
Chapter 7     
Introduction to Crystallography

7.1 Periodicity and lattices of crystal structure

7.2 Symmetry in crystal structures

7.3 X-ray diffraction of crystals

7.4 Quasi-crystal, liquid crystal and amorphous



Diamonds

Crystalline Substances:  e.g.,  Diamond and Table Salt



7.1 periodicity and lattices of crystal structure

7.1.1 The characteristics of crystal structure

1. A few definitions:

• Solids can be divided into two primary categories,
crystalline solids and amorphous solids.

• Crystalline Solids are built from atoms or molecules 
arranged in a periodic manner in space, e.g., rock salt and 
diamond.

• Amorphous Solids possess short-range order only. They 
are not related through symmetry, e.g. glass, rosin, amber 
glass.

 Short-Range Order: Fixed bond lengths and angles
 Long-Range Order: Associated with a lattice point



Crystals are solids that are built from atoms or 

molecules arranged in a periodic manner in space.

Short range order:  fixed bond lengths and angles 
due to the bonding nature of constituent atoms.

C.N.:  

Si =  4

O = 2



2. Fundamental characteristics of crystal

a)  Spontaneous formation of polyhedral shapes
F + V = E + 2

b)  Uniformity: periodic distribution of atoms/molecules 

No 5-fold axis 

is allowed in a 

single crystal! 



Single crystal gold bead with 
naturally formed facets



HRTEM images of hollow beads



•Anisotropy

NaCl

570 g/mm2

1150 g/mm2

2150 g/mm2

Graphite

Conductivity

Different periodicity and density for different direction. 



• Symmetry: crystal shape (macroscopic) 
lattice arrangement (microscopic)  

•Definite sharp melting points

•X-ray diffraction  by crystals: 

atomic distances match the wavelength of x-ray.  

t

T



Sodium Chloride:  Solid and Crystal structure



7.1.2   The lattice and unit cell

Lattice: 

• A periodic pattern of points in space, such that 

each lattice point has identical surroundings.

• Can be reproduced by translational motion 

along the vector between any two points.



a. 1D lattice and its unit:

• The translation vectors connecting any two lattice points 

constitute a translation group. i.e., 

Tm = ma (m = 0, 1,  2，, )    a: basic vector.

 Each motif in this 

1D periodic pattern 

can be represented 

by a point.

 A lattice of 

repeating points is 

thus obtained to 

represent the  

above 1D system.



Examples of 1D lattice

b)

a)

c)

d)

b-d are not lattices,

a is a 1D lattice itself;  

but can be represented by a lattice.

A pattern with periodicity = a lattice + structural motif!

Structural motif



b.  Lattice and its unit in 2D:    

Tmn = ma + nb（m, n = 0,1,  2， )

•Crystal structure = lattice + structural motif  

(basis)

a & b:  independent basic vectors 

b
a

{Tmn } – a translation group



Lattice: 

• A periodic pattern of points in space, such that each 

lattice point has identical surroundings.

• Can be reproduced by translational motion along the 

vector between any two points.

This 2D pattern itself 

is not a lattice, but  

can be represented 

by a 2D Lattice.

2D  lattice. 2D  lattice.



2D Primitive Cell

 By convention, the chosen unit 

cell should be as small as 

possible while reflecting the  

full symmetry of the lattice.  

1) The highest symmetry

2) The smallest area (or volume)

Choice of Unit Cell 

 There is always more than one 

possible choice of unit  cell.



Five types of 2D lattices

a=b, =90
ab,  =90

a=b, 
=120

ab, =90

ab,   90
&   120

ii)  Centered

i) Primitive

There are literally thousands of crystalline materials, 
there are only 5 distinct planar lattices.

-angle 

between 

two basic 

vectors.

Centred cell: i + C2 // Primiative cell: i

i
i,C4

i,C2

i,C6



Question:  

Both the centred rectangular and simple hexagonal 2D 

lattices have a rhombic primitive unit cell. What is the 

key difference between them?  

a=b, 
=120

ab, =90



Example:  2D-lattice of Graphene

• What’s the smallest structure motif of a graphene sheet?

• What type of lattice does a planar graphene sheet 

belong to?

or



c.  Lattices and its unit in 3D:

T = ma + nb + pc (m, n, p = 0, 1,  2, …)

graphite
stacking

3-D lattice can be used!



a
b

c






The Choice of a Unit Cell: 

Having the highest symmetry and minimal size

c.  Lattices and its unit in 3D:

T = ma + nb + pc (m, n, p = 0, 1,  2, …)



1) The axial system consisting of the basis 

vectors should be right handed.

2) The basis vectors should coincide as much as possible with  
directions of the highest symmetry.

3) Should be the smallest volume that satisfies condition 2.

4) Of all lattice vectors none is shorter than a.

5) Of those not directed along a none is shorter than b.

6) Of those not lying in the a, b plane none is shorter than c.

7) The three angles between the basis vectors a,b,c are either  
all acute or obtuse.

The Choice of a Primitive Cell

Conditions 4-6 define



Crystal structure = lattice + structural motif

(basis)

Structural 
motif



Atomic Coordinates: Fractional coordinates

0.5

0.6

i

i: (1.0, 0.6, 0.5)

Fractional coordinates:

• The positions of atoms inside a 

unit cell are specified using 

fractional coordinates (x,y,z).

• These coordinates specify the 

position as fractions of the unit cell 

edge lengths.



Example: 

Cubic unit cell of CsCl, 

a=b=c

===90

Cs:(0,0,0)

Cl: (1/2,1/2,1/2)

Single Crystal: Composed of only one particular type of space lattice.

Polycrystalline matter: Clusters of multiple crystals.

In this case, the lattice point can be put at the position of either 

Cs or Cl atom. Each unit cell contains both a Cs and Cl atom.



a. Crystal systems

7.1.3  Crystal systems and Bravais Lattices

There are a total of seven types of 
crystal systems differing in symmetry. 

Unit cell is chosen in such a way that it contains as many symmetry 
elements of the lattice as possible and has the smallest volume. 





b. Bravais Lattices: (14)   [developed by Bravais in 1850 !]

