Chapter 7
Introduction to Crystallography

7.1 Periodicity and lattices of crystal structure

7.2 Symmetry in crystal structures

7.3 X-ray diffraction of crystals

7.4 Quasi-crystal, liquid crystal and amorphous




Crystalline Substances: e.g., Diamond and Table Salt

Diamonds




7.1 periodicity and lattices of crystal structure

7.1.1 The characteristics of crystal structure
1. A few definitions:

« Solids can be divided into two primary categories,
crystalline solids and amorphous solids.

« Crystalline Solids are built from atoms or molecules
arranged in a periodic manner in space, e.g., rock salt and
diamond.

« Amorphous Solids possess short-range order only. They
are not related through symmetry, e.g. glass, rosin, amber
glass.

» Short-Range Order: Fixed bond lengths and angles
» Long-Range Order: Associated with a lattice point 7



Crystals are solids that are built from atoms or
molecules arranged in a periodic manner in space.

Crystalline vs. Amorphous of SiO,

Quartz: (Crystalline) Glass: (Amorphous)
Both Short and Long Range Order Short Range Order Only

® Oxygen

o Silicon

Short range order: fixed bond lengths and angles
due to the bonding nature of constituent atoms.

C.N.:
Si= 4
O0=2



2. Fundamental characteristics of crystal

a) Spontaneous formation of polyhedral shapes
F+V=E+2

20 faces and 12 vertices

No 5-fold axis
Is allowed in a

i !
SIngle crystal ) Tetrahedron

Octahedron

b) Uniformity: periodic distribution of atoms/moleculesT



Single crystal gold bead with
naturally formed facets



HRTEM images of hollow beads



*Anisotropy

Different periodicity and density for different direction.

|
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1150 g/mm?

570 g/mm?
NaCl

2150 g/mm?

Conductivity
Graphite



Definite sharp melting points

"t
« Symmetry: crystal shape (macroscopic)
lattice arrangement (microscopic)

T

«X-ray diffraction by crystals:

atomic distances match the wavelength of x-ray.



Sodium Chloride: Solid and Crystal structure




7.1.2 The lattice and unit cell

Lattice:

A periodic pattern of points in space, such that
each lattice point has identical surroundings.

» Can be reproduced by translational motion
along the vector between any two points.



a. 1D lattice and its unit:
Each motif in this

1D periodic pattern
s ; can be represented

by a point.
. . o o ~ — A lattice of
— repeating points is
L ‘ , - thus obtained to
represent the
. .’ | b. . " .  above 1D system.

The translation vectors connecting any two lattice points
constitute a translation group. i.e.,

T,=ma(m=0,%1,£2, ..., 20) a: basic vector.
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Examples of 1D lattice

a) o O O O O O O O O O

b) ® |0 ® |0 ® 0o @® o @ o

C) o ® o ® o ® o ® o

~ Structural motif
d) {E%f%

a is a 1D lattice itself;

b-d are not lattices, but can be represented by a lattice.

A pattern with periodicity = a lattice + structural motif! 7



b. Lattice and its unit in 2D:

T.,=ma+nb (mn=0+1,+2, ..)
a & b: independent basic vectors

{T.., } — a translation group

|
b

BASIS " ™,

Crystal structure = lattice + structural motif
(basis)



Lattice:

* A periodic pattern of points in space, such that each
lattice point has identical surroundings.

« Can be reproduced by translational motion along the
vector between any two points.

This 2D pattern itself 2D lattice. 2D lattice.
Is not a lattice, but

can be represented
by a 2D Lattice. 1



2D Primitive Cell
® ® O O

Choice of Unit Cell

» There is always more than one
Beveenes : possible choice of unit cell.

» By convention, the chosen unit
cell should be as small as
possible while reflecting the
full symmetry of the lattice.

1) The highest symmetry

2) The smallest area (or volume)



Five types of 2D lattices

There are literally thousands of crystalline materials,

there are only 5 distinct planar lattices.

rangle Parallelogram Square Rectangle
between . . . . . e 8 L ] 5 ® ® .a L L L J
. L] » b a - ¢ an * ’ a L] L J
two basic , ", Y%/, . . o bD
VeCtOrS = - = . e e ® o =& » e " =
a¢b,y¢90° i a=b; ’Y=90° * e o » o
&y = 120° i,C, a=b, y=90°
Centered Rectangle i,C2
i) Primitive *® * e e Hexagonal
- . . . , a=b,
ii) Centered .Q . o . _a v=120°

a=b, y=90° .

® @

Centred cell: i + C, // Primiative cell: i

b " a ®
SO/

® L J




Question:

Both the centred rectangular and simple hexagonal 2D
lattices have a rhombic primitive unit cell. What is the
key difference between them?

Centered Rectangle
" ® o & Hexagonal

a=b,

.o ..l. ..o ...y=1200
azb, y=30° 2|, . @




Example: 2D-lattice of Graphene

- What’s the smallest structure motif of a graphene sheet?

- What type of lattice does a planar graphene sheet
belong to?

.
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3-D lattice can be used!

DN NN

c. Lattices and its unit in 3D:

T=ma+nb+pc Im,n,p=0,%1,+2,..))



c. Lattices and its unit in 3D:

T=ma+nb+pc (imn,p=0,+1,+£2,...)

c
a b

The Choice of a Unit Cell:

Having the highest symmetry and minimal size




The Choice of a Primitive Cell

1) The axial system consisting of the basis

vectors should be right handed.

2) The basis vectors should coincide as mucﬁ as possible with
directions of the highest symmetry.

3) Should be the smallest volume that satisfies condition 2.
4) Of all lattice vectors none is shorter than a.

5) Of those not directed along a none is shorter than b.

6) Of those not lying in the a, b plane none is shorter than c.

/) The three angles between the basis vectors a,b,c are either
all acute or obtuse.

Conditions 4-6 define

d| < |p|<|e]

lr
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Crystal structure = lattice + structural motif
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Atomic Coordinates: Fractional coordinates

Fractional coordinates:

* The positions of atoms inside a
unit cell are specified using
fractional coordinates (x,y,z).

 These coordinates specify the
position as fractions of the unit cell
edge lengths.




Example:

Cubic unit cell of CsCl, The Crystal Structureg

a=b=c
a=p=y=90°
Cs:(0,0,0)
Cl: (1/2,1/2,1/2)

In this case, the lattice point can be put at the position of either
Cs or Cl atom. Each unit cell contains both a Cs and CIl atom.

Single Crystal: Composed of only one particular type of space lattice.

Polycrystalline matter: Clusters of multiple crystals. ay




7.1.3 Crystal systems and Bravais Lattices

a. Crystal systems

There are a total of seven types of
crystal systems differing in symmetry.

Crystal systems | Characteristic | Unit cell | Choice of axis | Lattic
symmetry parameters Point
elements Group

Triclinic Nil a#b#c C;

a#P#Y

Monoclinic C,, o}, azb#c b/ C, Cop

0=y=90°%f3

Orthorhombic | 3C,, 2 o, azb#c a,b,c//3C, | Dy

a=P=y=90°

Unit cell is chosen in such a way that it contains as many symmetry
elements of the lattice as possible and has the smallest volume.




Trigonal Cs Rhombohedral D1y
a=b=c,
o=P=y<120°#90°
Hexagonal D¢
a=b=#c, a=3=90°
v=120°
Tetragonal | Cy4 a=b#c, c// Cy D,
o=P=y=90°
Hexagonal | Cg a=b#c c// Cq Dgp
o=p=90°, y=120°
Cubic 4C5 a=b=c Four C; axes | Oy
o==y=90° are parallel to
the body
diagonals  of

the cube




b. Bravais Lattices: (14) [developed by Bravais in 1850 !]

Primitive cell: minimal size, one lattice point only!

