Chapter 7
Introduction to Crystallography

7.1 Periodicity and lattices of crystal structure

stal structures

/.3 X-ray diffraction of crystals

7.4 Quasi-crystal, liquid crystal and amorphous




Crystalline Substances: e.g., Diamond and Table Salt

IS
Diamonds




/.1 periodicity and lattices of crystal structure

7.1.1 The characteristics of crystal structure
1. A few definitions:

« Solids can be divided into two primary categories,
crystalline solids and amorphous solids

e Crystalline Solids are built from atoms or molecules
arranged in a periodic manner in space, e.g., rock salt and
diamond.

« Amorphous Solids possess short-range order only. They
are not related through symmetry, e.g. glass, rosin, amber
glass.

» Short-Range Order: Fixed bond lengths and angles
» Long-Range Order: Associated with a lattice point
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Crystals are solids that are built from atoms or

molecules arranged in a periodic manner in space.
Crystalline vs. Amorphous of SiO,

Quartz: (Crystalline) Glass: (Amorphous)
Both Short and Long Range Order Short Range Order Only

® Oxygen

o Silicon

Short range order: fixed bond lengths and angles
due to the bonding nature of constituent atoms.




2. Fundamental characteristics of crystal

a) Spontaneous formation of polyhedral shapes
F+V=E+2

20 faces and 12 vertices

No 5-fold axis
IS allowed in a
single crystal!

Octahedron Tetrahedron

b) Uniformity: periodic distribution of atoms/moleculen



Single crystal gold bead with
naturally formed facets




HRTEM images of hollow beads




*Anisotropy

Different periodicity and density for different direction.

/2150 g/mm?
’ 1 Conductivity
/ l N 1
1150 g/mm?

Graphite
570 g/mm?

NaCl




Definite sharp melting points

andl

R
« Symmetry: crystal shape (macroscopic)
lattice arrangement (microscopic)

-

«X-ray diffraction by crystals:

atomic distances match the wavelength of x-ray.
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Sodium Chloride: Solid and Crystal structure




7.1.2 The lattice and unit cell

Lattice:

A periodic pattern of points in space, such that
each lattice point has identical surroundings.

* Can be reproduced by translational motion
along the vector between any two points.




a. 1D lattice and its unit:

Each motif in this

/; 1D periodic pattern
= _ can be represented

| - | by a point.

. o : . : 3 A lattice of

repeating points is

thus obtained to

represent the

. .‘ .. R " ,  above 1D system.

The translation vectors connecting any two lattice points
constitute a translation group. i.e.,

T.,=ma(m=0,%1,+2, ..., +to0) a: basic vector.
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Examples of 1D lattice

a) e O O O O O O O O O

b) o e © |6 © e © e o© e

C) ©eo © e © e © e © e
’ o " - o . Structural motif
d) o 8. |8 8 & ¢
L ® @) @) ®

ais a 1D lattice itself;
b-d are not lattices, but can be represented by a lattice.

A pattern with periodicity = a lattice + structural motif! i




b. Lattice and its unit in 2D:

Tmn:mg'l_ng <m,n:0,il,i2’ )
a & b: independent basic vectors

{T.,, } —a translation group

\ \

*Crystal structure = lattice + structural motif
(basis)




Lattice:

A periodic pattern of points in space, such that each
lattice point has identical surroundings.

« Can be reproduced by translational motion along the
vector between any two points.

This 2D pattern itself

IS not a lattice, but

can be represented

by a 2D Lattice. .




2D Primitive Cell

Choice of Unit Cell

(*) e ® ®

» There Is always more than one
possible choice of unit cell.

» By convention, the chosen unit
cell should be as small as
possible while reflecting the
full symmetry of the lattice.

1) The highest symmetry

2) The smallest area (or volume)
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Five types of 2D lattices

There are literally thousands of crystalline materials,
there are only 5 distinct planar lattices.

Farallelogram Square Rectangle
y-angle

between JECIE RO
two basicl s I

L]
VCluolis A * * * ° *
a

o] ]

d

oL

a#b,y¢90° | :_,Y:90 . s s b
& y# 120° 1,y azb, y=90°

Centered Rectangle i,C2
I) Primitive " ® e @ = Hexagonal

» ] ] a:b’
I1) Centered k v=120°
1,Cq
a=b, y=90°

Centred cell: 1 + C, // Primiative cell: i




Question:

Both the centred rectangular and simple hexagonal 2D
lattices have a rhombic primitive unit cell. What is the
key difference between them?

Centered Rectangle

" ® s = = Hexagonal

a=b,

a#b, y=90° " b




Example: 2D-lattice of Graphene

- What’s the smallest structure motif of a graphene sheet?

- What type of lattice does a planar graphene sheet
belong to?
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stacking

> graphite

——— 1\
_—

3-D lattice can be used!

c. Lattices and its unit in 3D:

T=ma+nb+pc (Imn,p=0,+1,+2,...)
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c. Lattices and its unit in 3D:

T=ma+nb+pc (mn,p=0,+1,+2,...)

The Choice of a Unit Cell:

Having the highest symmetry and minimal size



The Choice of a Primitive Cell

1) The axial system consisting of the basis

vectors should be right handed.

2) The basis vectors should coincide as much as possible with
directions of the highest symmetry.

3) Should be the smallest volume that satisfies condition 2.
4) Of all lattice vectors none is shorter than a.

5) Of those not directed along a none is shorter than b.

6) Of those not lying in the a, b plane none is shorter than c.

7) The three angles between the basis vectors a,b,c are either
all acute or obtuse.

Conditions 4-6 define




Crystal structure = lattice + structural motif

basis)




Atomic Coordinates: Fractional coordinates

Fractional coordinates:

 The positions of atoms inside a
unit cell are specified using
fractional coordinates (X,y,z).

 These coordinates specify the
position as fractions of the unit cell

edge lengths. i (1.0, 0.6, 0.5)




Example:

Cubic unit cell of CsCl, The Crystal Structure
a=b=c :
o=PB=y=90°

Cs:(0,0,0)

Cl: (1/2,1/2,1/2)

In this case, the lattice point can be put at the position of either
Cs or Cl atom. Each unit cell contains both a Cs and CIl atom.

Single Crystal: Composed of only one particular type of space lattice.

Polycrystalline matter: Clusters of multiple crystals.




7.1.3 Crystal systems and Bravais Lattices

a. Crystal systems

There are a total of seven types of
crystal systems differing in symmetry.

Crystal systems

Characteristic
symmetry
elements

Unit cell

parameters

Choice of axis

Lattic
Point

Triclinic

Nil

a#b#C
o=P#y

Group

Monoclinic

Cz, On

azb=cC
o=y=90°=

b/l C,

Orthorhombic

3C,, 2 oy

azb=cC
OL:B:'Y:900

a, b, cl/3C,

Unit cell is chosen in such a way that it contains as many symmetry

elements of the lattice as possible and has the smallest volume.




Trigonal

Rhombohedral
a=b=c,
a=p=y<120°%£90°

Hexagonal
a=b=c, a=B=90°
vy=120°

Tetragonal

a=b=c,
OL:B:y:QOO

cl/l Cy

Hexagonal

a=b=c
o=P3=90°, y=120°

cll Cs

Cubic

a=b=c
OL:B:y:QOO

Four C; axes
are parallel to
the body
diagonals  of
the cube




b. Bravais Lattices: (14) [developed by Bravais in 1850 !]
Primitive cell: minimal size, one lattice point only!