Crystal Systems (7)Symmetry of Lattice

Bravais Lattices (14)
Unit Cell of Lattice 

(Primitive or Centered)

Triclinic Monoclinic Orthor-
hombic

Tetragonal Cubic Trigonal Hexagonal

aP mP, mC oP, oC
oF, oI

tP,  tI cP, cI,
cF

hR, hP hP

Lowercase letter (crystal system) + Capital letter (Type of cell)

e.g., hR-- R-centred hexagonal, mC-- C-centred monoclinic

Primitive cell:  minimal size，one lattice point only!       

Unit Cell of Bravais Lattice:  having the highest symmetry & 

minimal size, may contain more than one lattice point. 



* Triclinic 

abc



aP (Primitive)

• Triclinic crystal system has the lowest symmetry.

• It can be simply represented by a primitive cell.

• Symmetry element:  i



b
90°

90°



a

c

mC (C-centered or A-centered)
b

c90°

90°



* Monoclinic 

abc

=  =90º 

mP (Primitive)

A primitive cell contains one lattice point and a 
C-centered unit cell contains two lattice points.

The primitive cell of a C-or A-centered monoclinic is triclinic! 

Sym. Elements:

i, C2(//b), h, 

b'

c'a'




90
90



mI ? 

Does I- or F-centered monoclinic lattice exist?

Both I- and F-centered monoclinic are unnecessary and can be 

represented by a mC! 

b

a
c

o

a

b

a

c

o

c

= mC mF ? = mC



* Orthorhombic 

abc

=  = =90º

b
90°

90°

90°

a

c

oP (Primitive) C-centered or A-centered or B-centered

• The primitive cell of a C-centred orthor-

hombic lattice is actually monoclinic! 

O
O

a

b

c

c

b

a



* Orthorhombic 

abc

=  = =90º

oP oC 

or oA or oB

oI  

(In-centered)

oF 

(Face-centered)

Sym. Elements: 

3C2 (//a,b,c), i, 3h (//A,B,C)



• A Face-centered unit cell 

contains four lattice points!!

• Its primitive cell is triclinic, 

and does not contain such 

symmetry elements as C2 and 

h of the lattice. 

Face-centered cell (oF) and its primitive cell

* Orthorhombic 

Question:  For a body-centered orthorhombic lattice, is its primitive 

cell triclinic or monoclinic? 



* Tetragonal 

a=bc

=  = =90º

b

90° 90°

90°a

c

tP tI

Does a C- or F-centered tetragonal lattice exist?

O

Sym. Elements: 

C4(//c), 2C2 (//a,b), i, 3h (a,b,c)



tC = tP

a

b

• Neither C-centered

tetragonal nor F-centered

tetragonal exists. 

Please prove it!



* Trigonal  ---- Rhombohedral
a=b=c

=  =  90º

O

ab
c

C3

hR

Sym. Elements: C3, i, 

A rhombohedral lattice can 

be represented by a R-

centered hexagonal lattice!



* Hexagonal 

a=bc

=  =90º, 

 =120º

unit cell

b90°
90°

120°a

c

hP

Sym. Elements: 

C6(//c), i,

h (c, //C)

Hexagonal 2D lattice 

a
bO

c

O



a. Primitive rhomohedral =
r-centered hexagonal

b. primitive hexagonal

r-centered rhombohedral

(2/3, 1/3, 1/3)

(1/3, 2/3, 2/3)



a=b=c

=  =  =90º
* Cubic

90° 90°

90°
a

b

c

cP cI cF

• Introducing a C-center eliminates all C3-axes and results in 

only one C4 axis. The lattice should be actually tetragonal.

Sym. Elements: 

3C4(//a,b,c), 4C3, i, 

3h (a,b,c, //A,B,C)

Is there a c-centered cubic lattice?



• The primitive cell of a fcc or bcc lattice is rhombohedral, 

which does not include the C4–axes of the lattice!



Bravais Lattices: (14)

Unit Cell:   the highest symmetry + minimal size

Centered unit cell is thus introduced to contain the 
highest symmetry of the lattice.





Augusta Bravais 
Lattices

Died on 30 Mar 1863 

(born 23 Aug 1811) 

French physicist best 

remembered for his work 

on the lattice theory of 

crystals; Bravais lattices 

are named for him.

Simple cubic Face-centered cubic

Simple 
orthorhombic

Simple 
tetragonal

Hexagonal

Face-centered 
orthohombic

C-centered 
orthorhombic

Simple 
monoclinic

Body-centered 
tetragonal

C-centered 
Monoclinic

Rhombohedral

Body-centered 
orthohombic

Body-centered cubic

Simple triclinic



7.1.4  Crystal Planes and Miller Indices

a. Lattice planes

 It is possible to describe certain directions and planes
with respect to the crystal lattice using a set of three
integers referred to as Miller Indices.

 Miller indices describe the orientation and spacing of a
family of planes.

Those lines are the  

projections of crystal 

planes (//c-axis) onto 

this plane.

(110)

(010)

(210)

a
b

A 2D lattice plane, i.e. 

(001), of an oP lattice.



b. Miller indices (hkl)

 Introduced in 1939 by the British 

mineralogist W. H. Miller.

 Miller indices are the reciprocal 

intercepts of the lattice plane on the 

unit cell axes.

For this special case: r = 3,  s = 2, t = 1

h:k:l = (1/3):(1/2):(1/1) = 2:3:6

 The  Miller index of this lattice plane  is (236)!

Question:  why do we not use r:s:t directly to represent a 

lattice plane? 

ra

sb

tc



a

b

c

(110)

a

b

c

(111)

a

b

c

(100)
(010)

Example: Miller indices in a cubic lattice

O

O

O

For a cubic lattice, the (100), (010), 
and (001) planes are symmetry-
equivalent with respect to C3 axes.

(001)c



(0001)

a

b

c

(hkil),  i = -(h+k)

Hexagonal , using four axes (a1,a2,a3,c)

A third axis: 

a3 = -(a1 + a2)

The use of only two 
basis vectors a & b
does not reflect the 
C6- symmetry 
among such planes 
as (100), (110) …！

-



C. Directions in lattice
• The direction of a lattice 

vector, ua + vb +wc, is 
represented by three 
indices [uvw], which are 
prime to each other. E

O
F

Miller Indices [uvw]  

OE = 0.5a + b + c  [122]

OF = a + 0.5b  [210]

e.g. a axis: [100].  (OA)

b axis: [010].  (OB)

c axis: [001].  (OC)

BG = 0.5a - b        [210]

DB

A

C

G

OD = a + b  [110]. 