Unit Cell of Bravais Lattice: having the highest symmetry &

minimal size, may contain more than one lattice point.

Symmetry of Lattice | ==) |Crystal Systems (7)

Unit Cell of Lattice

(Primitive or Centered)

===) [Bravais Lattices (14)

Triclinic Monoclinic Orthor- Tetragonal Cubic  Trigonal Hexagonal

hombic
aP mP, mC oP, oC tP, tl cP,cl, hR,hP hP
/ L oF, ol cK

Lowercase letter (crystal system) + Capital letter (Type of cell)

.

e.d., hR-- R-centred hexagonal, mC-- C-centred monoclinic



* Triclinic

azb#c

o=P#y

aP (Primitive)
Triclinic crystal system has the lowest symmetry.

It can be simply represented by a primitive cell.

Symmetry element: i



A primitive cell contains one lattice point and a

* Monoclinic C-centered unit cell contains two lattice points.

azb#=c Sym. Elements: a'#90°
a=v=90° =B | i, C,(//b), G, \ y=#90°

mP (Primitive) mC (C-centered or A-centered)

The primitive cell of a C-or A-centered monocilinic is triclinic!

S

-

O ey
w




Does |- or F-centered monoclinic lattice exist?

ml ? =mC mF ? =mC

Both I- and F-centered monoclinic are unnecessary and can be
represented by a mC!




The primitive cell of a C-centred orthor-
hombic lattice is actually monocilinic!

* Orthorhombic

azb#c

o= =y =90°

oP (Primitive) C-centered or A-centered or B-centered |

6



* Orthorhombic

azb+c Sym. Elements:
o= =y =90° 3C, (/la,b,c), i, 35, (//A,B,C)

or oA or oB (In-centered) (Face—centered')

.

6



* Orthorhombic

Face-centered cell (oF) and its primitive cell

A Face-centered unit cell

contains four lattice points!!

e Its primitive cell 1s triclinic,
and does not contain such
symmetry elements as C, and

o, of the lattice.

Question: For a body-centered orthorhombic lattice, 1s 1ts primitive
cell triclinic or monoclinic?

.



* Tetragonal

a=b#c

Sym. Elements:
C,(//¢), 2C, (//a,b), i, 35, (La,b,c)



©
()
S
Q
b
c
Q
=
O
-
O
L
=
()
2

tetragonal nor F-centered

tetragonal exists.

Please prove it!

tC =tP

0




* Trigonal ----

™

Rhombohedral
a=b=c

o= B =y = 90°

Sym. Elements: C,, i,

hR

AN

a A rhombohedral lattice can
be represented by a R-

centered hexagonal lattice!




hP  unit cell

* Hexagonal

a=b#c Sym. Elements:
o= 3 =90°, Ce(/lc), i,
v =120° op (Lc, /IC)

Hexagonal 2D lattice




a. Primitive rhomohedral = b. primitive hexagonal

r-centered hexagonal r-centered rhombohedral

(1/3, 2/3, 2/3)

(213, 113, 1/3) \
A

N




a—b—c Sym. Elements:
* Cubic . 3C,(//la,b,c), 4C,, i,
o=p=v=90

3oy, (La,b,c, //A,B,C)

Is there a c-centered cubic lattice?

Introducing a C-center eliminates all C;-axes and results in
only one C, axis. The lattice should be actually tetragonal.



- The primitive cell of a fcc or bec lattice is rhombohedral,
which does not include the C,—axes of the lattice!

Bﬂ(f_\'-( entered Cube

7 77
Y
72 /’ { -

| }' XCHOO! 014



Bravais Lattices: (14)
Unit Cell: the highest symmetry + minimal size

Centered unit cell is thus introduced to contain the
highest symmetry of the lattice.

Crystal P C I F
systems

Triclinic

Monoclinic @




Orthorhombic

Trigonal

Tetragonal

Hexagonal

Cubic

SEey




L
L R

"%

Simple «C-centered Body -centered Face-centered
orthorhombic orthorhombic  orthohombic  orthohombic

é/i" 5/ ’/"' / ﬁ’,

Simple triclinic Rhombohedral

®

—

|~

%

Hexagonal

Simple C-centered Simple
monoclinic  Monoclinic tetragonal

Body-centered

tetragonal

Augusta Bravais

Died on 30 Mar 1863

(born 23 Aug 1811)
French physicist best
remembered for his work
on the lattice theory of
crystals; Bravais lattices
are named for him. i 3



7.1.4 Crystal Planes and Miller Indices
a. Lattice planes iy T /f/://;',/, .

_ d e o (0_10), e il
A 2D lattice plane, i.e. P W & S 11T =
(001), of an oP lattice. WO~ 2T~ 47// SN
Those lines are the = CEE :’//, ////'/ °\\\..\
e © o o o/ // / - t\-‘ D
projections of crystal e :/'Z;///f% * (210)
planes (//c-axis) onto % — ‘:‘-/’/.(21‘/)/: e
this plane. b 2o T (T20)C C * e e e o o .

® It is possible to describe certain directions and planes
with respect to the crystal lattice using a set of three
integers referred to as Miller Indices.

® Miller indices describe the orientation and spacing of a
family of planes. T



fc

b. Miller indices (hkl)

® Introduced in 1939 by the British
mineralogist W. H. Miller.

® Miller indices are the reciprocal
intercepts of the lattice plane on the |

unit cell axes.

—_ N

For this special case: r=3, s=2,¢t=
h:k:l=(1/3):(1/2):(1/1) = 2:3:6
—> The Miller index of this lattice plane 1s (236)!

Question: why do we not use r:s:t directly to represent a
lattice plane?

lr
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Example: Miller indices in a cubic lattice

(110) }(110)
4
C
b (111)
0 \ N
........... a e\
........... (100)
010 7731 (001).Lc b
c O
a
b For a cubic lattice, the (100), (010),
and (001) planes are symmetry-

equivalent with respect to C; axes.




Hexagonal, using four axes (a1,a2,a3,c)
(0001) A°

(hkil), i=-(h+k)

/ 7'§ > 121 3 90 90
AT /9210) : ™ |[ Athirdaxs:
g o o
(1100) / \\ 20 . ! a, = -(a, + a,)
.
b al
" o1

The use of only two
basis vectorsa & b
does not reflect the
Cg- symmetry
among such planes
as (100), (110) ...!

(11




C. Directions in lattice
The direction of a lattice

Miller Indices [uvw .
| ] vector, ua + vb +weg, Is

represented by three
iIndices [uvw], which are
E prime to each other.

>
-
-
-
-
-
-
-
-
-
-
-~
"

,,,,,,,,,, e.g. a axis: [100]. (OA)
c|C [100] b axis: [010]. (OB)
c axis: [001]. (OC)

hB D (110l op=a+b > [110].

....................... [210] OE=0.5a+b+c > [122]

o ==
) [100] OF=a+05b > [210]

[122]

'\ [120] BG=0.5a-b - [210]
[120] .




Example: Directions on the (111) plane of a cubic lattice.

[112]  [101] . Various lattice vectors

can be defined by the

lattice points within the
(111) plane.

- e.g., the vector from
points Ato B, i.e., -0.5a
- 0.5b + ¢, defines the
direction [TTZ] .

- The vector from points
Ato C, -b+c, is defines
the direction [011] .

(111)

- The vector CD, i.e., -
A (1.0,1.0, 0.0); B(0.5, 0.5, 1.0); a+b, defines the

C(1.0, 0.0, 1.0); D(0.0, 1.0, 1.0) direction 11107 - , 1.



Miller indices (hkl) are used to specify the orientation and
spacing of a family of planes.

{hkl} are used to specify all symmetry-
equivalent sets of planes

(010) (10\? e.g., For a cubic lattice system, the lattice
c planes (100), (010), (001) are symmetry-
\ equivalent upon C; or C, rotations, and can
be represented by {100}.
0) a
[uvw] zone axis Direction Vector = ua+ vb + wc

Miller indices: [hkl] are used to specify a direction in space
with respect of the unit cell axes.

