
Chapter 4 The structure of diatomic molecules 
• What is a  chemical bond?   

It is more useful to regard a 

chemical bond as an effect 

that causes certain atoms to 

join together to form 

enduring structures that 

have unique physical and 

chemical properties..  

Chemical bonding occurs when one or more electrons 

are simultaneously attracted to two nuclei.  

"SOMETIMES IT SEEMS to me that a 

bond between two atoms has become so 

real, so tangible, so friendly, that I can 

almost see it. Then I awake with a little 

shock, for a chemical bond is not a real 

thing. It does not exist. No one has ever 

seen one. No one ever can. It is a figment 

of our own imagination.”      

           --C.A. Coulson (1910-1974)  

  “ It's only a convenient fiction, but let's 

pretend...” 



Chemical  Bonding 

is 
an effect 

that reduces the 

potential energy of two or 

more atomic nuclei 

causing them to form 

“chemical bonds” 

described by 

potential energy curves 

that reveal 

bond dissociation energy bond length 
Vibrational 

frequencies 

that results from electrostatic attraction 

between 

that can combine 

to form 

electrons nuclei 

is an aggregate of  

a molecule 

that is suffciently 

long-lived to possess 

Distinguishing 

observable properties 

characterized by 

Physicists’ view Chemists’ view 



Quantum mechanical theory for description of 

molecular structures and chemical bondings 

• Valence Bond (VB) Theory 

    a) Proposed by Heitler and London in1930s, further developments  
by Pauling and Slater et al. 

    b) Finally programmed in later 1980s,  e.g., XMVB3.0 

• Molecular Orbital (MO) Theory 

     a) Proposed by Hund, Mulliken, Lennard-Jones et al. in 1930s.   

     b) Further developments by Slater, Hückel and Pople et al. 

     c)  MO-based softwares are widely used nowadays, e.g., Gaussian 

• Density Functional Theory 

    a) Proposed by Kohn et al.  

    b) DFT-implemented QM softwares are widely used, e.g., Gaussian. 
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§1  Electronic structure of H2
+ ion 

1.  Schrödinger equation of H2
+  
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Born-Oppenheimer Approximation 

• The electrons are much lighter than the 
nuclei. 

• Nuclear motion is much slower than the 
electron motion. 

  Neglecting the motion of nuclei! 

cosRrRrr aab 222


 

Rrr
H

ba

e

111

2

1ˆ 2 

The hamiltonian operator  
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Schrödinger equation of H2
+ 

(Rexpt. = 106 pm) 



R 

fixed 

Molecular Orbital Theory H2
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The schrödinger equation for H2
+ can be solved exactly using 

confocal elliptical coordinates: 
 (xi)   = (ra+rb)/R  

 (eta) = (ra-rb)/R  

 is a rotation around z 

ra                                  rb  

 z 
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 
 z 

 x 

Yet very TEDIOUS! 
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position of  the electron! 

 R (ra+rb) <  

    -R (ra-rb)  R   

0    2;   

1    ;   

-1    1 
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(m=0, ±1, ±2, ±3,…) 

•  =|m|--orbital angular momentum quantum number.   
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Molecular orbital (MO) of H2
+ 

• Each electronic level with 0 is doubly degenerate, with m = ||. 

• The one-electron wavefunction (MO) is no longer the eigenfunction 

of the operator L2,  but is the eigenfunction of Lz. 

• mħ or m (in a.u.) -- the z-component of orbital angular momentum. 

• Types of molecular orbitals are defined by the value of  (=|m|). 

 0 1 2 3 4 

letter      

Type of MO 

(bond) 

Molecular Orbital Theory



 =|m| (m=0, ±1, ±2, ±3,…) 

=|m|  0 1 2 3 4 

letter      

Quantum Number of Orbital angular momentum 

•    Atom:  l = 0, 1, 2,... and the atomic orbitals are called: s, p, d, etc. 

      & each sublevel contains degenerate AOs with ml  = l, …, -l. 

For diatomics, For atoms, 
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Quantum numbers:  n, l, ml 

l 0 1 2 3 4 

letter s p d f g 

Question:  Supposing MOs are composed of AOs, what is the 

relationship between  (MO) and l (AO), or m (MO) and ml (AO)?  
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• Diatomics:  = 0,1,2, ... and the molecular orbitals are: , , , etc. 

                & each level contains degenerate MOs with m =   . 
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i) Inversion: 
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Symmetry of MO 

m is an eigenfunction of inversion with B = +1 or -1 ! 

Notation valid only for homonuclear diatomics! 

F(,-) = BF(,), B= +1 or -1; 

)(
),(

  imeAF mm

im Be  '
B

  =  (ra + rb)/R  

  =  (ra  rb)/R  

A(, , ) A(, -, +)  i 
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• B = 1, parity     (even), (denoted g); 

• B =-1, disparity (odd), (denoted u); 
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ii) Reflection by the xz-plane. 
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Symmetry of MO wavefunction 

i.e. When m  0,  the molecular orbital wavefunctionm itself 

is not an eigenfunction of xz!    