Example:  Directions on the (111) plane of a cubic lattice.

• Various lattice vectors 
can be defined by the 
lattice points within the 
(111) plane.

• e.g., the vector from 
points A to B, i.e., -0.5a 
- 0.5b + c, defines the 
direction .

• The vector from points 
A to C, -b+c, is defines 
the direction               .

• The vector CD, i.e., -
a+b, defines the 
direction .

A

B

C

D

O

A (1.0, 1.0, 0.0);  B(0.5, 0.5, 1.0);

C(1.0, 0.0, 1.0);   D(0.0, 1.0, 1.0)



Miller indices: [hkl] are used to specify a direction in space 
with respect of the unit cell axes.

<hkl> are used to specify a set of symmetry-
equivalent directions.

Miller indices (hkl) are used to specify the orientation and 
spacing of a family of planes.

{hkl} are used to specify all symmetry-
equivalent sets of planes

Direction Vector  =  ua + vb + wc

a

b

c

(100)

(010)

O

e.g., For a cubic lattice system, the lattice 

planes (100), (010), (001) are symmetry-

equivalent upon C3 or C4 rotations, and can 

be represented by {100}.  

[uvw]  zone axis



d. d-spacing   dhkl

(010)

(210)

(110)
d010

d110

d210

The spacing between adjacent planes in a family is 
referred to as a “d-spacing”.

a
b

a
b

a
b

a
b

b
a

oP:      

Projections 

of crystals 

planes (//c-

axis) on the 

(001) plane.



 Cubic :              1/d2 = (h2+k2+l2)/a2 or  d2 = a2/(h2+k2+l2)

 Tetragonal:       1/d2 = (h2+k2)/a2 + l2/c2

 Orthorhombic: 1/d2 = h2/a2+k2/b2 + l2/c2

 Hexagonal:       1/d2 = (4/3)(h2+hk+k2)/a2 + l2/c2

 Monoclinic:      1/d2 = [(h/a )2 + (k/b )2sin2 + (l/c )2-

(2hl/ac)cos]/sin2

 Triclinic:  

The spacing between adjacent planes in a family is 
referred to as a “d-spacing”



7.1.5 Real crystals and  Crystal defects：

Real crystals are only close approximations of space 
lattices

Edge dislocation



Screw Dislocation

• Formed by shear 

stress

• Also linear and along 

a dislocation line



7.2 Symmetry in crystal structures.
7.2.1 Symmetry elements and symmetry operations

 Crystallographers make use of all the symmetry 

elements available in a crystal to minimize the number of 

independent coordinates.

 Three types of symmetry elements in a crystal lattice:

• Lattice symmetry (translational symmetry)

• Point symmetry (rotation, inversion & reflection etc.)

• Other translational symmetry elements: screw axes and 

glide planes



a. Lattice symmetry
--- translation operation

Tmnp= ma + nb + pc or 

All unique translation operations available in a crystal 

lattice constitute a translation group {Tmnp}  (order = ).  

a, b, c: basic vectors!



• A point-symmetry operation does not alter at least one point   
that it operates on, e.g., rotation, reflection, inversion, and 
rotation-inversion.

b.  Point symmetry elements compatible with 3D translations

It is provable that translational symmetry of a lattice excludes 

the presence of 5-fold axis!

Operation                   Point symmetry elements

Reflection                  Mirror Plane              m

Rotation operation   Rotation axis              n = 1, 2, 3, 4, 6

Inversion Center of symmetry   1    

Rotatory inversion   Inversion axis              3, 4, 6

• Point symmetry elements available in a lattice must be 
compatible with the 3D translations, including 



Four lattice points: A1, A2, A3, A4

Upon an  n-fold rotation,

A1  B1

A4  B2

with A1A4 // B1B2.

B1B2 ＝a + 2acos = ma

cos = (m-1)/2

Rotation axis: 1,2,3,4,6 only!!      Why ???

  = 2/n = 0º, 60º, 90º, 120º, 180º

 n=  1,   6,    4,    3,      2

rotation axes: 1,2,3,4,6 only!!

Limitation induced by 
Translation symmetry!  

 (m-1)/2 1   m-1 2

 m  =  3, 2, 1, 0, -1

 cos = 1, 1/2, 0, -1/2, -1



Example:   The symmetry elements

in a primitive cell of a cubic lattice.

Twofold axis
Threefold axis
Fourfold axis

2    3   4    6
Rotation axis

Sixfold axis

Hexagonal lattice



General equivalent positions: 

i) 2-fold axis (e.g., b axis in monoclinic lattice) 

(x, y, z)  (-x, y, -z)   (Note: in fractional coordinates)

Equivalent upon rotation around a 2-fold axis.

(x,y,z)

(-x,y,-z)

a

b

x

-z

-x
z

Note:   is not essentially 90. 



General equivalent positions: 

ii)  3-fold axis //c axis  in a hexagonal  lattice

(x,y,z), (-y, x-y, z), (-x+y, -x, z)

(x,y,z)(-y,x-y,z)

a

b

x

y

-y

|y| x

x-y



4 fold axis // c axis  (cubic lattice)

general equivalent positions: 

(x,y,z), (-y, x, z), (-x,-y,z), (y,-x,z) 

6 fold axis // c axis (hexagonal lattice)

general equivalent positions: 

(x,y,z), (x-y, x, z), (-y, x-y, z), 

(-x,-y,z), (y-x, -x, z), (y, y-x,z) 



c.  Screw axes nm (m<n) and glide planes:

Screw operation

A helical structure is 
related to a screw axis!

A screw axis symmetry is combination of rotation about an axis and 

a translation parallel to that axis leaves a crystal unchanged.

(x, y, z) 

(x, –y, –z)

(x+1/2, –y, –z)

Example: 21// a axis
C2(//a)

T(a/2) 

An n-fold screw axis can be n1, n2, …, or  nn-1.



A 31 screw axis in the crystal of tellurium

31



Screw axes:   31 and 32

Screw 31 Screw 32

= T(a/3) C3
1 = T(2a/3) C3

1



61-5
21 31 32          41              42             43

3131

View perpendicular to axis View down axis

31

32 32

32

Helical structures along screw axes



a glide

a,b,c glide: t = a/2 , b/2, c/2

n glide:  t =(a+b)/2, (b+c)/2, (a+c)/2 

d glide: t= (a+b+c)/4, (a+b)/4, (b+c)/4, 

or (a+c)/4 .

e glide (double glide plane).