Unit Cell of Bravais Lattice: having the highest symmetry &
minimal size, may contain more than one lattice point.

Symmetry of Lattice | ===m) | Crystal Systems (7)

Unit Cell of Lattice l

mmss) Bravais Lattices (14)

(Primitive or Centered)

Triclinic Monoclinic Orthor- Tetragonal Cubic  Trigonal Hexagonal
hombic

aP mP, mC oP, oC tP, tli cP,cl, hR,hP hP
oF, ol cF

Lowercase letter (crystal system) + Capital letter (Type of cell
e.g., hR-- R-centred hexagonal, mC-- C-centred monoclinic



* Triclinic

azb#c

o=P#y

aP (Primitive)

Triclinic crystal system has the lowest symmetry.
It can be simply represented by a primitive cell.

Symmetry element: |




A primitive cell contains one lattice point and a

* Monoclinic C-centered unit cell contains two lattice points.

Sym. Elements:
I, C,(//b), o,




Does |- or F-centered monoclinic lattice exist?

/
,
|
l
!
|

RS SR N

ml ? =mC mF ? =mC

Both I- and F-centered monoclinic are unnecessary and can be
represented by a mCl!




- The primitive cell of a C-centred orthor-
hombic lattice Is actually monoclinic!

* Orthorhombic

a#b#C
o= B =y =90°

oP (Primitive) C-centered or A-centered or B-centered



* Orthorhombic

azb=cC Sym. Elements:
o= B =y =90° 3C, (//a,b,c), i, 3o}, (//A,B,C)

or oA or oB (In-centered) (Face—centeredi



* Orthorhombic
Face-centered cell (oF) and its primitive cell

« A Face-centered unit cell
contains four lattice points!!

 Its primitive cell is triclinic,
and does not contain such
symmetry elements as C, and
o, of the lattice.

Question: For a body-centered orthorhombic lattice, Is its primitive
cell triclinic or monoclinic?

|
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* Tetragonal

a=b#c Sym. Elements:
a=p =y =90° ' C,(/lc), 2C, (//a,b), 1, 3o}, (La,b,c)




tetragonal nor F-centered

tetragonal exists.

(@)
&)
| —
()]
i
-
(D)
T
O
| -
)
i
=
)
Z

Please prove it!

tC =tP




*Trigonal ---- Rhombohedral
Cs

a=b=c
o= =y #90°

4

Sym. Elements: C, I,

A rhombohedral lattice can
be represented by a R-
centered hexagonal lattice!




hP  unitcell

* Hexagonal

a=b=c Sym. Elements:
a=p =909 |mp|Cellc),I,

y =120° o, (Lc, /IC)

Hexagonal 2D lattice




b. primitive hexagonal

a. Primitive rnomohedral =
r-centered hexagonal r-centered rhombohedral




Sym. Elements:
* Cubic m— | 3C,(/la,b,c), 4C,, i,
3o, (La,b,c, //A,B,C)

IS there a c-centered cubic lattice?

Introducing a C-center eliminates all C;-axes and results In
only one C, axis. The lattice should be actually tetragonal.

1
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- The primitive cell of a fcc or bcc lattice is rhombohedral,

which does not include the C,—axes of the lattice!




Bravais Lattices: (14)

Unit Cell: the highest symmetry + minimal size

Centered unit cell is thus introduced to contain the
highest symmetry of the lattice.

Crystal
systems

--

-




Orthorhombic

Trigonal

Tetragonal

Hexagonal




4
1

Simple cubic Body-centered cubic Face-centered cubic

L AR A T i
Simple “C-centered Body-centered Face-centered
orthorhombic orthorhombic  orthohombic  orthohombic

'.__1—

Died on 30 Mar 1863
(born 23 Aug 1811)

Simple triclinic  Rhombohedral T — French physicist best

g remembered for his work

on the lattice theory of

crystals; Bravais lattices

e vl W g

Simple C-centered Simple Body-centered
monoclinic  Monoclinic tetragonal . tetragonal

are named for him.




7.1.4 Crystal Planes and Miller Indices

a. Lattice planes I'Tf g g e
. R L e

A 2D lattice plane,i.e. # 2 » o o o o o 22 o o o
- “(110) s 0 .I @ ) o & _-l..‘a o o

(001), of an OP lattice. "2 o o o o /4 /p o\ N\ o
S — Ay e e e /.///;/ //. “a R\
Those lines are the 2 A :’,/// ?///%%/ TN B
: : a: B e B /" ; : S
projections of crystal S s . /,?"/: 4%5‘/[ . < [BE
planes (fo-axis) onto. *SIIS=S- /it 1 L %
this plane. 2> T (120) * * e e e . o

® |t is possible to describe certain directions and planes
with respect to the crystal lattice using a set of three
Integers referred to as Miller Indices.

® Miller indices describe the orientation and spacing of a
family of planes. 1




b. Miller indices (hkl)

® Introduced in 1939 by the British
mineralogist W. H. Miller.

® Miller indices are the reciprocal
Intercepts of the lattice plane on the
unit cell axes.

For this special case: r=3, s=2,t=1
h:k:l1 =(1/3):(1/2):(1/1) = 2:3:6
- The Miller index of this lattice plane Is (236)!

Question: why do we not use r:s:t directly to represent a
lattice plane? i




Example: Miller indices in a cubic lattice
(1{1}0) ,110)

For a cubic lattice, the (100), (010),
and (001) planes are symmetry-
equivalent with respect to C; axes.




Hexagonal, using four axes (al,a2,a3,c)
(0001) A"
(hkil),

4C7K >(1210) a3 _ 90
lig]

<i \

A third axis:

= a; = -(a, + a)

a

\ (1011

The use of only two
basis vectorsa & b
does not reflect the
Cs- Symmetry
among such planes
as (100), (110) ... !




C. Directions In lattice _
- The direction of a lattice

vector, ua + vb +wc, Is
represented by three
Indices [uvw], which are
prime to each other.

Miller Indices [uvw]

e.g. o axis: [100].

axis: [010].

axis: [001].
=a+b - [110].

=05a+b+c > [122]
=a+0.5b - [210]

=05a-b > [210]




Example: Directions on the (111) plane of a cubic lattice.

[112]  [101] . Various lattice vectors
1 can be defined by the
lattice points within the
(111) plane.

- e.d., the vector from
points Ato B, I.e., -0.5a
- 0.5b + c, defines the

direction [112] .
- The vector from points
Ato C, -b+c, Is defines

the direction [[e}RA]

- The vector CD, I.e., -
A (1.0, 1.0, 0.0); B(0.5, 0.5, 1.0); a+b, defines the

C(1.0, 0.0, 1.0): D(0.0, 1.0, 1.0) direction [gmKe]| -




Miller indices (hkl) are used to specify the orientation and
spacing of a family of planes.

{hkl} are used to specify all symmetry-
equivalent sets of planes

e.g., For a cubic lattice system, the lattice
planes (100), (010), (001) are symmetry-

equivalent upon C, or C, rotations, and can

be represented by {100}.

[uvw] zZone axis Direction Vector = ua+vb + wc

Miller indices: [hkl] are used to specify a direction in space
with respect of the unit cell axes.