<hkl> are used to specify a set of symmetry-
equivalent directions.



d. d-spacing d;,

The spacing between adjacent planes in a family is
referred to as a “d-spacing”.

oP:

- Projections
of crystals

planes (//c-
axis) on the
(001) plane.




The spacing between adjacent planes in a family is
referred to as a “d-spacing”

. Cubic : d2 = (W+H2+P)/a? or d2 = a/(h2+i2+P)
- Tetragonal: 1/d? = (WP+Kk)/a? + I°/¢?

« Orthorhombic: 1/d? = h?/a?+k%/b? + I2/c?

- Hexagonal: 1/d? = (4/3)(h*+hk+k2)/a? + P/c?

- Monoclinic:  1/d?= [(h/a)? + (k/b)*sin’ B+ (I/c )*-
(2hl/ac)cos f]/sin’

= Triclinic:



7.1.5 Real crystals and Crystal defects:

Real crystals are only close approximations of space
lattices

m Simplest point
defect is a
vacancy or
vacant lattice site

s For most metals:

g g
'-ll'"

_r_

s Caused through
thermal vibration
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Also linear and along

Formed by shear
a dislocation line

Screw Dislocation
stress



7.2 Symmetry in crystal structures.

7.2.1 Symmetry elements and symmetry operations

>

Crystallographers make use of all the symmetry
elements available in a crystal to minimize the number of
independent coordinates.

Three types of symmetry elements in a crystal lattice:
Lattice symmetry (translational symmetry)
Point symmetry (rotation, inversion & reflection etc.)

Other translational symmetry elements: screw axes and
glide planes

lr
9 3



a. Lattice symmetry
--- translation operation

TI..=ma+nb+pc or

mnp

‘m 0 0\ a) a,b,c:basic vectors!

—

' =10 n 0|5b

mnp

—_—

0 0 pAc

All unique translation operations available in a crystal
lattice constitute a translation group {7,,,.,} (order = ).



b. Point symmetry elements compatible with 3D translations

* A point-symmetry operation does not alter at least one point
that it operates on, e.g., rotation, reflection, inversion, and
rotation-inversion.

* Point symmetry elements available in a lattice must be
compatible with the 3D translations, including

Operation Point symmetry elements

Reflection Mirror Plane m
Rotation operation | Rotation axis n=1,2,3,4,6

Inversion Center of symmetry 1

Rotatory inversion | Inversion axis 3,4,6

It is provable that translational symmetry of a lattice excludes
the presence of 5-fold axis!



Rotation axis: 1,2,3,4,6 only!!  Why ?7?

— Limitation induced by
Translation symmetry!

=

ma

Four lattice points: A,, A,, A;, A,
> [(m-1)2]<1 > |m1]|<2

- m=3,210,-1

Upon an n-fold rotation,

- cosa.=1,1/2,0, -1/2, -1
withA,A,// B,B, - o =27/n =0° 60° 90° 120°, 180°
B,B, =a + 2acosa = ma >n=1,6, 4, 3, 2

cosa = (m-1)/2 rotation axes: 1,2,3,4,6 only!! o s



Example: The symmetry elements

in a primitive cell of a cubic lattice.

Twofold axis ! A B ®
Threefold axis 2 3 4 6
Fourfold axis Rotation axis

Hexagonal lattice

twofold axis threefold axis fourfold axis SinOId aXiS

o |



General equivalent positions:
i) 2-fold axis (e.g., b axis in monoclinic lattice)

(X, ¥,z2) =2 (-X,Y,-z) (Note: in fractional coordinates)

Equivalent upon rotation around a 2-fold axis.

N

R(Q2) =

<08 © k|
oS = O
k|

Note: Ais not essentially 90°. 1



General equivalent positions:

il) 3-fold axis //c axis in a hexagonal lattice

(X9Y9Z)9 ('Y9 X-y, Z)a ('X+Y9 -X, Z)

R(3) =

0
1

1 0
1 0
0 1



R(4) =

R(6) =

© O =

-) Pt | |

4 fold axis // ¢ axis (cubic lattice)

general equivalent positions:

(X9y9Z)9 ('ya X, Z)9 ('Xa'Y9Z)9 (y,-x,z)

6 fold axis // ¢ axis (hexagonal lattice)
general equivalent positions:

(X,y,2), (X-Y, X, 2), (Y, X-Y, 2),

(-X,-Y,2), (¥-X, =X, Z), (¥, y-X,Z)



c. Screw axes n,, (m<n) and glide planes:

A screw axis symmetry 1s combination of rotation about an axis and

a translation parallel to that axis leaves a crystal unchanged.

—_—

Screw operation ,, _ 7 ™2).c! («C, sd, m=12p,n-1)
n

An n-fold screw axis can be n,, n,, ..., or n,_,.

translation a/2

Example: 2,// a axis
(x, y,2) £2(/3)

(X9 L _Z) T(a/Z)

(x+1/2, -y, —z) -

A helical structure is
related to a screw axis!




A 3, screw axis in the crystal of tellurium
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Screw axes: 3,
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Screw 3, ( " Y
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Serew3, 'Y

= T(2a/3) C,!



Helical structures along screw axes

View perpendicular to axis View down axis

X ) §




Glide operations: a, b, ¢, n and d glides
Glide operation: G = T(t)-M Mirror: M (reflection)
t=al2, b/2, c/2, (a+b)/2, (b+c)/2, (a+c)/2, (a+b+c)/4 etc.
= [T(t)M]? = T(2t), t = 2t (maybe a basis vector of lattice)

GG
/\/\/\/\/\/\ translatio a/z
a glide

Zig-zag structure

a,b,c glide: t =al2 , b/2, c/2 % %
n glide: t=(a+b)/2, (b+c)/2, (a+c)/2

51 ide plm

d glide: t= (a+b+c)/4, (a+b)/4, (b+c)l4,

or (a+c)/4 . g 'z
e glide (double glide plane).




Graphical representations

of glide and mirror planes

Type Projection () Parallel (//)
. TN\
asb . o 4 i X
A E— — &
L
—————— — N




Summary of symmetry elements and
symmetry operations in crystal structure

Symm. operation Symm. Elements
* Rotation operation rotation axis C,,
« Reflection operation mirror plane m
* |Inversion operation Inversion center
« Rotation inversion operation Inversion axis
« Translation operation lattice
» Screw operation screw axis n,,
« Glide operation glide plane

(n=1, 2, 3, 4, 6)

Combinations of the 8 point symm. elements (5 n-axis, i,
m, S,) result in 32 crystallographic point groups.



Combining symmetry elements

When a crystal possesses more than one of the above
point symmetry elements, these macroscopic symmetry
elements must all pass through a common point.

There are 32 possible combinations of the above symmetry
elements that pass through a point.

There are the 32 crystallographic point groups.

So far we have

7 Crystal systems - 14 Bravais lattices (Translation) +

32 crystallographic point groups (Point symmetry)

- 230 space groups



7.2.2 Crystallographic point group and space group
1. Crystallographic point group

Combinations of the 8 point symm. elements (5 n-axis, i, m,
S,) result in 32 crystallographic point groups.

e.g., Monoclinic system: point symmetry elements -- 2, m,
2 —{E, C,} -- C, point group; m - {E,c} -- C point group.
2,m -- {E, C,, o, i} -- C,, point group.
Two notations of crystallographic point group
Schonflies notation vs. International notation
C, 2
Cs m




Each crystal system includes a set of distinctive
crystallographic point groups.

A total of 32 crystallographic point groups.