Zig-zag structure

Mirror:  M (reflection)Glide operation: G = T(t)·M

t = a/2, b/2,  c/2, (a+b)/2, (b+c)/2, (a+c)/2, (a+b+c)/4  etc.

GG = [T(t)M]2 = T(2t),  t = 2t (maybe a basis vector of lattice)

Glide operations: a,  b, c, n and d glides



Graphical representations 

of glide and mirror planes

Projection () Parallel (//)Type



Summary of symmetry elements and 
symmetry operations in crystal structure

Symm. operation               Symm. Elements
• Rotation operation                         rotation axis Cn

• Reflection operation                       mirror plane m

• Inversion operation                        inversion center

• Rotation inversion operation          inversion axis 

• Translation operation                       lattice

• Screw operation                     screw axis nm

• Glide operation                       glide plane

(n=1, 2, 3, 4, 6)

Combinations of the 8 point symm. elements (5 n-axis, i, 
m, S4) result in 32 crystallographic point groups.  



Combining symmetry elements

• When a crystal possesses more than one of the above 

point symmetry elements, these macroscopic symmetry 

elements must all pass through a common point. 

• There are 32 possible combinations of the above symmetry 

elements that pass through a point. 

• There are  the 32 crystallographic point groups.

• So far we have 

7 Crystal systems   14 Bravais lattices (Translation)  +

32 crystallographic point groups  (Point symmetry)

 230 space groups



7.2.2 Crystallographic point group and space group

1. Crystallographic point group

Combinations of the 8 point symm. elements (5 n-axis, i, m,
S4) result in 32 crystallographic point groups.

e.g., Monoclinic system: point symmetry elements -- 2, m,

2 – {E, C2} -- C2 point group; m - {E,} -- Cs point group.

2,m -- {E, C2, , i} -- C2h point group.

Two notations of crystallographic point group

Schonflies notation vs. International notation

C2 2

CS m

C2h 2/m



• Each crystal system includes a set of distinctive 

crystallographic point groups. 

• A total of 32 crystallographic point groups. 

Crystal 
system

Schonflies
notation

International 
notation

Symmetry 
elements

Examples

monoclinic C2 2 C2 BiPO4

CS m  KNO2

C2h 2/m C2, h,  i KAlSi3O8

orthorhombic D2 222 3C2 HIO3

C2v mm2 C2, 2 NaNO2

D2h mmm 3C2, 3,  i MgSO4

a  b  c



2. Crystallographic space group

Point groups (32) + translational symmetries = Space groups (230)

Schonflies notation vs. International notation

e.g, D2h
16 - P21/n 21/m 21/a C2h

5 – P21/c

System directions

1 2 3

Cubic a a+b+c a+b

Hexagonal c a 2a+b

Tetragonal c a a+b

Trigonal (hR) a+b+c a-b -

Trigonal* (hP) c a

Orthorhombic a b c

Monoclinic b - -



1.  Each space group can be schematically represented by 

using two types of diagrams, i.e., diagrams of symmetry 

elements and diagram of general equivalent positions. 

2.  The physical meaning of general equivalent positions:  if 

there is an X atom at position (x,y,z),  there should a same X 

atom at each equivalent position within a unit cell.

How to understand/use Space Group? 

Symmetry elements & equivalent positions

Diagram of Symmetry 
elements

Diagram of general 
equivalent position



Example:  monoclinic point group C2h-2/m 
Six space groups belong to C2h point group, denoted:   

C2h
1-P2/m,  C2h

2-P21/m,  C2h
3-C2/m, 

C2h
4-P2/c,  C2h

5-P21/c,  C2h
6-C2/c,

e.g., C2h
5 – P21/c (i is always available!)

A set of equivalent positions located within a unit cell!

c glide 
at b/4. 

Multiplicity, Wyckoff letter, site symmetry



e.g., C2h
5 – P21/c

Inversion center

• Equivalent positions are correlated by symmetry 

elements and can be produced from a given position 

upon available symmetry operations.

• Thus it is unnecessary to list all atoms, but unique type of 

atoms within a unit cell.



• Fcc 

• Lattice points: (0,0,0)+, (1/2,1/2,0)+, (0,1/2,1/2)+, (1/2,0,1/2)+

• Structure motif – 2C    0,0,0;  1/4,1/4,1/4

• Totally 8 C atoms within a unit cell.

Diamond:  face-centred cubic Oh
7- Fd3m

Sideview                       topview

41

d glide 
plane at

1/8,3/8,

5/8,8/7

Note：In this case, the presence of same-type atoms in 
structure motif introduces more symmetry elements! 



7.2.3 The description and application of crystal structure

Example 1. Crystal of iodine

Crystal System orthorhombic

Space group D2h
18-Cmca (or C 2/m 2/c 21/a)

Cell parameters a=713.6 pm b= 468.6 pm c = 987.4 pm

Number of molecules per unit cell Z = 4

Atomic coordinate for I x y z

0 0.15434 0.11741



Lattice points within a unit cell: (0,0,0)+, (1/2, 1/2, 0)+ (C-centered).

General equivalent positions:

(x,y,z); (-x, -y, -z); (-x, -y+1/2, z+1/2); (x, y+1/2, -z+1/2)

a) Bond length (Bond distance)

r1-2= [(x1-x2)
2a2+(y1-y2)

2b2+(z1-z2)
2c2]1/2 = 2.715 Å

(0, .15434, .11741)

(0, -.15434, -.11741)

(0, .34566, .61741)

(0, .65434, 38259)

(1/2, .65434, .11741)

(1/2, .34566, -.11741)

(1/2, .84566, .61741)

(1/2, .15434, 38259)

C 2/m 2/c 21/a

b) Density of crystal

V = a x b x c = 3.27 x 108 pm3

D = 8 x 127.0 /(6.02 x 1023 x 327.0 x 10–24 ) g cm-3 = 5.16 g cm-3



7.3 X-ray diffraction of crystals

The wavelengths (0.05-2.5 Å) of x-rays match the d-

spacing of crystal planes, resulting in diffraction!