<hkl> are used to specify a set of symmetry-
equivalent directions. Ot




d. d-spacing d,,

The spacing between adjacent planes in a family is
referred to as a “d-spacing”.

X

|= @ )

h} o ° o,_; 1/ / N e SR S —-
- ol ,__'/-/( { /.;:/. (010) » S —
:/l = l l’ . & e e 9o o @ 2

P AV A B 5 SN I—_a L —

B &~ "tt o e » b I:'—gdm(b___‘.

.(110) . o~ ¥ e /?/ P . \\\\Q\ o
—ai gllo ® ® / /’/,/////. / ‘\\ N\ a\§\
B < ¢ o o/ / ' : , bI

o w o @

‘ ®. @ Q

oP:

- Projections

of crystals

planes (//c-
axis) on the
(001) plane.




The spacing between adjacent planes in a family is
referred to as a “d-spacing”

- Cubic : 1/d% = (h*+k?+1%)/a? or d? = a?/(h*+k>+1?)

- Tetragonal: 1/d? = (h?+k?)/a? + 1%/c?

« Orthorhombic: 1/d? = hé/a2+k?/b? + 12/c?

- Hexagonal: 1/d? = (4/3)(h?+hk+k?)/a? + 1°/c?

- Monoclinic: 1/d?=[(h/a)?+ (k/b)?sin?B + (l/c)?-
(2hl/ac)cosf)/sin’f

= Triclinic:




7.1.5 Real crystals and Crystal defects:

Real crystals are only close approximations of space
lattices

Simplest point
defect is a

vacancy or
vacant lattice site

For most metals:

Caused through
thermal vibration




Screw Dislocation

* Formed by shear
stress

 Also linear and along
a dislocation line

=g |

Jll -Jl J‘ " P, 'l

I f ] .
| o e

]
._1_' -
| 1=
T
A -
It
e
1T
1F

::PP 8

l_h_h _I l_h |_I — I_-I_-_-_-l_-l_-

|-.u.l.. I--ﬂ-l-l'l-l-ﬂ-i--l- -I-II—FIII-F-II-I- e I-|I-|.l-l-|.-|-||.

Ly Le Lo i1 1
Seaasass

|

|

2

% =

i"”“'Ti'

L B L B e B




7.2 Symmetry In crystal structures.

7.2.1 Symmetry elements and symmetry operations

» Crystallographers make use of all the symmetry
elements available in a crystal to minimize the number of
Independent coordinates.

» Three types of symmetry elements in a crystal lattice:
« Lattice symmetry (translational symmetry)
 Point symmetry (rotation, inversion & reflection etc.)

« Other translational symmetry elements: screw axes and
glide planes

|
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a. Lattice symmetry
--- translation operation

Tmnp=Ma +nb +pc  or

a, b, c: basic vectors!

All unique translation operations available in a crystal
lattice constitute a translation group {T,,,} (order = o).




b. Point symmetry elements compatible with 3D translations

« A point-symmetry operation does not alter at least one point
that it operates on, e.g., rotation, reflection, inversion, and
rotation-inversion.

* Point symmetry elements available in a lattice must be
compatible with the 3D translations, including

Operation Point symmetry elements

Reflection Mirror Plane m
Rotation operation | Rotation axis n=1,23,4,6
Inversion Center of symmetry 1

Rotatory inversion | Inversion axis 3,4,6

It is provable that translational symmetry of a lattice excludes

the presence of 5-fold axis!



Rotation axis: 1,2,3,4,6 only!!  Why ?7?7?

Limitation induced by
Translation symmetry!

Four lattice points: A, A,, Az Ay
> |(m-D2]<1 > [m-1]<2

> m=3210,-1

Upon an n-fold rotation,

2> cosa=1,1/2,0,-1/2, -1
with A,A, // BB, - o = 2n/n = 0°, 60°, 90°, 120°, 180°
B,B, =a + 2acosa = ma >n=1 6 4 3 2

cosa=(m-1)/2 rotation axes: 1,2,3,4,6 only!! 5 f 3



Example: The symmetry elements

In a primitive cell of a cubic lattice.

==  Twofold axis

l’_t' A Threefold axis
I L

Fourfold axis
T

o

twofold axis threefold axis fourfold axis

'\ A B §

2 3 4 6
Rotation axis

Hexagonal lattice

Sixfold axis

.



General equivalent positions:
1) 2-fold axis (e.g., b axis in monoclinic lattice)
(X,¥,2) =2 (-X,¥,-z) (Note: in fractional coordinates)

Equivalent upon rotation around a 2-fold axis.

Note: pis not essentially 90°.




General equivalent positions:

11) 3-fold axis //c axis In a hexagonal lattice

(X,y,Z), ('y’ X-Y, 2)1 ('X+y’ -X, Z)




4 fold axis // ¢ axis (cubic lattice)

general equivalent positions:

(X,¥.2), (-¥: X, 2), (-X,-Y,2), (¥,-X,2)

6 fold axis // ¢ axis (hexagonal lattice)
general equivalent positions:

(X.y,2), (X-Y, X, 2), (Y, X-Y, 2),

(-X,-,2), (Y-X, -X, 2), (¥, y-X,2)




c. Screw axes n, (m<n) and glide planes:

A screw axis symmetry is combination of rotation about an axis and
a translation parallel to that axis leaves a crystal unchanged.

Screw operation [ _T(—) C, (C,/la, m=12,.,n-1)

An n-fold screw axis can beny, n,, ..., or n_ ;.

translation a/2

Example: 2,// a axis

A helical structure Is
related to a screw axis!



A 3, screw axis In the crystal of tellurium




Screw axes: 3,

|
I
5
1
nnt Srgnelafgn
e -|

5
3
=
3
E

= v S

= T(a/3) C,1




Helical structures along screw axes

View perpendicular to axis View down axis

© ?)




Glide operations: a, b, c, n and d glides
Glide operation: G = T(t)-M Mirror: M (reflection)
t=a/2, b/2, c/2, (a+b)/2, (b+c)/2, (atc)/2, (a+b+c)/4 etc.
GG = [T(t)M]? = T(2t), © = 2t (maybe a basis vector of lattice)
VAVAVAVAVAVAN

Zl1g-zag structure
a,b,c glide:t=a/2, b/2, c/2
n glide: t =(a+b)/2, (b+c)/2, (a+c)/2

d glide: t= (atb+c)/4, (a+b)/4, (b+c)/4,
or (a+c)/4 .

e glide (double glide plane).




Graphical representations

of glide and mirror planes

Projection (1) Parallel (//)
. LA
asb prall A LI
A E— - &
S
gt MESRT Ay uic | 1 SREREEE - N
: e Zlh




Summary of symmetry elements and
symmetry operations in crystal structure

Symm. operation Symm. Elements
Rotation operation rotation axis C,
Reflection operation mirror plane m
Inversion operation Inversion center

Rotation inversion operation Inversion axis

Translation operation lattice

Screw operation screw axis n,

Glide operation glide plane
(n=1, 2, 3, 4, 6)

Combinations of the 8 point symm. elements (5 n-axis, I,
m, S,) result in 32 crystallographic point groups.




Combining symmetry elements

 When a crystal possesses more than one of the above
point symmetry elements, these macroscopic symmetry
elements must all pass through a common point.