Crystal Schonflies International Symmetry Examples
system notation notation elements
monoclinic G, 2 G, BiPO,
Cq m o) KNO,
Cy 2/m C,o, 1  KAISi;Of
orthorhombic D, 222 3C, HIO,
C,, mm?2 C,, 20 NaNO,
D,, 3C,,30, 1 MgSO,

i



2. Crystallographic space group
Point groups (32) + translational symmetries = Space groups (230)

Schonflies notation vs. International notation

e.g, D,,1°-P2,/n2,/m 2./a C,°>-P2lc
System directions

1 2 3
Cubic a atb+c a+b
Hexagonal C a 2a+b
Tetragonal C a a+b
Trigonal (hR) atb+c a-b -
Trigonal* (hP) c a
Orthorhombic a b C

Monoclinic b - - -



How to understand/use Space Group?

Symmetry elements & equivalent positions

1. Each space group can be schematically represented by
using two types of diagrams, i.e., diagrams of symmetry
elements and diagram of general equivalent positions.

2. The physical meaning of general equivalent positions: if
there is an X atom at position (x,y,z), there should a same X
atom at each equivalent position within a unit cell.

Diagram of Symmetry Diagram of general
elements equivalent position

14y o, . a, O
& & & 1240 / O 1/2+O O+

cf/ _’_° f/ _@b/Jr@l/z/ /@1/2

0

lr
9 3



Example: monoclinic point group C,, -2/m

Six space groups belong to C,, point group, denoted:
C,,'-P2/m, C, 2-P2,/m, C, 3-C2/m,

C,.*-P2/c, C,>°-P2,/c, C,.5-C2/c,

e.g., C,.°>—P2,/c (iis always available!)

14y o ./\ a -Q -0
c glide Z 7

w &
at b/4. / o

cL . §

A set of equivalent positions |6cated ywithin a\unit cell!
General equivalent positions:

4 ¢ 1 (xV,2),(-x,y+0.5,0.5-2),(-x,—y,—2),(X,0.5-y,0.5+72)
Multiplicity, Wyckoff letter, site symmetry » s



Special equivalent positions: '"V\‘ﬁon center

2d1 (3,0,9).5.3,0; 2c1 (0,03),(3,00);

2b 1 ($,0,0),(3.3.9); 2al (0,00),0,%,3
Equivalent positions are correlated by symmetry
elements and can be produced from a given position

upon available symmetry operations.

Thus it is unnecessary to list all atoms, but unique type of
atoms within a unit cell. T



Diamond: face-centred cubic O, ’- Fd3m

d glide
plane at

1/8,3/8,
5/8,8/7

. Fee Sideview topview

« Lattice points: (0,0,0)+, (1/2,1/2,0)+, (0,1/2,1/2)+, (1/2,0,1/2)+
* Structure motif—-2C 0,0,0; 1/4,1/4,1/4

* Totally 8 C atoms within a unit cell.

Note: In this case, the presence of same-type atoms in 7
structure motif introduces more symmetry elements! ol



7.2.3 The description and application of crystal structure

Example 1. Crystal of iodine

Crystal System orthorhombic
Space group D, 13-Cmeca (or C 2/m 2/c 2,/a)
Cell parameters a=713.6 pm b=468.6 pm c¢=987.4 pm

Number of molecules per unit cell Z =4

Atomic coordinate for | X y zZ

0 0.15434  0.11741



Lattice points within a unit cell: (0,0,0)+, (1/2, 1/2, 0)+ (C-centered).

General equivalent positions: C2/m2/c2,/a

(X9Y9Z); ('X9 Y, 'Z); ('X9 'y+1/29 Z+1/2); (X9 y+1/29 'Z+1/2)

(0, .15434, .11741) (172,.65434, 11741)  , 1o
—#———#— b

(0, -.15434, -.11741) (172, .34566, -.11741) 0|0+ [®1p2- O+
(0, .34566, .61741) (172, .84566, .61741) I |

-
(0,.65434,38259)  (1/2,.15434, 38259) T
a) Bond length (Bond distance) a U%0 ! g ]
= +
r1_2= [(XI-XZ)Zaz+(y1-y2)2b2+(zl'ZZ)ZCZ] 12 — 2715 A 172
b) Density of crystal

V=axbxec=3.27x 108 pm®
D=8x127.0/(6.02x 103x327.0x 102) g em™® =5.16 gcm3 , | .



7.3 X-ray diffraction of crystals

Concept of diffraction
(from a plane) Cone of diffraction

Crystal

l-i"'.

X-rays

Detector

Plane in crystal )
Reciprocal space)

(real space)

The wavelengths (0.05-2.5 A) of x-rays match the d-
spacing of crystal planes, resulting in diffraction!



7.3.1 The source and property of X-ray

copper vacuuni glass
\ \ tungsten filament /
\ J ’
2N 7 3 £

cooling water f2°

3 r ‘ I’ J
e X - o
fi »
—*T 7 to transformer
J
S — -

target — (55

> \
beryllium window — metal focusing cup

x-rays

X-ray tube
The wavelengths of X-ray are in the range
of 100-0.01A

« 1-0.01A: hard x-ray
« 100~1A: soft x-ray

INTENSITY (relative units)

20

« 2.5-0.5A: used in crystal structure analysis

08 10 070

G
WAVELENGTH (ang=troms}

1-0.05A: used in medical perspective, detection of materials wound

9 f 3



X-rays produced by electronic transition
between atomic energy levels A part of the

- High energy electrons are
_| electron beam blocked; their

214 Kinetic energies
N giving rise to
kKa: wWhite” x-ray.

As for Cu:
/Cu" 1512522pF...
.QS% 2,1522522p°. ..

C
2P, , K ,=1.540594 A

Kaz

- lko1 = 2lkq2

.



154.056 pm

f Weighted average of
K1 wavelength ~ 154.18pm.
154.439 pm
Ko /

y

Note: K, can not be striped by the monochromator.



Synchrotron Radiation X-ray Source
Storage Ring Utility Facilities

Users Office

.‘/’ (2nd Floor)

Maijn B“”Uing

User Lounge
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Benefits of Synchrotron radiation X-ray :

Narrow range of x-ray wave-lengths, i.e., high
monochromicity

High intensity of x-ray.
High intensity and high quality of diffraction data
High resolution — characterization microcrystals

Tooooooo00 Expensive facility!



HASYLAB o SSRCT
SR # A BSRF

- P Y
SpekaTUT IS

pLS /i

i CAT
ELETTRA |
- \M

i
LY “\ : ‘ \ \ ‘\‘.\ l\\ \ |\I
NN N \ R
\‘._‘ “\_\\‘ \ \, \

u
f/

' / ’/ /

///

MU Lgoscae Thidgenoaion Faces 8 Ot M Facies

NS

.«"




SPring-8, at Osaka, Japan. www.spring8.or.jp



ESRF - European Synchrotron Radiation Facility , Polygone
Scientifique Louis Néel - 6, rue Jules Horowitz - 38000 Grenoble i
- France , http://www.esrf.fr o

6



" OCTOBER 2, 1997 AR GONNE CENTRAL CAMPUS

LOW-ENERGY UNDULATOR
TEST LINE

EXPERIMENT HALL
STORAGERING

The Advanced Photon Source (APS) at Argonne National
Laboratory, http://www.aps.anl.gov/aps.php




7.3.2 Laue equation and Bragg’s Law
1. Laue equations

Laue first mathematically described
diffraction from crystals.

« consider X-rays scattered from every atom
In every unit cell in the crystal. and how

they interfere with each other

 to get a diffraction spot you must have

constructive interference.