7.3.1 The source and property of X-ray

X-ray tube
The wavelengths of X-ray are in the range

of 100-0.01Å

• 1-0.01Å:    hard x-ray

• 100～1Å：soft x-ray

• 2.5-0.5Å:   used in crystal structure analysis

• 1-0.05Å: used in medical perspective, detection of materials wound



X-rays produced by electronic transition 
between atomic energy levels

K

e

e

High energy 
electron beam

M
LL 

radiation
As for Cu:

Cu+ 1s12s22p6…

 1s22s22p5…

K1= 1.540594 Å 

K2= 1.544422 Å

IK1  2IK2

A part of the 
electrons are 
blocked; their 
kinetic energies 
giving rise to 
“white” x-ray.

2P3/2

2P1/2

2S1/2



Note:  K2 can not be striped by the monochromator.

K2

K1

154.056 pm

154.439 pm

Weighted average of 
wavelength ~ 154.18pm.



Synchrotron Radiation X-ray Source



Benefits of Synchrotron radiation X-ray :

• Narrow range of x-ray wave-lengths, i.e.,  high 
monochromicity

• High intensity of x-ray.

• High intensity and high quality of diffraction data

• High resolution – characterization microcrystals

Toooooooo Expensive facility!





SPring-8,  at Osaka, Japan. www.spring8.or.jp



ESRF - European Synchrotron Radiation Facility , Polygone 
Scientifique Louis Néel - 6, rue Jules Horowitz - 38000 Grenoble 
- France , http://www.esrf.fr



The Advanced Photon Source (APS) at Argonne National 
Laboratory, http://www.aps.anl.gov/aps.php 



7.3.2 Laue equation and Bragg’s Law
1. Laue equations

Laue first mathematically described 

diffraction from crystals.

• consider X-rays scattered from every atom 

in every unit cell in the crystal. and how 

they interfere with each other

• to get a diffraction spot you must have 

constructive interference. Max Von Laue

X-ray
crystal

filmLead 
shield

Nobel Prize in 
Physics 1914

Laue diffraction 
pattern of ruby

Laue Diffraction (1912)



Laue equations    (Based on diffraction by 1D atomic lattice)

For each h value, the 
diffraction rays from a 1D 
lattice make a cone!

Interference condition:

The difference in path lengths of 
adjacent lattice points must be a 
multiple integral of the wavelength.

a — lattice parameter

0— angle between a and S0

 — angle between a and S



Expanded to 3D lattice case:

a·(S-S0) = a(cos-cos0) = h

b·(S-S0) = b(cos-cos0) = k

c·(S-S0) = c(cos-cos0) = l

a,b,c—lattice parameter

0,0,0—angle between basis vectors a,b,c and  S0

,, —angle between basis vectors a,b,c and S

h,k,l — indices of diffraction, integers

Laue Equations!

which may not be prime to each other and are different from 

Miller indices for crystal plane! 

• Each equation defines a cone of diffraction.

• Only when the three cones of diffraction intersect can 
the diffraction beam be observable! 



2. The Bragg’s Law

Bragg considered the diffraction arising from reflection 
by lattice planes.

Conditions to obtain constructive inferences, 

a.  The scattered x-ray must be coplanar with the incident 
x-ray and the normal of the lattice plane. 

b.  qS  = qS0

P



Note: n is not measurable!  Let  dnhnknl = dhkl

The difference in path lengths,

 = AD + DB = 2d(hkl)sinq

B

The Braggs, father and son, shared the 1915 Nobel Prize in Physics 

for their work in crystallography.

reflection indices
Bragg’s Law:    2dhkl sinq = 

 2dnhnknlsinqnh,nk,nl = 

Condition for diffraction:

 = n = 2d(hkl)sinqn (n=1,2,3, … )

qn:    the angle of reflection

n:    the order of the reflection 

Define dnhnknl = d(hkl)/n
miller indices

q

What is the physical meaning of dhkl?



n=2

2d(hkl) sinqn = n (n=1, 2, 3, … )

2dhkl sinq =  (dnhnknl = dhkl/n)

Virtual reflection plane

The Bragg’s law defines the direction of diffraction 
beams from a given set of lattice planes! 

Diffraction indices or virtual reflection plane indices.

Lattice plane 
indices



Families of planes

(100)      (200)      (300)

diffraction crystal 
planes  -

(100), (200), …

(100)

(200)

Lattice planes-(100)

The Bragg’s Law vs. Laue equation:

• Both equations define the relationship between the direction of 

diffraction beams, the x-ray wavelength and the parameters of 

a crystal lattice. 

• The Bragg’s law: simple, easier to  derive lattice parameters

from the direction of diffraction beams. 2dhklsinq = 



3. Reciprocal lattice  

A reciprocal lattice 

point corresponds to 

a diffraction (lattice) 

plane of its original 

lattice!!!!!!!!!!!!

A reciprocal vector r*
is perpendicular to a 
lattice plane with the 
same indices (hkl).

Basis vectors of a 
reciprocal lattice



4. Ewald sphere (reflection sphere)

O1
OA

G

1/

1/dhkl
2q

S

S0

r*

q
q

G: a diffraction point

Only when the reciprocal 

lattice point is located on 

the Ewald sphere can 

constructive interference 

occur !

• Monochromic x-ray  fixed radius of the Ewald sphere!

• Fixed single crystal  Very few diffraction data!

Radius = 1/

(hkl)

/a reciprocal lattice 
point



How to get more diffraction data?

a) Fixed :  Rotate the crystal to enable more 

reciprocal points (diffractions) dynamically located 

on the Ewald sphere.

b) Fixed crystal: use x-rays with varying wavelengths 

(e.g., white x-ray).  By doing so, the Ewald sphere 

becomes filled.  

• The first technique is preferred and has been widely 

used in practice! 

• The second method can be used to determine the 

orientation of a single crystal.



7.3.3. The intensity of diffraction beam

1. The principle of X-ray scattering

For elastic scattering, each electron scatters the plane wave 
causing a spherical wave (exp[2i(kr)]).

The phase difference is:  =(r•s - r•so)/λ 

The scattered x-ray:     exp{2i[r(s-s0)/]} or exp{2i[rq/]} 

To save your time, 

Let’s neglect part 1 and 

move directly to part 2! 

If you are interested in 

this part, just go 

through it by yourself. 