 There are 32 possible combinations of the above symmetry
elements that pass through a point.

 There are the 32 crystallographic point groups.

« So far we have

7 Crystal systems -> 14 Bravais lattices (Translation) +
32 crystallographic point groups (Point symmetry)

- 230 space groups

|
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7.2.2 Crystallographic point group and space group
1. Crystallographic point group

Combinations of the 8 point symm. elements (5 n-axis, I, m,
S,) result in 32 crystallographic point groups.

e.g., Monoclinic system: point symmetry elements -- 2, m,
2 —{E, C,} -- C, point group; m -{E,o} -- C, point group.
2,m --{E, C,, g, I} -- C,, point group.
Two notations of crystallographic point group
Schonflies notation vs. International notation
Cs 2

Cq m

C,h 2/m




Each crystal system includes a set of distinctive
crystallographic point groups.

- Atotal of 32 crystallographic point groups.

Crystal
system

monoclinic

orthorhombic

Schonflies
notation

C,

International
notation

2

m
2/m
222

mm?2

Symmetry Examples

elements
C,

o)

C, o |
3C,

C, 20

BiPO,
KNO,
KAISi,Oq4
HIO,

NaNO,
MgSO,




2. Crystallographic space group
Point groups (32) + translational symmetries = Space groups (230)

Schonflies notation vs. International notation

e.g, D,,*°-P2,/n2,/m 2,/a C,.°>—=P2,/c
System directions

1 2 3
Cubic a at+b+c a+b
Hexagonal C a 2a+b
Tetragonal C a a+b
Trigonal (hR) a+b+c a-b -
Trigonal* (hP) C a
Orthorhombic a b C

Monoclinic b - -




How to understand/use Space Group?

Symmetry elements & equivalent positions

1. Each space group can be schematically represented by
using two types of diagrams, I.e., diagrams of symmetry
elements and diagram of general equivalent positions.

2. The physical meaning of general equivalent positions: if
there is an X atom at position (X,y,z), there should a same X
atom at each equivalent position within a unit cell.

Diagram of Symmetry Diagram of general
elements equivalent position

174§ o

/O—Oﬁ
A Y &




Example: monoclinic point group C,,-2/m

Six space groups belong to C,, point group, denoted:
C,.-P2/m, C,,%>-P2,/m, C,3-C2/m,

C,.*-P2/c, C,>-P2,/c, C,°-C2/c,

e.g., C,>—P2/c (iisalways available!)

Multiplicity, Wyckoff letter, site symmetry o |



Special equivalent positions :

2d 1 (3,04),(230; 2c1 (003)(00);
2b1 (£,00),(4,4,4); 2al (0,00)(0,%,21

Equivalent positions are correlated by symmetry
elements and can be produced from a given position
upon available symmetry operations.

Thus it is unnecessary to list all atoms, but unique type of
atoms within a unit cell. .




Diamond: face-centred cubic O, ’- Fd3m

4y

d glide
plane at

1/8,3/8,
5/8,8/7
. Fcc Sideview topview
 Lattice points: (0,0,0)+, (1/2,1/2,0)+, (0,1/2,1/2)+, (1/2,0,1/2)+
« Structure motif—2C 0,0,0; 1/4,1/4,1/4

« Totally 8 C atoms within a unit cell.

Note: In this case, the presence of same-type atoms in
structure motif introduces more symmetry elements!




7.2.3 The description and application of crystal structure

Example 1. Crystal of iodine

Crystal System orthorhombic
Space group D, -Cmca (or C 2/m 2/c 2,/a)
Cell parameters a=713.6 pm b=468.6 pm ¢ =987.4 pm

Number of molecules per unitcell Z=4
Atomic coordinate for | X y Z
0 0.15434  0.11741




Lattice points within a unit cell: (0,0,0)+, (1/2, 1/2, 0)+ (C-centered).

General equivalent positions: C 2/m 2/c 2,/a

(X,V,2); (-X, -y, -2); (-X, -y+1/2, z+1/2); (X, y+1/2, -z+1/2)

(0, .15434, .11741) (1/2, 65434, .11741)
(0, -.15434, -.11741) [ (1/2, 34566, -.11741)

(0, .34566, .61741) (1/2, .84566, .61741)
(0, .65434, 38259) (1/2, .15434, 38259)

a) Bond length (Bond distance)
r,,= [(X,-X,)2a2+(y,-Y,)2b%+(z,-2,)2c?]¥2 = 2.715 A

b) Density of crystal

V=axbxc=3.27x 108 pm?3

D = 8x 127.0 /(6.02 x 102 x 327.0 x 10-24) g cm® =5.16 g cm-



7.3 X-ray diffraction of crystals

Concept of diffraction
(from a plane) Cone of diffraction

Crystal

Detector

Plane in crystal _
Reciprocal space)

(real space)

The wavelengths (0.05-2.5 A) of x-rays match the d-
spacing of crystal planes, resulting in diffraction!




7.3.1 The source and property of X-ray

VAL

tungzten filament.

cooling water

target —

beryllium window = X-TRYH metal focusing cup

X-ray tube
The wavelengths of X-ray are in the range
of 100-0.01A

« 1-0.01A: hard x-ray T

« 100~1A: soft x-ray

« 2.5-0.5A: used in crystal structure analysis

+ 1-0.05A: used in medical perspective, detection of materials wound
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X-rays produced by electronic transition
between atomic energy levels A part of the

High energy electrons are
| electron beam blocked; their

X nis Kinetic energies
giving rise to
“white” x-ray.
As for Cu:
Cut 1s12s22pé...
2 .1522s22p°...
A K _.=1540594 A
K= 1.544422 A

lo1 & 2|Ka2




154.056 pm

f Weighted average of
Kat wavelength ~ 154.18pm.
154.439 pm

K, |

y

Note: K_, can not be striped by the monochromator.
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Synchrotron Radiation X-ray Source
Storage Ring Utility Facilities

_Users Office
(2nd Floor)

T Y 7
i h, T __ =
k.
g
-

User Lounge
d—H—EEE=E

Library

HE&E=E

Liguid Nitrogen Station
TR ERL

Stock Corner
Aby&a—73—
Machine Shop

T#Z

Health Office

BETER

Biology Preparation Hoom
S ER=E

@ Chemistry Preparation Room
{LFEE =

Waste Bin

ARy O R

4 20 <0 80 80 100m




Benefits of Synchrotron radiation X-ray :

Narrow range of x-ray wave-lengths, i.e., high
monochromicity

High intensity of x-ray.
High intensity and high quality of diffraction data
High resolution — characterization microcrystals

Too000000 Expensive facility!




B Larne-scale Third-generation Faciites B (ther Major Facilities




SPring-8, at Osaka, Japan. www.spring8.or.jp




ESRF - European Synchrotron Radiation Facility , Polygone
Scientifique Louis Ne&l - 6, rue Jules Horowitz - 38000 Grenoble
- France , http://www.esrf.fr
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CENTRAL LAB / OFFICE BUILDING

CONFERENCE CENTE Ry

UNDULATOR
LINE

EXPERIMENT HALL
STORAGERING

LAB/OFFICE MODULES -

i 4
Ly

The Advanced Photon Source (APS) at Argonne National
Laboratory, http://www.aps.anl.gov/aps.php i




7.3.2 Laue equation and Bragg’s Law
1. Laue equations

Laue first mathematically described
diffraction from crystals.