Lead
shield |
~crystal
X-ray . ® —
e

Laue Diffraction (1912

film

A

Max Von Laue
Nobel Prize in

i Laue diffraction
pattern of ruby

e



Laue equations (Based on diffraction by 1D atomic lattice)
a — lattice parameter

a,— angle between aand §,,

o — angle between aand S

Interference condition:

The difference in path lengths of
adjacent lattice points must be a
For each h value, the multiple integral of the wavelength.

diffraction rays from a 1D | i.e., 4= AD-CB = hA, h =0,=1,12,...
lattice make a conel
< AD =aeS =acosa

CB=aeS, =acosq,

~F T T | 4=ae(S-S,)
/>§ ‘\\U =a(cosa —cosa, ) = hi o
S




Expanded to 3D lattice case:
a-(S-S,) = a(cosa-cosa,) = hh —

b-(S-S,) = b(cosp-cosf,) = kA = Laue Equations!

c'(S-S,) = c(cosy-cosy,)) =IL  _—
a,b,c—lattice parameter

0, B¢,Y,—angle between basis vectors a,b,c and S,
o3,y —angle between basis vectors a,b,c and S
h,k,l — indices of diffraction, integers

which may not be prime to each other and are different from
Miller indices for crystal plane!

Each equation defines a cone of diffraction.

Only when the three cones of diffraction intersect can
the diffraction beam be observable!




2. The Bragg’s Law

Bragg considered the diffraction arising from reflection
by lattice planes.

Conditions to obtain constructive inferences,

a. The scattered x-ray must be coplanar with the incident
x-ray and the normal of the lattice plane.

b. 65 = O, .y



The difference in path lengths,

A=AD+DB = 2d,,,sin¢
Condition for diffraction:
A=nl=2d,,sing, (n=1,2,3, ...)
6,: the angle of reflection

n: the order of the reflection

Deﬁne dnhnknl - d(h'kl)g 9 2'dnhnan'Sin gnh,nk,nl - ﬂ.«
miller indices

Note: n is not measurable! Let d,,. . =d,

’ . el — \/
Bragg's Law:  2dy -sind = A reflection indices

What is the physical meaning of d,,,?

The Braggs, father and son, shared the 1915 Nobel Prize in Physics
for their work in crystallography.




Virtual reflection plane

2d ) Sin6, =nA (n=1,2, 3, ...)
Lattice plane / 2d,,, -sind = A d, i = dpi/M)
indices %

Diffraction indices or virtual reflection plane indices.

The Bragg’s law defines the direction of diffraction 7
beams from a given set of lattice planes! :




diffraction crystal N
planes - S

(100), (200), ... (100)  (200)  (300)

Families of planes
Lattice planes-(100)

The Bragg’s Law vs. Laue equation:

Both equations define the relationship between the direction of
diffraction beams, the x-ray wavelength and the parameters of
a crystal lattice.

- The Bragg’s law: simple, easier to derive lattice parameters
from the direction of diffraction beams. 2dhk,.sin9 =1 i



3. Reciprocal lattice

.« bxc 5*_C><a _+ _axb Basis vectors of a

v 7 % reciprocal lattice

Q)

N
r

=1/d,,

7 =ha +kb +lIc

A reciprocal lattice
point corresponds to
a diffraction (lattice)
plane of its original

A reciprocal vector r*
is perpendicular to a
lattice plane with the
same indices (hkl).

3



4. Ewald sphere (reflection sphere)

Radius = 1/ G: a diffraction point

/a reciprocal lattice

point
Meceenccone ) .‘?‘.'...:é...:...? E
;i ¢ i i i Only when the reciprocal
...?oo: ----- Eoo:.o.?:-oooo:-oo-:.

O LTt attice point is located on
: _+ideiec the Ewald sphere can
fromnsendiinnd ™ oanstryctive interference

occur !
0G| =20,0%sin6 = (%, )sin6 =1/d,,, - 2d,, sin6 =1

Monochromic x-ray - fixed radius of the Ewald sphere!
Fixed single crystal - Very few diffraction data!



How to get more diffraction data?

a) Fixed A: Rotate the crystal to enable more
reciprocal points (diffractions) dynamically located
on the Ewald sphere.

b) Fixed crystal: use x-rays with varying wavelengths
(e.g., white x-ray). By doing so, the Ewald sphere
becomes filled.

The first technique is preferred and has been widely
used in practice!

The second method can be used to determine the
orientation of a single crystal. T



7.3.3. The intensity of diffraction beam
1. The principle of X-ray scattering

To save your time,
Let’s neglect part 1 and
move directly to part 2!
If you are interested in
this part, just go
through it by yourself.

For elastic scattering, each electron scatters the plane wave
causing a spherical wave (exp[2mi(k-r)]).

The phase difference is: A=(res - res_)/A

The scattered x-ray:  exp{27i[r-(s-s,)/A]} or exp{2ri[r-q/A]} i



The contribution of the scattering of all electrons of a given atom:

o(r)expriq v/ A)d’r —
J A=A

For the crystal structure : i‘ |
p(l") — Z pcel] (7" + Rn) ib/( - /
A=Y [ pos(r+ R,y exprig-r/ s | E—= =

A= ([ p.oy(ryexpriq-r/ 2)d*r )Y exp(2niq- R,/ 2)

n

= F(q)) exp(27iq- R,/ 2)

F(q) --- structure factor
F(q) = | po(r)exp2riq-r/ A)d’r




Supposed that there are N,, N,, N;periods along a,
b, ¢, and all the atoms locate on the position of lattice
points, F(q) can be replace with a constant ‘f’. f is

scattering factor of atoms.

_ fz Z z 27i/ A(na+n,b+nse)-q

1y =0 1n,=0 n;=0

For the case of 1D and /=1,

B

1 . eQiZ'iNa-q/l

2 zina-q/ A
Ay =) e = 27ia-q/ A
l—e

i
=



The intensity:

sin” EZQiizt-cl
_ A ~ sin*(zVh)
- Sinz(ﬂ'a-q] - Sinz(ﬂh)
A

[oc|d,] = 4,4,

30 [ |AI2(N=5) 250  [A]*(N=15)
| 200 & [
20[-
150 |
1q - 100 {f
50 (T
0 " h ww h
-.0 0.6 0.2 0.2 0.6 L0 -1.0 -0.6 0.2 0.2 0.6 1.0



In the case of 3-D:

o 7N, . 7N, J (ﬂ'N )
a- SIn b- sin :
(IJ ( 2 q 2

sin ( 7
|4, =|/f

o7 - o 7T o of 7T
“a. “b. Te.
sin (//La q} sin [l q] SIn (;Lc q)

a-q/A=h, bq/2=k, cq/A=] (h, k, [should be integer)

Therefore,

or a-q=hA, bq=kA, cq=I1

————— Laue conditions for X-ray diffraction

Ioc|f| NININ? =

I c|F,,[ NININ;

Only those scatterings fulfilling these conditions give i
rise to measurable diffraction beams. B



2. The intensity of diffraction beam

 The directions of the diffraction beams

Bragg’s Law
Zdhkl ‘ Sing — ﬂ«

The directions of the diffraction beams are determined

by the cell parameters.




* The mtensity of diffraction beam

2 Systematic absence:
]hkl - K‘Fhklji Structure factoJ Fry=021,=0

_ 27mi( hx+ky+l1z)
Py = Ijjp(x,y,z)e TR dedydz
\i Electron density distribution in a unit cell.

Phase difference between
the scattered and incident

n
_ Zf e2m‘(hxj+kyj+lzj
J
j=1

A\ X-ray over atom |.
Sum over all atoms f. atomic scattering factor defined by
within a unit cell. atomic electron density distribution.

« The intensities of the diffraction beams are determined by
types of atoms and the arrangement of atoms in the cell!

By measuring the cell parameters and the intensities of ,
diffraction points, the atomic arrangement can be derived. - [,



3. systematic absence

Calculation of structure factor
Example A, Body-centered crystal

Simple case: Each lattice point is a metal atom.