  =  (ra + rb)/R  

  =  (ra  rb)/R  

A(, , ) A(, , -)  
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(operator xz) 



 0 1 2 3 4 

letter      

elec = F(,) (2)-1/2 eim 

 =|m|  

-type 

Types of Molecular Orbitals for H2
+ 

• Parity of molecular orbital (upon inversion): (g ~ even, u ~ odd) 

Bonding 
i)  =0 

Real!  Antibonding 

ii)  = 1 

-type 

Originally in complex form, but can be expressed in real form!    

Bonding Antibonding 

After being 

transformed 

into real form: 



Questions 

1. When we deal with a many-electron diatomic molecule, what 

problem will we encounter? 

 

2.  What will we encounter when dealing with a many-electron 

many-atom molecule?  
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It is implausible to attain direct solution of the Schrödinger 

equation of such many-electron system!  

Mean-field approximation (independent electron approx.)   

variation theorem & LCAO-MO & HF-SCF  



2. The Variation Theorem 

       Given a system whose Hamiltonian operator Ĥ is time-

independent and whose lowest-energy eigenvalue is E1, if  is 

any normalized, well-behaved function of coordinates of the 

system’s particles that satisfies the boundary conditions of the 

problem, then 

)1(       ˆ
1    d*EdH*E

The variation theorem allows us to calculate the upper bond 

for the system’s ground-state energy. 
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To prove the variation theorem,   is supposed to be expanded  in 

terms of the complete, orthonormal set of eigenfunctions {k} of the 

Hamiltonian operator Ĥ, i.e.,         
k

kka

where 

i)  In case  is normalized, we have 
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variational integral 

       

• The lower the value of the variational integral, the closer the trial 

variational function to the real eigenfunction of ground state. 

• To arrive at a good approximation to the ground-state energy E1,  

we try many trial variational functions and look for the one that 

gives the lowest value of the variational integral. 

This offers an approximation to approach the solution for a 

complex system! 

1
ˆ EdH*E   

 ----- a trial variation function (normalized) 

ii) In case  is not normalized, let                    . Then we have  
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Example: Devise a trial variation function for the ground state of the 

particle in a one-dimensional box of  length l. 

0 l 

V=0 A simple function that has the 

properties of the ground state is 

the parabolic function: 
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    Based on the variation theorem, the 

coefficients are regulated by the minimization 

routine so as to obtain the wavefunction that 

corresponds to the minimum energy. This is 

taken to be the wavefunction that closely 

approximates the ground state. 
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3. Linear Variation Functions 





n

i

iinn fcfcfcfc
1

2211 ...

f1, f2, …fn are linearly 

independent, but not 

necessarily eigenfunctions of 

any operators. 
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c1, c2 and E to be 

solved by the 

variation theorem! 
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As c1,c2  0, the secular equations thus demand the 

corresponding secular determinant to be zero, i.e.,  

Secular equations 
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that can be express in the matrix form:    
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Now we have two secular equations 
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• The algebraic equation (3) has 2 roots, E1 and E2. 

Secular determinant 
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• Substituting E1 into the secular equations, a set of {c1, c2 } as 

well as the corresponding 1= c11 + c22 can be obtained. 

• Substituting E2 into the seqular equations, a set of {c1, c2 } as 

well as the corresponding 2 can be obtained. 

Thus,  the variational process gives two different energy E1 and 

E2 , and two different sets of {c1, c2 }   1 and 2.  
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This algebraic equation has n roots, which can be shown to be real. 

Arranging these roots in the order: E1 E2… En. 
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we have the secular equations (in matrix form) 

and  

Secular determinant  



•   From the variation theorem, we know that the lowest value of root 

(W1) is the upper bound for the system’s real ground-state energy 

(E1), i.e.,  E1  W1 

•   We use these roots {Wi} as approximations to the energies of the 

lowest  n states {Ei}. 

•   If approximations to the energies of more states are wanted, we add 

more functions fk (k > n) into to the trial function .  ( = cifi) 

•   Addition of more functions fk can be shown to increase the 

accuracy of the calculated energies {Wi}. 

E2 W2,  E3 W3, … , En  Wn,  

•  Moreover, it is provable that the linear variation method provides 

upper bounds to the energies of the lowest n states of the system. 

Remarks on the linear variational process 



3.  The approximate solution of H2
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1s AO of A atom! 

1s AO of B atom! 

(Linear combination of atomic orbitals into molecular orbital  

 i.e., LCAO-MO, widely used!) 
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Yet, ca remains unknown!  However, the wavefunction should be 

normalized, i.e.,  

Substitute E1 into the secular equations,  
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Can we simplify the process by using the 

molecular symmetry? 

E1 

E2 

H2
+ has an inversion center. The bonding and antibonding orbitals 

should be symmetric and asymmetric, respectively, upon inversion, i.e.,    

Now we have 

( E1 < E2) 
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Ground-state 

energy of Ha atom 

The attractive 

energy of electron 

of Ha by the 

nucleas of Hb.  