« consider X-rays scattered from every atom
In every unit cell in the crystal. and how
they interfere with each other

 to get a diffraction spot you must have

constructive interference.

Lead ~_ film
shield

Nobel Prize in
. . Physics 1914

crystal

Laue diffraction
pattern of ruby

|
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X-ray

Laue Diffraction (1912)




Laue equations (Based on diffraction by 1D atomic lattice)
a — lattice parameter

a,— angle between a and S,
o — angle between a and S

Interference condition:

The difference in path lengths of
adjacent lattice points must be a
multiple integral of the wavelength.

For each h value, the _
il N EVARICER Pl €., 4= AD-CB =hi,h=0,+1,£2,...
lattice make a cone!

AD=aeS =acosa
CB=aeS,=acosq,

A=ae(S-S,)

=a(cosa —cosa, )=hi




Expanded to 3D lattice case:
a {S-S,) = a(cosa-cosa,) = hA —

b {S-Sy) = b(cosB-cosBy) = kA —

C {S-S,) = c(cosy-cosy,) = 1A  _—
a,b,c—Ilattice parameter

a,.B,Y,—angle between basis vectors a,b,c and S,
o,B,y —angle between basis vectors a,b,c and S

h,k,I — indices of diffraction, integers

which may not be prime to each other and are different from
Miller indices for crystal plane!

Each equation defines a cone of diffraction.

Only when the three cones of diffraction intersect can
the diffraction beam be observable!




2. The Bragg’s Law

Bragg considered the diffraction arising from reflection
by lattice planes.

So

QLAQA/ g

Conditions to obtain constructive inferences,

a. The scattered x-ray must be coplanar with the incident
Xx-ray and the normal of the lattice plane.

b. 65 = 6, .y




The difference in path lengths,

Condition for diffraction:
v g‘

A=nA= Zd(thSinﬁn (n=1,2,3, ... ) V‘vj :
6.: the angle of reflection “‘Qgr"-,‘ iy

n: the order of the reflection

Define Ayt = Ay 2 20,0k SN G i = 4
miller indices

Note: n is not measurable! Let d . .., =d.,

Bragg's Law:  2d,, -sin6 = A reflection indices

What Is the physical meaning of d,,,?
The Braggs, father and son, shared the 1915 Nobel Prize in Physics

for their work in crystallography.



Virtual reflection plane

2d iy SING, = nA (n=1, 2, 3, ...)

2dpy SING = A (dnnnknt = Ahia/N)
Indices

Diffraction indices or virtual reflection plane indices.

The Bragg’s law defines the direction of diffraction

beams from a given set of lattice planes!



diffraction crystal
planes -

(100), (200), ... (100)  (200)  (300)

Families of planes
Lattice planes-(100)

The Bragg’s Law vs. Laue equation:

Both equations define the relationship between the direction of
diffraction beams, the x-ray wavelength and the parameters of
a crystal lattice.

The Bragg’s law: simple, easier to derive lattice parameters
from the direction of diffraction beams. 2dhkl sSiné = A



3. Reciprocal lattice

a><b Basis vectors of a
remprocal lattice

F * =1/d,,

A reciprocal lattice

1 A1 7~ -
B 2 P point corresponds to
100 I.I‘ a diffraction (lattice)
o & plane of its original
e 1 I 2 | N Vgl B FPTPSSTITITITITNL
N e A reciprocal vector r*
.-’I‘i -, is perpendicular to a
<1 11 lattice plane with the
1 am' same indices (hkl). ;




4. Ewald sphere (reflection sphere)

G: a diffraction point
/a reciprocal lattice

A\ SN Onlywhen the reciprocal
IO E {lattice point is located on

it :.-'.-':°i'§ ''''''''' 1 the Ewald sphere car
R e constructive Iinterference
occur !

2\010*\sin6’:(%)sin6’

Monochromic x-ray = fixed radius of the Ewald sphere!

" 2d,,8IN0 =4

Fixed single crystal - Very few diffraction datal!



How to get more diffraction data?

a) Fixed A:. Rotate the crystal to enable more
reciprocal points (diffractions) dynamically located
on the Ewald sphere.

b) Fixed crystal: use x-rays with varying wavelengths
(e.qg., white x-ray). By doing so, the Ewald sphere
becomes filled.

The first technigue is preferred and has been widely
used in practice!

The second method can be used to determine the
orientation of a single crystal.




7.3.3. The intensity of diffraction beam
1. The principle of X-ray scattering

To save your time,
Let’s neglect part 1 and
move directly to part 2!
If you are interested in
this part, just go
through it by yourself.

For elastic scattering, each electron scatters the plane wave
causing a spherical wave (exp[2ri(k-r)]).

The phase difference is: A=(res - res_)/A

The scattered x-ray:  exp{2azi[r-(s-s,)/A]} or exp{27zi[r-q/l]}



The contribution of the scattering of all electrons of a given atom:

jp(r)exp(27dq r/A)d°r

For the crystal structure :

p(r) — Z/O(:ell(r + Rn)

A= ijce,,(w R )exp(27q - r/A)d°r




Supposed that there are N;, N,, N, periods along a,
b, c, and all the atoms locate on the position of lattice
points, F(g) can be replace with a constant 7. f is
scattering factor of atoms.

N,—1N,—1N;—1

A\n _ .I: Z Z ZGZﬂi/ﬂ(nlamzbmSc)-q
np

n;=0n,=0n3=0
For the case of 1D and =1,

1_627ziNa-q//1

N-1
. 2mna-q/A
W T € - 2ma-ql A
n=0 1-e




The intensity:

6 1N

250
200

150 |
100 |

5:)“}-
U

{ A[*(N=15)

-1.0 -0.6 -0.2 0.2 0.6 : -1.0 0.6 -0.2 0.2




In the case of 3-D:

sinz(ﬂsla-qj sinz(ﬂg2 b-qj sinz(ﬂ/Nl?’C-CIj
2
el o2 U U2 ) )

sin?| Za- sin?| Zb- j sinz(”c- j
(i qj (ﬂ q "oq
Therefore,

a-g/A=h, bg/i=k, cg/A=l (h, k, |should be integer)
or a-g=hA, bg=kA, cq=I1

----- LLaue conditions for X-ray diffraction

IR - (AR

Only those scatterings fulfilling these conditions give f
rise to measurable diffraction beams. o




2. The intensity of diffraction beam

e The directions of the diffraction beams

Bragg’s Law

The directions of the diffraction beams are determined

by the cell parameters.

|
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 The Intensity of diffraction beam

Systematic absence:
Fra =0 2 1q =0

Phase difference between
the scattered and incident

n
e
X-ray over atom |.
Sum over all atoms f,. atomic scattering factor defined by
within a unit cell. atomic electron density distribution.

 The intensities of the diffraction beams are determined by
types of atoms and the arrangement of atoms in the cell!

By measuring the cell parameters and the intensities of
diffraction points, the atomic arrangement can be derived.