N (e.g., Na)
. 27i(hxj+ky;+iz; ) N=2
Fy = Zf].e
j=1

(0,0,0)

272i(h;+k1+l;) (1I251I251I2)

- 27i( h0+k0+10) 5
= f.e + f,e

(h+k+/ —_f -
= fi, (1+e™"0 ) (f=f,=1,)
i) While h+k+l = 2n+1,  pH(h+k+l) _ (2n+l)m _ _ 4

> F,,=0, Systematic absence !

11) While A+k+[ = 2n, i Rl PR Fhkl -9 fNa Strongesgt!,f

3



Body-centered crystal —Two lattice point 1n a unit cell!

General case: each lattice point contains m different atoms.

* The total number of atoms within a unit cell 1s 2m;
* For jth atom in a structural motif (a lattice point): (X;,y;,z;)
* Its body-centered equivalent: (0.5+x;, 0.5+y;, 0.5+z;)

2m
. 27i( hx;+ky;+1z; )
Fou = Z fie
i=1

m

. 1 1 |
_ Z{f'QZm(hxj+kyj+/zj) +fjezm[h(2+xj )+k(5+yj)+](5+zj)]}

m

— [1_|_em(h+k+/)]2fezﬂ(hijrkJ’jHZj)
J
j=1

While A+k+] =2n+1, Systematic
em‘(h+k+l) _ e(2n+1)ﬂ'l ——]1= Fhkl — O% absence

0




Face-centered cubic crystal — general case
 Lattice points (LPs): (0,0,0), (1/2,1/2,0)+, (0,1/2,1/2)+, (1/2,0,1/2)+
* Each lattice point contains m atoms, {(x;,y;,z;)} (=1,...,m)

* FEach unit cell contains N=4m atoms, e.g., an atom A(x,-,yi,z,) in one
LP has other three equivalent 4 atoms within the same unit cell!

N=4
me 27 ( hx, +ky, +1z; ) Sum up over all atoms
Foy = within a unit cell!

h k [ m
2771( + - ) 27mi(—+—) i I /-
“flre 2y T Efe’”(”"y+
From translation symmetry of fcc! J=1< sum up over all

atoms within a LP!

When #4,k,[ are neither all even nor all odd, F,,; = 0, systematic absence!

When /,k,[ are all even or all odd, < 27i( hx +hy +iz, )
. . Fa = 42 fje ,
diffraction observable! = .



Example. Unit cell has a 2, screw axis along the c axis.

- Equivalent positions: (x, y, z),

e — ifj{exp[ﬂﬂ(hxj +ky, +1z, )]

+exp[i2rn(—hx; —ky; +1(z, +%))]}

F = [(1+exp(i7rl)]§:fj exp(ilniz;)

7S

[ = 2n+1 F001 =0 Sum over all
\ atoms of a
systematic absence molecule.

('X » <Y, Z+1I2)

Each molecule has
N atoms.

(x,y,z+0.5)

Herein two molecules
within a unit cell are
correlated by 2, axis.

lr
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How about systematic absence arising from such
screw axes as 3,,4,and 6, ?

. 27li Anli X8 .
. 31||c-axls F,, = [1+exp(ﬂ)+exp(ﬂ)]oZexp(z27rlzl.)

N/3

_[1+2cos(7zl)cos( )]Zexp(z27rlz)

—> Systematic absence when /# 3m (m=1,2,...)!

* n,;//c-axis

n = . N/n
Fopy =Y exp(ZZY D) o 5% exp(iniz,)
j=1 =1

n

-> Systematic absence when / #m'n (m=1,2,...)!



Systematic Absence

« Crystals of the same lattice type behave similarly in

systematic absence!

« Crystal structures which contain centering, glide plane

and screw axis will have systematic absences.

 Namely, some reflections/diffractions will be
systematically absent in such a crystal lattice that has

centering, glide plane or screw axis.



Systematic Absence and Symmetry (p214-215)

1)/ CEXO @ Conditions for extinction Cause of extinction Centering and

LUECUE (systematic absence) symmetry
elements

h+k+l = odd I-centred I
h+k = odd C-centred C
h+l =odd B-centred B
k+l = odd A-centred A
h,k,l not all even and not all TR 1{g=e F
odd
-h+k+l not multiples of 3 R-centred R(hexagonal)
k =odd HELWEEULGRLRGDD) I J78 b-glide 1a (b,c)
l =odd JyA c-glidela (b,c)
k+l =odd (100) glide 29IV n-glidela (b,c)
k+I not multiples of 4 planes (SIS d-glidela (b,c)
! =odd Translation 2,,4,, 6,
I not multiples of 3 Along 345 35, 6,, 6,
I not multiples of 4 (001) 4,4,

I not multiples of 6 Screw axis 64, 65 M



7.3.4 Applications of X-ray diffraction
1. Methods

* Single crystal diffraction

Monochromatic camera method -- Monochromatic X-ray
Rotation, Oscillation, Weissenberg ...
Laue photography --- white X-ray

Diffractometer -- Monochromatic X-ray

Crpstall Diffraction beam
26
’7

Incident b2am




* Powder diffraction

Monochromatic X-ray

Film or trajectory of detector

Powder Diffractometer

- In a powder sample, the microcrystalls orient differently,
so does a given lattice plane in the sample.

- Thus a given lattice plane gives a cone of diffraction
beam with an specific angle 26. (Why?) "




Radiation sources

X-ray tubes Monochromator — ¢.g. HOPG
Synchrotron radiation Filter — e.g. N1 for Cu Ka
Detectors
* Film

- poor sensitivity, high background, low dynamic range
* Scintillation counters
- good sensitivity, low background, high dynamic range

* Imaging plates

- good sensitivity, low background, good dynamic range, very
efficient data collection

e CCDs and Multiwire detectors (widely used nowadays)

- fast readout, good sensitivity, low background, good dynamic range,
very efficient data collection



CPS

47

Automated diffractometer method

44 .41

64.59

81.77

80 100 120 140

2 Theta (20)



2. Applications of X-ray diffraction

a. crystal structure determination

Direction & intensity data collection

Indexing| Crystal system and
| Cell parameters

Ly = K‘Fhkl‘z

9%, 4

i i }
% s Y 4 b
LK)
at { !
e -y
iy s
o . e r -
I',‘
i » 5
. r o
v ! 4
.
i = ..n
) g 3, b
. = 4V
5 \
P
b Ry L
1 g a
L) 3 N
- - l.. ¥ '\ ~ 1,
o R
+% - 2 O
s |
< 8 A )
» . <5 J
B H L.~
bl '} - " o
' A - .
W s %
5 “
b i L
< Ly e )
i’ 80 ™ s L)
> Sy, f \L’. -
1= |
/"-
A p
: vraed B v
e -
y : 0
‘ln. \
L A i
. 4
4 " - 1
1
2, !

Phase problem

|| F(hkl) = j j j o(x, y,2)e P05 e by

oo T Inverse
po(x,y,z)=V" F(hkl)e ™™= Fourier
Zhlzkdzll Transform

L > A(x,y,2) T



Example: Indexing of a cubic system

d =a/\NW+i>+12 | 2d,,sin6=1 | Bragg’slaw

sin’ @ = (1/2a)*(h* + k> +17)

sin? 0 oc b2 + k2 + > P |sin’ 0, :sin’ 0, :sin’ 6, :sin’ G, : ...

General steps of indexing:
1. Get the directions of the diffraction beams, {6}

2. Get |sin’ g :sin” @, :sin” @, :sin’ G, : ...

3. Get (W +k>+17) (W +k>+1), :(h”+k>+1°),....

4. Get the lattice type and cell parameters.



Indexing of a cubic system
sin> @ =(A/2a)> (W + k> +12) = sin2 @ oc 12 + k2 +1°
> sin’ O :sin’ 6, : sin” 6, :sin’ 6, : ...

=(W+k>+ ) (R +k+1), : (W +k>+1),....
Characteristic line sequences of cubic systems:

P: (hkl) 100 110 111}0 }211 20,221,222, 300, .