The contribution of the scattering of all electrons of a given atom:

a

b
c

RnFor the crystal structure ：

F(q) --- structure factor



Supposed that there are N1，N2，N3 periods along a，
b，c, and all the atoms locate on the position of lattice
points, F(q) can be replace with a constant ‘f’. f is
scattering factor of atoms.

For the case of 1D and f=1, 



The intensity: 



In the case of 3-D:

Therefore,

aq/=h，bq/=k，cq/=l (h，k，l should be integer)

or aq=h，bq=k，cq=l

----- Laue conditions for X-ray diffraction 

Only those scatterings fulfilling these conditions give 
rise to measurable diffraction beams. 



2. The intensity of diffraction beam

• The directions of the diffraction beams

The directions of the diffraction beams are determined 

by the cell parameters.

Bragg’s Law

2dhkl  sinq = 



• By measuring the cell parameters and the intensities of 
diffraction points, the atomic arrangement can be derived.

• The intensity of diffraction beam

Structure factor

Sum over all atoms 
within a unit cell.

fj: atomic scattering factor defined by 
atomic electron density distribution.

Phase difference between 
the scattered and incident 
x-ray over atom j. 

Electron density distribution in a unit cell.

• The intensities of the diffraction beams are determined by 
types of atoms and the arrangement of atoms in the cell!

Systematic absence: 
Fhkl = 0  Ihkl = 0



Calculation of structure factor
Example A,   Body-centered crystal

 Fhkl = 0,    Systematic absence  ! 

3. systematic absence

i) While h+k+l = 2n+1,

Simple case:  Each lattice point is a metal atom.  

ii) While h+k+l = 2n, Strongest!

N = 2

(e.g., Na)

(0,0,0)

(1/2,1/2,1/2)

(f1 = f2 = fNa)



Body-centered crystal –Two lattice point in a unit cell!
General case:  each lattice point contains m different atoms.
• The total number of atoms within a unit cell is 2m; 

• For jth atom in a structural motif (a lattice point): (xj,yj,zj)

• Its body-centered equivalent: (0.5+xj, 0.5+yj, 0.5+zj)

While h+k+l =2n+1,
Systematic 
absence



Face-centered cubic crystal – general case

When h,k,l are neither all even nor all odd, Fhkl = 0, systematic absence!

Sum up over all atoms 
within a unit cell!

sum up over all 
atoms within a LP! 

From translation symmetry of fcc!

• Lattice points (LPs): (0,0,0), (1/2,1/2,0)+, (0,1/2,1/2)+, (1/2,0,1/2)+

• Each lattice point contains m atoms, {(xj,yj,zj)} (j=1,…,m)

• Each unit cell contains N=4m atoms, e.g., an atom A(xi,yi,zi) in one 

LP has other three equivalent A atoms within the same unit cell!

When h,k,l are all even or all odd, 

diffraction observable!



 Equivalent positions: (x, y, z), (-x ,  -y , z+1/2)

Example. Unit cell has a 21 screw axis along the c axis. 

(x,y,z)

systematic absence

l = 2n+1
Herein two molecules 

within a unit cell are 

correlated by 21 axis. 

Sum over all 
atoms of a 
molecule.

Each molecule has 
N atoms.



How about systematic absence arising from such 
screw axes as  31, 41 and 61 ?

• 31||c-axis

 Systematic absence when  l  3m (m=1,2,…)!

• n1 //c-axis

 Systematic absence when l  m·n (m=1,2,…)!



Systematic Absence

• Crystals of the same lattice type behave similarly in 

systematic absence!

• Crystal structures which contain centering, glide plane

and screw axis will have systematic absences.

• Namely, some reflections/diffractions will be 

systematically absent in such a crystal lattice that has 

centering, glide plane or screw axis.



Types of 
reflection

Conditions for extinction

(systematic absence)

Cause of extinction Centering and 
symmetry 
elements

hkl h+k+l = odd

h+k = odd

h+l = odd

k+l = odd

h,k,l not all even and not all 
odd

-h+k+l not multiples of 3

I-centred

C-centred

B-centred

A-centred

Face-centred

R-centred

I

C

B

A

F

R(hexagonal)

0kl

(or h0l, 
hk0)

k =odd

l =odd

k+l =odd

k+l not multiples of 4

Translation in (100)   b/2

c/2

(100) glide           (b+c)/2

planes                  (b+c)/4

b-glide a (b,c)

c-glidea (b,c)

n-glidea (b,c)

d-glidea (b,c)

00l

(or h00, 
or  0k0

l =odd

l not multiples of 3

l not multiples of 4

l not multiples of 6

Translation           c/2

Along                   c/3

(001)                    c/4

Screw axis            c/6

21, 42, 63

31, 32, 62, 64

41, 43

61, 65

Systematic Absence and Symmetry (p214-215)



7.3.4 Applications of X-ray diffraction

1. Methods

* Single crystal diffraction 

Monochromatic camera method -- Monochromatic X-ray

Rotation, Oscillation, Weissenberg …

Laue photography  --- white X-ray

Diffractometer  -- Monochromatic X-ray

Incident beam

2q
Diffraction beamCrystal



* Powder diffraction

Powder Diffractometer

Monochromatic X-ray

2q

Powder
sample

2q

Diffraction beam

Incident beam

Film or trajectory of detector 

• In a powder sample, the microcrystalls orient differently, 

so does a given lattice plane in the sample. 

• Thus a given lattice plane gives a cone of diffraction 

beam with an specific angle 2q. (Why?)   



Radiation sources
X-ray tubes

Synchrotron radiation

Detectors
• Film

- poor sensitivity, high background, low dynamic range

• Scintillation counters 

- good sensitivity, low background, high dynamic range

• Imaging plates
- good sensitivity, low background, good dynamic range, very 
efficient data collection

• CCDs and Multiwire detectors (widely used nowadays)
- fast readout, good sensitivity, low background, good dynamic range, 
very efficient data collection

Monochromator – e.g.HOPG

Filter – e.g. Ni for Cu K



Automated diffractometer method

(2q)



2.  Applications of X-ray diffraction

a. crystal structure determination

Phase problem

Indexing

Direction & intensity data collection

Crystal system and 
Cell parameters

Inverse 
Fourier 

Transform



Example:    Indexing of a cubic system

2dhkl sinq = 

1.  Get the directions of the diffraction beams,  {qi}

Bragg’s law

4.  Get the lattice type and cell parameters. 

2.  Get

3.  Get

General steps of indexing:



Indexing of a cubic system

Characteristic line sequences of cubic systems:

P:   (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 222, 300, ….