3. systematic absence

Calculation of structure factor
Example A, Body-centered crystal

Simple case: Each lattice point is a metal atom.
(e.g., Na)

N
274 (hx: +kv: +1z: —
Fhk| Z fje A (hx;+ky;+lz; ) NE=
=1

(0,0,0)

27 ( h1+k1+ll) (1/2,1/2,1/2)
2 2 2

_ f,g2(h0sk0+10) 4 £ g
= fNa(1+ g (h+k+l) ) (fp =15 = 1a)
) While h+k+1 =2n+1, PGSR SaDRSEFNCLLD . R |

- F,,,=0, Systematic absence !

1) While h+k+| = 2n, A (h+k+l) 1 Fhkl —92 fNa

Strongeh



Body-centered crystal —Two lattice point in a unit cell!
General case: each lattice point contains m different atoms.

» The total number of atoms within a unit cell is 2m,;
- For jth atom in a structural motif (a lattice point): (x;,y;,z;)
- Its body-centered equivalent: (0.5+x;, 0.5+y;, 0.5+7;)

2m
. 27 (hx +ky; +lz )
|:hkl o Z 1:ie
i=1

i 1 1 1
- i{ 1:-927Zi(hxj-+kyJ-Jrlzj ) L f ezm[h(5+xj )+k(§+yj )+I(§+zj N
J

j
j=1
m
- 27 (hx; +Kky:+1z;)

_ [1+em(h+k+l)]2fje TR TS

j=1
While h+k+l =2n+1, Systemati

gi(hek+l)  (2n+l)ai _ ySteatt i
e —a =—1=F, 6 =0g, absence N




Face-centered cubic crystal — general case
« Lattice points (LPs): (0,0,0), (1/2,1/2,0)+, (0,1/2,1/2)+, (1/2,0,1/2)+
- Each lattice point contains m atoms, {(x;,y;,z;)} (J=1,...,m)

 Each unit cell contains N=4m atoms, e.g., an atom A(Xy;,z;) In one
LP has other three equivalent A atoms within the same unit cell!

N =4
me 27 (M +ky;+17;) Sum up over all atoms

within a unit cell!

th

27zi(h+5) 27zi(h+l) 2m‘(5+l) m

27 (hx; +ky +1z, )
Fug =[1+e 22 +e 22 4e 22 ]x) e i

From translation symmetry of fcc! )= sum up over all
atoms within a LP!

When h,k,l are neither all even nor all odd, F,,, = 0, systematic absence!

n :
When h,_k,l are all even or all odd, Fo= 42 fje27r|(hxj+kyj+lzj)
diffraction observable!




Example. Unit cell has a 2, screw axis along the c axis.

- Equivalent positions: (x,V, z), (-x, -y, z+1/2)

N _ Each molecule has
Foo = fi{expli2z(hx, +ky, +1z; )] N atoms.
j=1

+exp[i2z(—hx; —ky; +1(z +%))]}

Foor = [(1+exp(i 7Z|)]Zf exp(i27z; )

i=

(x y z+0 5)

| = 2n+1 Sum over all
atoms of Herein two molecules
systematic absence molecule.

within a unit cell are
correlated by 2, axis.
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How about systematic absence arising from such
screw axes as 3,, 4, and 6, ?

N/3

. 27 Ardi .
« 3,||c-axis [FEAE exp(T|)+exp(Tl)]-Zexp(|2ﬂ|zi)
i=1

N/3

= [1+ 2cos( )cos(%)] > exp(i2Az; )

- Systematic absence when | # 3m (m=1,2,...)!

* n, //c-axis

Foor = Zn:eXp( M) - I\_IZmEXp(iZMZi)

—> Systematic absence when l#mn (m=1,2,...)!




Systematic Absence

Crystals of the same lattice type behave similarly in

systematic absence!

Crystal structures which contain centering, glide plane

and screw axis will have systematic absences.

Namely, some reflections/diffractions will be
systematically absent in such a crystal lattice that has

centering, glide plane or screw axis.




Systematic Absence and Symmetry (p214-215)

Types of | Conditions for extinction Cause of extinction Centering and
reflection | systematic absence) symmetry
elements

hkl h+k+l = odd |-centred I

h+k = odd C-centred C

h+l =odd B-centred B

k+] = odd A-centred A

h,k,I not all even and not all | Face-centred =

odd

-h+k+I not multiples of 3 R-centred R(hexagonal)
Okl Kk =odd Translation in (100) b/2 | b-glide la (b,c)
(or hOl, | =odd c/2 | c-glidela (b,c)
hk0) k+l =odd (100) glide (b+c)/2 | n-glidela (b,c)

k+l not multiples of 4 JERES (b+c)/4 | d-glidela (b,c)
00l | =odd Translation c/2 21, 4,, 65
(or 0O, | I not multiples of 3 Along c/3 3;, 3,,6,,6,
or 0kO | not multiples of 4 (001) c/4 4., 44

| not multiples of 6 Screw axis c/6 6., 65




7.3.4 Applications of X-ray diffraction
1. Methods

* Single crystal diffraction

Monochromatic camera method -- Monochromatic X-ray
Rotation, Oscillation, Weissenberg ...
Laue photography --- white X-ray

Diffractometer -- Monochromatic X-ray

Diffraction beam

Incident beam




* Powder diffraction
Monochromatic X-ray

Film or trajectory of detector

Powder Diffractometer

- In a powder sample, the microcrystalls orient differently,
so does a given lattice plane in the sample.

- Thus a given lattice plane gives a cone of diffraction
beam with an specific angle 26. (Why?)

—




Radiation sources

X-ray tubes Monochromator — e.g.HOPG
Synchrotron radiation Filter —e.g. Ni for Cu Ka
Detectors
* Film

- poor sensitivity, high background, low dynamic range
» Scintillation counters
- good sensitivity, low background, high dynamic range

 Imaging plates

- good sensitivity, low background, good dynamic range, very
efficient data collection

» CCDs and Multiwire detectors (widely used nowadays)

- fast readout, good sensitivity, low background, good dynamlcr ]
very efficient data collection




Automated diffractometer method

2 Theta



2. Applications of X-ray diffraction

a. crystal structure determination

Direction & intensity data collection

|

ﬁﬁ —

Inverse
Fourier
Transform



Example: Indexing of a cubic system

d., =a/vh® +k? +1° RIS Bragg’s law
sin? 0 = (1/2a)2 (h? + k2 +12)
sin2 @ oc h? + k2 + |2 [ EsP sin” &, :sin* 6, :sin” &, :sin’ g, : ...

General steps of indexing:

1. Get the directions of the diffraction beams, {8}
ZRNCLEIN sin” 0, :sin’ 0, :sin® g, :sin’ g, : ...

CRNCIS (N +k* +17), 1 (h? +k®+1%), 1 (h* +K* +1%),....

4. Get the lattice type and cell parameters.




Indexing of a cubic system

sin?@=(A1/12a)*(h* +k*+1*)E=4sin? @ oc h? + k? +1°?

e sin’ 6, :sin 6, :sin 6, :sin?4, : ...
=(h*+k®+1°) 1 (h* + k> +1?), : (h® +k* +1%),....

Characteristic line sequences of cubic systems:

P: (hki) 100, 110, III}WH 20,221, 222, 300, .
(h2+k2+|2) 1, 2 3,4,5,6,8,9,10, 11, 12, 13,
I:

(hkl) 100, 110, 111, 200, 210, 211, 220, 221, 222, 300, ...
) e——
(h2+k2+12) 2,4,6,8,10,12,14,16 ... —(1:2:3:4:5:6: /:8:...)