(h? +K? +12) 1, 2 3,4,5,6,8,9,10, 11, 12, 13, ... | Systematic absence

I: (hkl) 100, 110, 111,200, 210, 211,220, 221, 222, 300, ...
! 4/4/
(W2 +K2+1) 2,4,6,8,10,12,14,16 ... 2(1:2:3:4:5:6:7: 8:...)

F: (hkl) 100, 110, 111,200, 210, 211, 220, 221, 300, 311, 222, ....
(h?’+k*+P) 3,4, 8,11,12,16, 19,20 ...

lr
9 3



Example for the indexing of cubic system and its applications
Sample: NaCl Condition: Cu Ko, A=1.5418 A, R =50 mm

(1) Measure sample and relative intensity

(2) Calculate the position of diffraction lines (usually 20 in Ewald
sphere)

(3) Calculate 6

(4) Calculate sin*0

(5) Calculate sin?0,: sin?0, : sin%0,: sin%0, :...= 3:4:8:11:12:...
(6) Identify Bravais lattice — face-centered cubic

(7) Indexing and calculate h°+k?+I%, calculate d,;; and a.

FCC: (hkl) 100, 110, 111,200, 210, 211, 220, 221, 300, 311,222, ...
(h?+K2+2) 3,4, 8,11,12,16, 19,20 ... |




(7) Index and calculate h’+k*+1?

No i [20 10 [sim [nrce [
s W [s406 (2703 oaossr [u|au

o [ lo6dd |32 loawn2 16 a0
8 [s |76 |7s [oarsa0 20 |a
o |5 830 15 [0dsuss 24 a2

Measured in Ewald sphere FCC

by x-ray diffraction MgeXing 1



(8) Calculate lattice parameter .
. Why do we use high
sin?6 == 1418 <(h* +k*>+1%) angle values?
a
NG Loals ><\/h2 +k*+ 1
2sin0

Least-square method, plot
method, or high angle values,...

v
a=5.628 A

(9) p=2.165 g/cm? for NaCl d,,= AV (2sin6)

PV 2.165%(5.628 x107°)° 4
M/N, [(23+35.5)/6.022x10%]

One unit cell contains 4 NaCl

(i.e., each lattice point contains a NaCl.)



Example B.  (x-ray A=1.5418 A)

Line sin?0, h2+k2+I2
Isin?0,

1 026 2043 Jomse W12 MO0
2 5826 2843 jowro |2 14 20

I N S R
O T - oz O O
O N T O I S
O 2 A O I
A N o L N I
O I W K

As A=1.5418 A, BCC indexing

a=—2 w4 =248
28in6 2sin76.79

x42+0%+0% =3.164 ,



b. Applications of powder diffractions

44 .41

CPS
|

2 Theta

Peak Positions Peak Intensities Peak Shapes and Widths T



b. Applications of powder diffractions

Information contained in a Diffraction Pattern

Peak Positions

Crystal system, cell parameters, qualitative phase identification

Peak Intensities

Unit cell contents, quantitative phase fractions

Peak Shapes and Widths

Crystallite size, Non-uniform microstrain



(;) Peak Positions and Intensities

e Qualitative Analysis: ) _ sl

a) One crystal phase
correspond to a set of
diffraction peaks. ( being
different from the
spectroscopic analysis) | 817

CPS

b) Phase analysis

* Quantitative Analysis: 2 Theta

The peak intensities are proportional to the weight percentage of
the corresponding phase.

.



(¢) Changes of lattice parameters — Solid solution, doping

Using high-angle diffraction data or applying least square method.

2d,,sinf= /4

Why use high angle values?

Maximal 0

- minimal Ad/AQ




(i) Changes of lattice spacing along specific
directions—residue stress

iEEEEBEEBEEBEREEE S{TCSS 2dysin0 =4 2
sin0= A/(2d,,,)

Ad
>

The residue stress in a specific direction increases the
corresponding d-spacing of a crystal.

Ad is proportional to the strength of crystal strain in the
direction. 1



(¢c) The width of diffraction peaks — — Crystallite size

30 r AZ(N:5) 950  |A]*(N=15)
o w |
A 150 [{
1 L 100 1
50 [
0 | h JAA___A___._A@QLJAQ__A_.AAL h
-1.0 0.6 -0.2 0.2 0.6 1.0 -1.0 -0.6 -0.2 0.2 0.6 1.0

[ oc |Fhkl|2%N32 = |Fhkl|2|A|2

_— N

N,, N,, N5 periods along the lattice axes within a microcrystal

- The smaller N in a specific direction [hkl], the broader
of the (hkl) diffraction peak.



[100]

> [001]
XRD pattern of ZnO nanowires

(101)

(100)
(002)

(110)

26 /[degree]

The diffraction peaks arising from (100)-like planes are
much more broad than those from (001)-like planes.

.



(iii) The width of diffraction peaks —— Crystallite

size Widely exploited in the
research of nanoparticles!

Scherrer formula: (size ~1nm to 100nm)

K-A4 KA  (K=090r1.0)
f-cosd (B—B,)-cost |usesmall angle values!

th/ —

Small-angle scattering — particle size
D,  average size along the direction perpendicular to (hkl) plane.

B  measured peak width

B, Instrumental width, using standard sample (e.g. a-S10, with
crystallite size of 25—44um)

—)  Jel= )

Instrumental width (B)

3



(iif) The width of diffraction peaks — Lattice Distortion

a2 (AN SINAR . AN AR R 7))

n=Ad/d
2(d+Ad)sin(6+A0)=A

or 2d(1+m)sin(6+A0)=A
n and A0 are very small,
and hence ,
2A0=—2ntgb or
B'= 2ntgb




Separation of the effects of Crystallite size and Lattice
Distortion

. K-A
P=pi+h=pF— o+2mg
,Bcosé’zzﬂsm@Jré

A A D

Measuring two or more diffraction peaks.



(¢«) The profile of diffraction peaks — — Crystallite size
distribution

: TN S
) sin” 7 2 Derived from
A

N = Bragg equation
: T
sin’| =a-S
A

£.(s) = KZ P(n) sin (ms)

[ ocC ‘ANI2

sin” (7zs)

/,(s) 1s the line protile of diffraction peak

P(n) is Crystallite size distribution function



Instrumental (B) Convolution

Jpelm

h(s)= [g(O)f(s=ndt ot h(s)=g(s)® f(s)
F(h(s)) = F(g(s)x F(f(5))




(«¢c) Texture

ens  Date :24 Mar 2004
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b. Applications of powder diffractions

Applications
Qualitative Analysis
Quantitative Analysis
Lattice Parameter Determination

Crystallite size / size distribution & Lattice Distortion
Analysis (Non-uniform microstrain)

Crystallinity Analysis

Residue Stress Analysis

Texture analysis

Structure Solution and Refinement

Radical distribution function (for amorphous materials) i



7.3.5 Electron Diffraction and Neutron Diffraction
(a)

1. Electron Diffraction

de Brogli wave length
of electron 1n a field V:

100 kV ---- 4 ~0.00370 nm

Atom-level resolution!

a) TEM 1mage of the tip part of one TeO, nanorod. (b)
Enlarged TEM image. (c¢) The corresponding electron

2. Neutron Diffraction | diffraction pattern.

----- Scatterring of atomic nuclear

~ higher atomic resolution 1



7.4 Quasicrystal, liquid crystal and
amorphous

Quasicrystal:
- quasiperiodic crystal

- 5-fold axis occurs in solid state,
seemingly challenging the
crystallographic theory.

- In 1984, Dan Shechtman et al. reported
their finding that the Al-Mn(14 at.%) alloy
adopts an icosahedral phase with 5-fold
axis. (first observed in 1982.4.8, see Phys
Rev. Lett. 1984, 53, 1951).

