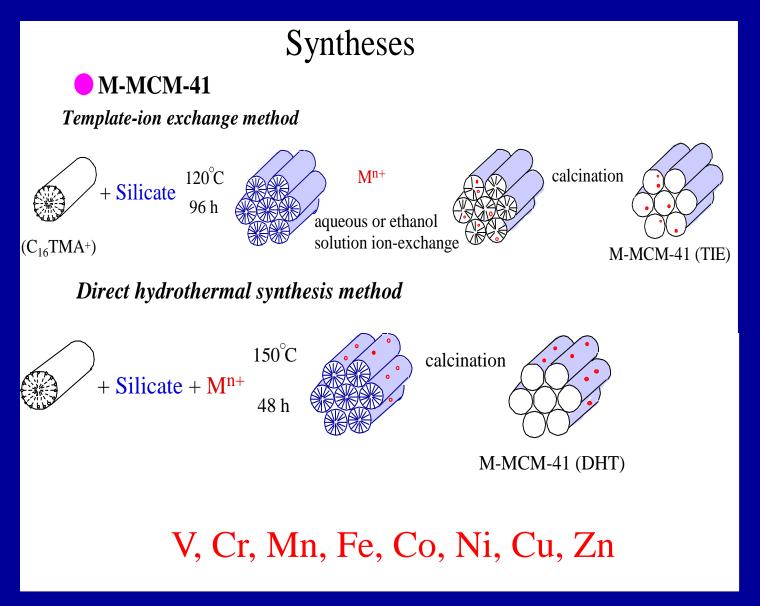
, 1 ,


3. Sheet silicates


Ι,

3. Three-dimensional network silicates

A-type Zeolite



Meso-porous compounds

6

TBV2//3: 7-9章习题及答案纠错

- 7.27 已知条件需加 λ=154.18 pm
- 7.18 答案有误, a= 316.6 pm

8.11 答案有误, 4₁导致(200)消光, 最小的三个衍射角对应的衍射指标为(111), (220), (311)

9.9 已知条件错误: (2)"立方体空隙"答案有误: (1)简单立方点阵, a = 314 pm

期末考试

时间: 2017年1月12日 10:30-12:30

地点: 南强二 502

注意事项:1) 带科学计算器 2) 提前10分钟到场

考前答疑: 1月10-11日, 嘉锡楼2楼大厅

Happy New Year!