F: (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 300, 311, 222, ....
(hz+k2-+1%) 3,4, 8,11, 12,16, 19,20 ...

|
9 3




Example for the indexing of cubic system and its applications
Sample: NaCl Condition: Cu Ka,, A=1.5418 A, R = 50 mm

(1) Measure sample and relative intensity

(2) Calculate the position of diffraction lines (usually 206 in Ewald
sphere)

(3) Calculate 6

(4) Calculate sin%6

(5) Calculate sin?0,: sin?0, : sin“0,: sin%0, :...= 3:4:8:11:12:...
(6) Identify Bravais lattice — face-centered cubic

(7) Indexing and calculate h?+k?+1?, calculate d,, and a.

FCC: (hkl) 100, 110, 111, 200, 210, 211, 220, 221, 300, 311,222, ....
(h2+k2+12) 3,4, 8, 11,12, 16, 19, 20 ... |




(7) Index and calculate h?+k?+12

No. | | 20 0 sin%0 h2+k2+l2 | hKI
1 |W 2746 |[13.73 [0.05631 |3 111
2 |S 31.80 |15.90 [0.07508 |4 200
3 |S 45.60 |22.80 ]0.15016 |8 220
4 W 5406 |2/.03 ]0.20647 |11 311
O |S o/.50 [28.75 [0.22524 |12 222
6 |S 66.44 |33.22 |0.30032 |16 400
7/ |W [7330 |36.65 [0.35663 |19 331
8 |S 77.56 |38.78 |[0.37540 |20 420
9 |S 84.30 [42.15 [0.45045 |24 422

Measured in Ewald sphere

by x-ray diffraction

y o g




(8) Calculate lattice parameter :
Why do we use high

angle values?

Least-square method, plot
method, or high angle values,...
i

a=5.628 A 0° 90° ©

(9) p= 2.165 g/cm? for NaCl di = A/(2SIn6)

oV 2.165x(5.628x10°°)°

" MI/N, [(23+35.5)/6.022x10%]

One unit cell contains 4 NaCl

(I.e., each lattice point contains a NaCl.)



Example B.  (x-ray A=1.5418 A)
Line |20 0 sinZ0 sinZo, h2+k2+[2 | hkl
/Sin?0,

1 40.26 20.13 0.1184 110
2 58.26 29.13 0.2370 A0[0)
3 73.20 36.60 0.3555 211
4 87.02 43.51 0.4740 220
) 100.64 50.32 0.5923 310
6 114.92 57.46 0.7109 222
7 131.16 65.58 0.8290 321
8 153.58 76.79 0.9470 400

As A=1.5418 A,

a= ﬁ Ah?+k?+17 =

1. 5418
2 SiNn76.79

x 4% +0° +0° = 3. 16A

2sIn6@




b. Applications of powder diffractions




b. Applications of powder diffractions

Information contained in a Diffraction Pattern

Peak Positions

Crystal system, cell parameters, qualitative phase identification

Peak Intensities

Unit cell contents, quantitative phase fractions

Peak Shapes and Widths

Crystallite size, Non-uniform microstrain




() Peak Positions and Intensities

 Qualitative Analysis: wa

a) One crystal phase
correspond to a set of
diffraction peaks. ( being
different from the
spectroscopic analysis)

b) Phase analysis

 Quantitative Analysis: 2 Theta

The peak intensities are proportional to the weight percentage of
the corresponding phase.

|
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(¢) Changes of lattice parameters—Solid solution, doping

Using high-angle diffraction data or applying least square method.

2d,,,SIN@= A

Why use high angle values?

Maximal 0
- minimal Ad/AO




() Changes of lattice spacing along specific
directions—residue Stress

: stress 2dhk|S|n0 — ﬂ.« 9
< > sing@= A/(2d)
d d
—

- The residue stress in a specific direction increases the
corresponding d-spacing of a crystal.

- Ad Is proportional to the strength of crystal strain in the
direction. .




(cc) The width of diffraction peaks — — Crystallite size

250  |A[*(N=15)
200 {

150 [f
100 |f

o0 (1
b | S || A A

-1.0 -0.6 -0.2 0.2 0.6 1.0 -1.0 -0.6 -0.2 0.2 0.6 1.0

| o “:hkl‘z N12N22N32 = “:hkl‘z‘Alz

N;, N,, N; periods along the lattice axes within a microcrystal

- The smaller N in a specific direction [hkl], the broader
of the (hkl) diffraction peak.




» [001]

Mw |

70

28 ; [:iL—:JIf-F-]

The diffraction peaks arising from (100)-like planes are
much more broad than those from (001)-like planes.
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(i11) The width of diffraction peaks —— Crystallite
sSize Widely exploited in the

Scherrer formula: (size ~1nm to 100nm
K-A K-A (K =0.9 or 1.0)

B-cos@ (B—B,)-cost EEIEnr

Small-angle scattering — particle size
D,,, average size along the direction perpendicular to (hkl) plane.

research of nanoparticles!

th| —

B  measured peak width

B, Instrumental width, using standard sample (e.g. a-SIO, with
crystallite size of 25—44um)

—) o =L

Instrumental width (B,) = (B ).




(i) The width of diffraction peaks — Lattice Distortion

ar g AL (AN SINAL . AR . AR )

n=Ad /d
2(d+Ad)sin(6+A6)=A
or 2d(1+n)sin(6+A0)=A

n and A0 are very small,
and hence ,
2A0=—2ntgo or

B'= 2ntgo
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Separation of the effects of Crystallite size and Lattice
Distortion

Measuring two or more diffraction peaks.




(z) The profile of diffraction peaks — — Crystallite size

. ,( 7N
1 ' Derived from
=-—— < @Bragg equation
. o7
A

distribution

sin (7zns)
sin *(7s)

f,(s) = KZ P(n)——

f,(s) Is the line profile of diffraction peak

P(n) is Crystallite size distribution function
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Instrumental (B,) Convolution
B B, (B)

h(s):Tg(t)f(s—t)dt or h(s)=9g(s)® f(s)

F(h(s)) = F(g(s))x F(T(s))
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b. Applications of powder diffractions

Applications
Qualitative Analysis
Quantitative Analysis
Lattice Parameter Determination

Crystallite size / size distribution & Lattice Distortion
Analysis (Non-uniform microstrain)

Crystallinity Analysis

Residue Stress Analysis

Texture analysis

Structure Solution and Refinement

Radical distribution function (for amorphous materials)



7.3.5 Electron Diffraction and Neutron Diffraction

1. Electron Diffraction

de Brogli wave length
of electron in a field V:

h
J 2meV

100 kV ---- 4 ~0.00370 nm

Atom-level resolution!

a) TEM image of the tip part of one TeO, nanorod. (b)
Enlarged TEM image. (c) The corresponding electron

2. Neutron Diffraction [dHiraction pattern.

----- Scatterring of atomic nuclear

~ higher atomic resolution I,




7.4 Quasicrystal, liquid crystal and
amorphous

Quasicrystal:

- quasiperiodic crystal

- 5-fold axis occurs in solid state,
seemingly challenging the
crystallographic theory.