- He won the Nobel Prize in Chemistry in 2011.




Figure 1. Electron diffraction patterns of the Al-Mn quasicrystal taken
along different symmetry directions indicating icosahedral diffraction ,
symmetry. Reprinted from Ref. [1]. . f 3
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Figure 2. Shechtman’s notes of April 8, 1982, with the observation of
tenfold symmetry highlighted by three question marks.

Even his cooperator, J. W Cahn, thought that the
pheonomenon was resulted from twinning of single crystals!



Figure 6. Projected electron density map of decagonal Al-Co-Ni with
underlying Penrose tiling. In the insert (upper right), some intergrown
decaprismatic quasicrystals are depicted.



Figure 5. Shell structure of the Cds,Yb,, Tsai cluster (Cd light spheres,
Yb dark spheres).

An icosahedral Yb-Cd
quasicrystal is composed
of an aperiodic ordered
arrangement of YbCd
clusters (yellow and blue
spheres at the vertices of

the polyhedra
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Figure 7. Projection of a spherical section (diameter 100 A) of the

structure of icosahedral Cd-Yb? along a fivefold axis. Almost all atoms
are arranged in flat atomic layers, forming a framework compatible

with fivefold symmetry. The atomic layers interpenetrate each other in

a way that is only possible in quasiperiodic structures.



Crystal

Translation symmetry,

Long-range order,
Directional.

Quasi-crystal 3D quasicrystal:

Icosahedral phase in
Al-Mn, Ti,Ni, Al-Li-
Cu, Mg-Al-Zn alloys.

2D quasicrystal:

With 1D translation
symmetry and 2D
quasiperiodicity.

8-fold, 10-fold
quasicrystals in some
alloys.

No translation symmetry;

Long-range order, directional.



History of quasicrystal concept

(extracted from wikipedia) Wang Tiles
1. Quasicrystal-like structures had been known ®

well before the 20th-century, e.g., tiles in a R 002 0000003
s @<

medieval 1slamic mosque in Iran. Dl 00l 20

| D < | JPRD<| PRP<| D

2.In 1961, Hao Wang proposed a mathematic | D D

Oa Qa2

problem related to the planar tiling.

3. In 1966, Wang’s student, Robert Berger,
constructed a set of some 20,000 square tiles 2
(now called Wang tiles), which can tile the planggfg
aperiodically. ¥

4. In particular, in 1976, Roger Penrose propose
a set of just two tiles, up to rotation, (referred to

as Penrose tiles) that produced only non-periodic |
tilings of the plane. Penrose Tiling




5. In 1982, Alan Mackay showed experimentally that the diffraction
pattern from the Penrose tiling had a two-dimensional Fourier

transform consisting of sharp 'delta’ peaks arranged 1n a fivefold
symmetric pattern. (Physica A, 1982, 114, 609)

6. The history of quasicrystals begins with the 1984 paper "Metallic
Phase with Long-Range Orientational Order and No Translational
Symmetry" where Dan Shechtman et al. demonstrated a clear
diffraction pattern with a fivefold symmetry.

7. The term quasicrystal was first used in print shortly after the
announcement of Shechtman's discovery, in a paper by Steinhardt and
Levine. (Phys. Rev. Lett. 1984, 53,2477)

8. At the end of the 1980s, the 1dea of quasicrystal became widely
acceptable!

lr
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Liquid crystals

 Crystalline solid: anisotropic
* Liquid: Isotropic
* Liquid crystal: anisotropic!

Liquids with well-ordered, crystal-like
structures.

More details of liquid crystals can be learnt in
material science!



Chapter 7

Key points/concepts

1.

Lattice of crystal structure: translation symmetry
a lattice point = a structure motif -- unit cell
Crystal systems (7), Bravais Lattice (14)

Symmetry operations (point & translation), Crystallographic
point groups(32), space groups (230), equivalent positions.

Miller index of crystal plane, d-spacing etc.

X-ray diffraction, Laue equation, Bragg's Law, reciprocal
lattice, Ewald sphere, structural factor, system absence,
general process of x-ray crystal structure determination.

lr
9 3



X-ray diffraction, Bragg’s Law, Ewald sphere

2dhkl sin) = A4 Bragg’s law Directions of

detected X-ray
diffraction beams:

_ ) — (2 0= 1
0G| =2/0,0%sin6 = (A) sin @ = A,hk] ) {26}
Radius = 1/

@Ewald sphere + reciprocal lattice [~

IN20 . "ein20 - 2
sin<0,:8in<0,:...:sin“0
indexing
cotiome ot Crystal system,
CrTiy + 1 Bravais lattice, cell
Nt parameters ete.
,,. ..... ‘, :
S SO I L SO S H
@Seoccccoces ;‘.':....E.....ﬁ

7 S Fth & p(X,y,Z)
9 T 3



* Structure factor & systematic absence

Ly = K‘Fh

Fry = Zn:f;

9
ki L—Structure factor:

ezm(hxj+kyj+lzj)

Phase difference between
the scattered and incident

\x-ray over atom j.

Sum over all atoms
within a unit cell.

f. atomic scattering factor defined by
atomic electron density distribution.

« some reflections/diffractions will be systematically

absent (F,,, =0 -> I.,, = 0) in case a crystall lattice has

centering, glide plane and screw axis.



Further applications of X-ray diffraction

a) Change of 2 . _
ind =41
specific d-spacing dhkl sin ¢/

b) Size effect of microcrystal—broadening of
diffraction peaks

[ oc ‘Fhkl‘lezszst = |Fhkl|2‘A|2

Scherrer formula K- A K-A
th/ —

(size: 1-100nm) p-cosd, - (B—B,)-cosb,,,

Adhkl VS. Aehk|

c) Deformation of lattice—broadening of diffraction peaks




In the diffraction direction, the difference between the
incident and the diffracted beam through any two lattice
points must be an integral number of wavelengths.

The lattice vector from (000) to (mnp): T, =ma+ nb +pc
The differences in wavelengths for observed diffractions:
A=Tonp (S-Sp)

=(ma + nb +pc) -(S-S,)
= ma *(S-S,) + nb -(S-S,) + pc *(S-S,)
=mh/ + nkA + pl/
=(mh+nk+pl) A



Crystal Characteristic | Unit cell | Choice Lattic
systems symmetry parameters of axis Point
elements Group
Triclinic Nil azb=c C;
i Sea

2D lattices:

3 parellelograms

Inversion center:
(0,0,0); (1/2,1/2,1/2)

(0,0,1/2), (1/2,0,0),
(0,1/2,0);

(1/2,1/2,0),(0,1/2,1/2),
(1/2,0,1/2)

lr
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Crystal Characteristic | Unit cell | Choice  of | Lattic

systems symmetry parameters | axis Point
elements Group
Monoclinic | C,, i,04, AZDAEC b/ C, Cop,

a=y=90°#p | ac//oy

2D lattices:
1 parellelogram

2 rectangles.




Crystal Characteristic | Unit cell | Choice of | Lattic
systems symmetry parameters | axis Point
elements Group
Orthorhombic | 3C,.30y, azb#c a,b,c//3C, | Dy,
o=P=y=90°

2D lattices:

3 rectangles.




Tetragonal

a=b#cC
o=P=y=90°

c// C4 D4h

2D lattices:
1 square

2 rectangles.



Cubic

4C;

a=b=c

Four C; axes are parallel
to the body diagonals
of the cube.

2D lattices:

3 squares



Hexagonal | C,, oy a=b#c c// Cq Dgp,
o==90°
v=120°

2D lattices:

1 hexagon + 2 rectangles.

I
9 3
6



Trigonal | C; Rhombohedral D34
a=b=c, a=P=y<120°#£90°
Hexagonal Den
a=bz=c, a=3=90°, y=120°
1Cs
b
O

Rhombohedral