Systematic absence

I:   (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 222, 300, …

F:   (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 300, 311, 222, ….

（h2＋k2＋l2)   3, 4,  8, 11, 12, 16, 19, 20 …

（h2＋k2＋l2)  1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, …

（h2＋k2＋l2)    2, 4, 6, 8, 10, 12, 14, 16 … (1: 2: 3: 4: 5: 6: 7: 8:…)



Example for the indexing of cubic system and its applications

Sample: NaCl     Condition: Cu K, =1.5418 Å, R = 50 mm

(1) Measure sample and relative intensity

(2) Calculate the position of diffraction lines (usually 2q in Ewald 
sphere) 

(3) Calculate q

(4) Calculate sin2q

(5) Calculate sin2q1: sin2q2 : sin2q3 : sin2q4 :…= 3:4:8:11:12:…

(6) Identify Bravais lattice   →  face-centered cubic

(7) Indexing and calculate h2+k2+l2, calculate dhkl and a.

FCC:   (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 300, 311,222, ….

（h2＋k2＋l2 )     3, 4,  8, 11, 12, 16, 19, 20 …



No. I 2 q q sin2q h2+k2+l2 hkl

1 W 27.46 13.73 0.05631 3 111

2 S 31.80 15.90 0.07508 4 200

3 S 45.60 22.80 0.15016 8 220

4 W 54.06 27.03 0.20647 11 311

5 S 57.50 28.75 0.22524 12 222

6 S 66.44 33.22 0.30032 16 400

7 W 73.30 36.65 0.35663 19 331

8 S 77.56 38.78 0.37540 20 420

9 S 84.30 42.15 0.45045 24 422

(7) Index and calculate h2+k2+l2

Measured in Ewald sphere 
by x-ray diffraction IndexingFCC



(8) Calculate lattice parameter 

a=5.628 Å

(9) = 2.165 g/cm3 for NaCl

One unit cell contains 4 NaCl   

(i.e., each lattice point contains a NaCl.)

Least-square method, plot 
method, or high angle values,…

q90°0°

Why do we use high 
angle values?

dhkl = /(2sinq) 



Line 2q q sin2q sin2qi

/sin2q1

h2+k2+l2 hkl

1 40.26 20.13 0.1184 1 2 110

2 58.26 29.13 0.2370 2 4 200

3 73.20 36.60 0.3555 3 6 211

4 87.02 43.51 0.4740 4 8 220

5 100.64 50.32 0.5923 5 10 310

6 114.92 57.46 0.7109 6 12 222

7 131.16 65.58 0.8290 7 14 321

8 153.58 76.79 0.9470 8 16 400

Example B. 

As    =1.5418 Å, BCC indexing

(x-ray  =1.5418 Å)



b. Applications of powder diffractions

Peak Positions Peak Intensities Peak Shapes and Widths



Information contained in a Diffraction Pattern

Peak Positions

Crystal system, cell parameters, qualitative phase identification

Peak Intensities

Unit cell contents, quantitative phase fractions

Peak Shapes and Widths

Crystallite size, Non-uniform microstrain

b. Applications of powder diffractions



• Qualitative Analysis:

a)  One crystal phase 
correspond to a set of 
diffraction peaks. ( being 
different from  the 
spectroscopic analysis) 

b)  Phase analysis

(i) Peak Positions and Intensities

• Quantitative Analysis:

The peak intensities are proportional to the weight percentage of 
the corresponding phase. 



(ii) Changes of lattice parameters―Solid solution, doping

Using high-angle diffraction data or applying least square method.

q90°0°

Why use high angle values?
2dhklsinq = 

Maximal q

 minimal d/q



(ii) Changes of lattice spacing along specific
directions―residue stress

stress

d d d

d
2dhklsinq =  
sinq = /(2dhkl) 

d

• The residue stress in a specific direction increases the 

corresponding d-spacing of a crystal. 

• d is proportional to the strength of crystal strain in the 

direction.   



(iii) The width of diffraction peaks ―― Crystallite size

N1, N2, N3 periods along the lattice axes within a microcrystal

• The smaller N in a specific direction [hkl],  the broader 
of the (hkl) diffraction peak.



[001]

[100]

XRD pattern of ZnO nanowires

The diffraction peaks arising from (100)-like planes are 

much more broad than those from (001)-like planes.



Dhkl average size along the direction perpendicular to (hkl) plane.

B measured peak width

B0 Instrumental width, using standard sample (e.g. -SiO2 with
crystallite size of 25－44m）

Instrumental width（B0） （B） B0

Scherrer formula: (size ~1nm to 100nm)

(iii) The width of diffraction peaks ―― Crystallite
size

use small angle values!

Widely exploited in the 
research of nanoparticles!

Small-angle scattering – particle size 

(K =0.9 or 1.0)



(iii) The width of diffraction peaks ― Lattice Distortion

晶格的畸变（不均匀应变、微观应变、内应力）

d

d1

d2 d3

d4 d5

d1 d2

＝d /d

2(d+d)sin(q+q)=

or 2d(1+)sin(q+q)=

 and q are very small,

and hence ,

2q＝－2tgq or

＝ 2tgq



Separation of the effects of Crystallite size and Lattice
Distortion

Measuring two or more diffraction peaks.



(iv) The profile of diffraction peaks ―― Crystallite size 
distribution

fp(s) is the line profile of diffraction peak

P(n) is Crystallite size distribution function

Derived from 
Bragg equation



Instrumental（B0）

（B） B0

Convolution



(vi) Texture 

ZnO nano-arrays



b. Applications of powder diffractions

Applications

Qualitative Analysis

Quantitative Analysis

Lattice Parameter Determination

Crystallite size / size distribution & Lattice Distortion 
Analysis (Non-uniform microstrain)

Crystallinity Analysis

Residue Stress Analysis

Texture analysis 

Structure Solution and Refinement

Radical distribution function (for amorphous materials)



7.3.5 Electron Diffraction and Neutron Diffraction

1. Electron Diffraction

100 kV  ----  ~ 0.00370 nm

2meeV

h ＝

2. Neutron Diffraction

----- Scatterring of atomic nuclear 

~   higher atomic resolution

a) TEM image of the tip part of one TeO2 nanorod. (b) 
Enlarged TEM image. (c) The corresponding electron 
diffraction pattern.

de Brogli wave length 
of electron in a field V:

Atom-level resolution!