- In 1984, Dan Shechtman et al. reported
their finding that the Al-Mn(14 at.%) alloy
adopts an icosahedral phase with 5-fold
axis. (first observed in 1982.4.8, see

).
- He won the In 2011.



http://prl.aps.org/abstract/PRL/v53/i20/p1951_1
http://en.wikipedia.org/wiki/Nobel_Prize_in_Chemistry

Figure 1. Electron diffraction patterns of the Al-Mn quasicrystal taken
along different symmetry directions indicating icosahedral diffraction
symmetry. Reprinted from Ref. [1].
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Figure 2. Shechtman’s notes of April 8, 1982, with the observation of
tenfold symmetry highlighted by three question marks.

Even his cooperator, J. W Cahn, thought that the
pheonomenon was resulted from twinning of single crystals!




Figure 6. Projected electron density map of decagonal Al-Co-Ni with
underlying Penrose tiling. In the insert (upper right), some intergrown
decaprismatic quasicrystals are depicted.




Figure 5. Shell structure of the Cds,Yb,, Tsai cluster (Cd light spheres,
Yb dark spheres).

An icosahedral Yb-Cd
guasicrystal is composed
of an aperiodic ordered
arrangement of YbCd
clusters (yellow and blue
spheres at the vertices of

the polyhedra
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Figure 7. Projection of a spherical section (diameter 100 A) of the

structure of icosahedral Cd-Yb™ along a fivefold axis. Almost all atoms
are arranged in flat atomic layers, forming a framework compatible

other in

with fivefold symmetry. The atomic layers interpenetrate each

a way that is only possible in quasiperiodic structures.




Crystal Quasi-crystal 3D quasicrystal:

Icosahedral phase in
Al-Mn, Ti,Ni, Al-Li-

Cu, Mg-Al-Zn alloys.

2D quasicrystal:

With 1D translation
symmetry and 2D
guasiperiodicity.

8-fold, 10-fold
guasicrystals in some
alloys.

Translation symmetry,
L_ong-range order,
Directional.

No translation symmetry;,

Long-range order, directional.




History of quasicrystal concept
(extracted from wikipedia) Wang Tiles
1. Quasicrystal-like structures had been known
well before the 20th-century, e.g., tiles in a
medieval islamic mosque in Iran.
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2. 1n 1961, Hao Wang proposed a mathematic
problem related to the planar tiling.

3. In 1966, Wang’s student, Robert Berger,

4
constructed a set of some 20,000 square tiles Sohes
. . . RS
(now called Wang tiles), which can tile the plangfsi@assise

aperiodically. "\‘:":::‘:\2:‘" 64
4. In particular, in 1976, Roger Penrose propose';‘,::ﬁo:,::-‘:g:.-;:,’:"g.,

a set of just two tiles, up to rotation, (referred to ‘e Eatesizsss:
as Penrose tiles) that produced only non-periodic e
tilings of the plane.
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http://en.wikipedia.org/wiki/File:Wang_tesselation.svg
//upload.wikimedia.org/wikipedia/commons/1/1a/Penrose_Tiling_%28Rhombi%29.svg

5. 1In 1982, Alan Mackay showed experimentally that the diffraction
pattern from the Penrose tiling had a two-dimensional Fourier
transform consisting of sharp ‘delta’ peaks arranged in a fivefold
symmetric pattern. (Physica A, 1982, 114, 609)

6. The history of quasicrystals begins with the 1984 paper "Metallic
Phase with Long-Range Orientational Order and No Translational
Symmetry" where Dan Shechtman et al. demonstrated a clear
diffraction pattern with a fivefold symmetry.

7. The term quasicrystal was first used in print shortly after the
announcement of Shechtman's discovery, in a paper by Steinhardt and
Levine. (Phys. Rev. Lett. 1984, 53,2477)

8. At the end of the 1980s, the idea of quasicrystal became widely
acceptable!
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Liquid crystals

» Crystalline solid: anisotropic

 Liquid: Isotropic

 Liquid crystal: anisotropic!

Liquids with well-ordered, crystal-like
structures.

More details of liquid crystals can be learnt in
material science!




Chapter 7

Key points/concepts

1.

Lattice of crystal structure: translation symmetry
a lattice point = a structure motif -- unit cell
Crystal systems (7), Bravais Lattice (14)

Symmetry operations (point & translation), Crystallographic
point groups(32), space groups (230), equivalent positions.

Miller index of crystal plane, d-spacing etc.

X-ray diffraction, Laue equation, Bragg's Law, reciprocal
lattice, Ewald sphere, structural factor, system absence,
general process of x-ray crystal structure determination.

|
9 3




X-ray diffraction, Bragg’s Law, Ewald sphere

2d nt 1N VWl Bragg’s law Directions of

detected X-ray
diffraction beams:

0G| =2/0,0%sin 0= (/})sin 6= % {26}
Radius = 1/4

‘Ewald sphere + reciprocal lattice

@ Crystal system,
: : Bravais lattice, cell
-l parameters etc.




o Structure factor & systematic absence

Phase difference between
the scattered and incident

X-ray over atom |j.

Sum over all atoms f.. atomic scattering factor defined by
within a unit cell. atomic electron density distribution.

« some reflections/diffractions will be systematically
absent (F,,, =0 =2 I, =0) in case a crystall lattice has

centering, glide plane and screw axis.




Further applications of X-ray diffraction d |

a) Change of . _
specific d-spacing

b) Size effect of microcrystal—broadening of
diffraction peaks

Ad hkl VS. Ath|

Scherrer formula D K-4 K-A
BN ' B-cosd,, (B—B,)-cosé.,

c) Deformation of lattice—broadening of diffraction peaks




In the diffraction direction, the difference between the
Incident and the diffracted beam through any two lattice
points must be an integral number of wavelengths.

The lattice vector from (000) to (mnp): T.. . =ma+nb +pc
The differences in wavelengths for observed diffractions:
A=T - (S-S)

=(ma+ b +c) «(S-Sy)
=1ma -(S-Sp) + 11b (S-Sg) + e -(S-Sy)
=mhA+nkA+ plA
=(mh+nk+pDA




Crystal Characteristic | Unit cell | Choice Lattic
systems symmetry parameters of axis Point
elements Group

Triclinic Nil a=b+C
=Py

2D lattices:
3 parellelograms

Inversion center:
(0,0,0); (1/2,1/2,1/2)

(0,0,1/2), (1/2,0,0),
(0,1/2,0);

(1/2,1/2,0),(0,1/2,1/2),
(1/2,0,1/2)
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Crystal Characteristic | Unit cell | Choice  of | Lattic
systems symmetry parameters | axis
elements

Monoclinic | C,, i,op a-b=c b/l C, Con
O(,:'ngoo-_/-'B aC//Gh
- 0]

= 2D lattices:

o\ 1 parellelogram
\ 2 rectangles.




Crystal Characteristic | Unit cell | Choice of | Lattic
systems symmetry parameters | axis Point
elements Group

Orthorhombic ab,c//3C, | D,

-

2D lattices:

3 rectangles.




2D lattices:
1 square

2 rectangles.




Four C; axes are parallel
to the body diagonals

of the cube.

2D lattices:

3 squares




Hexagonal

2D lattices:

1 hexagon + 2 rectangles.




Trigonal Rhombohedral
a=b=c, a=B=y<120°£90°

Hexagonal
a=b=c, a=p=90°, y=120°

Rhombohedral