7.4 Quasicrystal, liquid crystal and 
amorphous

Quasicrystal: 

• quasiperiodic crystal

• 5-fold axis occurs in solid state, 
seemingly challenging the 
crystallographic theory. 

• In 1984, Dan Shechtman et al. reported 
their finding that the Al-Mn(14 at.%) alloy 
adopts an icosahedral phase with 5-fold 
axis. (first observed in 1982.4.8, see Phys. 
Rev. Lett. 1984,  53, 1951).

• He won the Nobel Prize in Chemistry in 2011. 





Angew. Chem. Int. Ed. 2011, 50, 

Even his cooperator, J. W Cahn, thought that the 
pheonomenon was resulted from twinning of single crystals!    





An icosahedral Yb-Cd 

quasicrystal is composed 

of an aperiodic ordered 

arrangement of YbCd 

clusters (yellow and blue 

spheres at the vertices of 

the polyhedra





Quasi-crystal
Crystal

No translation symmetry;

Long-range order, directional.  

Translation symmetry, 
Long-range order, 
Directional.  

Icosahedral phase in 
Al-Mn, Ti2Ni, Al-Li-
Cu,  Mg-Al-Zn alloys.

3D quasicrystal:

2D quasicrystal:

With 1D translation 
symmetry and 2D 
quasiperiodicity.  

8-fold, 10-fold 
quasicrystals in some 
alloys. 



History of quasicrystal concept 
(extracted from wikipedia)

1. Quasicrystal-like structures had been known 
well before the 20th-century, e.g., tiles in a 
medieval islamic mosque in Iran. 

2. In 1961, Hao Wang proposed a mathematic 
problem related to the planar tiling. 

3. In 1966, Wang’s student, Robert Berger, 
constructed a set of some 20,000 square tiles 
(now called Wang tiles), which can tile the plane 
aperiodically.

4. In particular, in 1976, Roger Penrose proposed 
a set of just two tiles, up to rotation, (referred to 
as Penrose tiles) that produced only non-periodic 
tilings of the plane. 

Wang Tiles

Penrose Tiling



5. In 1982, Alan Mackay showed experimentally that the diffraction 
pattern from the Penrose tiling had a two-dimensional Fourier 
transform consisting of sharp 'delta' peaks arranged in a fivefold 
symmetric pattern. (Physica A, 1982, 114, 609)

6. The history of quasicrystals begins with the 1984 paper "Metallic 
Phase with Long-Range Orientational Order and No Translational 
Symmetry" where Dan Shechtman et al. demonstrated a clear 
diffraction pattern with a fivefold symmetry. 

7. The term quasicrystal was first used in print shortly after the 
announcement of Shechtman's discovery, in a paper by Steinhardt and 
Levine. (Phys. Rev. Lett. 1984, 53,2477)

8. At the end of the 1980s, the idea of quasicrystal became widely 
acceptable!



Liquid crystals

• Crystalline solid: anisotropic

• Liquid:   isotropic

• Liquid crystal:    anisotropic!  

Liquids with well-ordered, crystal-like 

structures.

More details of liquid crystals can be learnt in 

material science!



Chapter 7
Key points/concepts

1. Lattice of crystal structure:  translation symmetry

a lattice point = a structure motif   -- unit cell 

2. Crystal systems (7), Bravais Lattice (14)

3. Symmetry operations (point & translation), Crystallographic 

point groups(32), space groups (230), equivalent positions. 

4. Miller index of crystal plane，d-spacing etc.

5. X-ray diffraction, Laue equation, Bragg’s Law, reciprocal 

lattice, Ewald sphere, structural factor, system absence, 

general process of x-ray crystal structure determination.



X-ray diffraction, Bragg’s Law, Ewald sphere

O1
OA

G

1/

1/dhkl
2q

S

S0

r*

q
q

Radius = 1/

(hkl)

Bragg’s law Directions of 

detected X-ray 

diffraction beams: 

{2q}

indexing

sin2q1:sin2q2:…:sin2qn

Crystal system, 
Bravais lattice, cell 
parameters etc. 

Fhkl & (x,y,z)

Ewald sphere + reciprocal lattice



• some reflections/diffractions will be systematically 

absent (Fhkl = 0  Ihkl = 0) in case a crystall lattice has 

centering, glide plane and screw axis.

• Structure factor & systematic absence

Structure factor:

Sum over all atoms 
within a unit cell.

fj: atomic scattering factor defined by 
atomic electron density distribution.

Phase difference between 
the scattered and incident 
x-ray over atom j. 



Further applications of X-ray diffraction

a) Change of 

specific d-spacing 

dhkl vs. qhkl

d d’

b) Size effect of microcrystal—broadening of 

diffraction peaks

Scherrer formula

(size:  1-100nm) 

c) Deformation of lattice—broadening of diffraction peaks

d
d1 d2

d1

d2 d3

d4 d5



In the diffraction direction, the difference between the 

incident and the diffracted beam through any two lattice 

points must be an integral number of wavelengths.

The lattice vector from (000) to (mnp):   Tmnp = ma + nb +pc

The differences in wavelengths for observed diffractions:

 =Tmnp· (S-S0)

=(ma + nb +pc) ·(S-S0)

= ma ·(S-S0) + nb ·(S-S0) + pc ·(S-S0)

=mh + nk + pl

=(mh+nk+pl)



2D lattices:  

3 parellelograms

Inversion center: 

(0,0,0);  (1/2,1/2,1/2)

(0,0,1/2), (1/2,0,0), 
(0,1/2,0);

(1/2,1/2,0),(0,1/2,1/2), 
(1/2,0,1/2)



2D lattices: 

1 parellelogram 

2 rectangles.



2D lattices: 

3 rectangles.



2D lattices: 

1 square

2 rectangles.



2D lattices: 

3 squares



2D lattices: 

1 hexagon + 2  rectangles.

C6

Oa b

c

a

b



Rhombohedral

O

ab
c

C3