Electrostatic interaction 

exerted by the nucleas 

of Hb to Ha atom.  

Internuclear 

repulsion 
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Molecular Orbital Theory H2


A representation of the 

constructive interference 

that occurs when two H 1s 

orbitals overlap and form a 

bonding   orbital.  
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Molecular Orbital Theory H2


The electron density calculated  

by forming the square of the  

wavefunction. Note the 

accumulation of electron density 

in the internuclear region. 
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Electron density distribution:  
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Molecular Orbital Theory H2


A representation of the  

destructive interference  

that occurs when two H1s 

 orbitals overlap and form an 

 antibonding * orbital.  
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Molecular Orbital Theory H2


The electron density calculated  

by forming the square of the  

Wavefunction. Note the 

elimination of electron density 

from the internuclear region. 
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It is provable that this MO has no electron density at the midpoint of 

the H-H bond (i.e., the value of this function is zero at the midpoint）!  

Its density distribution function (or 

probability distribution function): 



A molecular orbital energy  

level diagram for orbitals  

constructed from the overlap  

of H1s orbitals; the separation 

 of the levels corresponds to 

 that found at the equilibrium  

bond length.  
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(1) The Simplest Solution 

Let S=0     (i.e., Hückel approx.) 
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(2) The More Realistic Solution           S0 

So, the energy of the bonding molecular orbital is 

The energy of the antibonding molecular orbital is 
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When  S>0  (bonding)    1+S > 1-S     

Generally the antibonding orbital  is more strongly antibonding 

than the bonding orbital is bonding! 

Note:  -S < 0 
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How to get the high-energy MOs of H2
+ 

...][   

...][
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pxapxasasasasa

fcfcfc

fcfcfc

Trial function for the MO of H2
+ 

AO’s of atom a. 

AO’s of atom b. 

• It is expected that the high-energy MO’s of H2
+ consist of 

the high-energy AO’s of the two H atoms.   

• It is possible to get the high-energy MO’s of H2
+ by 

including the high-energy AO’s of the two H atoms into the 

trial function. 
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elec = F(,)[(2)-1/2eim] 
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Summary 1.    H2
+  (confocal elliptical coordinates) 
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The Hamilton operator  

 EH ˆ

Schrödinger equation: 

Born-Oppenheimer Approx. 



2. The Variation Theorem 

       Given a system whose Hamiltonian operator Ĥ is time-

independent and whose lowest-energy eigenvalue is E1, if  is 

any normalized, well-behaved function of coordinates of the 

system’s particles that satisfies the boundary conditions of the 

problem, then 

)1(       ˆ
1    d*EdH*E

The variation theorem allows us to calculate the upper bond 

for the system’s ground-state energy. 



    Following the variation theorem, the 

coefficients {ci} are regulated by the 

minimization routine so as to obtain the 

wavefunction that corresponds to the 

minimum energy. This is taken to be the 

wavefunction that closely approximates the 

ground state. 
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3. Linear Variation Functions 
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A linear variation function 

is a linear combination of 

n linearly independent 

functions f1, f2, …fn. 

Minimizing  leads to n secular equations, {/ci = 0}. 
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The algebraic equation has n roots, which can be shown to be real. 

Arranging these roots in order of increasing value: E1 E2… En. 

Suppose the following trial wavefunction for a QM system 
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By employing the variation theorem, we have n secular equations:  

Which demand the following secular determinant being zero,  

 {Ej}{ci
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(j = 1,2, …, n) 



3.  The solution of H2

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For H2
+ that is :
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Note:  We have as many linear combinations as we have atomic 

orbitals, i.e., {1, …, n}   {1, …,  n}  with  
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  Secular equations, E 
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Molecular Orbital Theory H2


A representation of the 

constructive interference 

that occurs when two H 1s 

orbitals overlap and form a 

bonding   orbital.  
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Molecular Orbital Theory H2


The electron density calculated  

by forming the square of the  

wavefunction.  

Note the accumulation  

of electron density in the 

 internuclear region. 
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Molecular Orbital Theory H2


A representation of the  

destructive interference  

that occurs when two H1s 

 orbitals overlap and form an 

 antibonding * orbital.  
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Molecular Orbital Theory H2


The electron density calculated  

by forming the square of the  

Wavefunction. Note the 

elimination of electron density 

from the internuclear region. 
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The nature of chemical bonding 

Atomic orbitals overlap 

Concentration of electronic density around the midpoint 

Electronic delocalization: from 1 nucleus to 2 nuclei 

T ↓,   VNe↓      E↓ 

Overall stabilization upon chemical bonding! 
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Potential energy operator for a n-electron molecule： 
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Mean-field approximation 

§2 Molecular orbital theory and diatomic molecules 

1.  Molecular orbital (MO)  theory 

a.  Mean-Field approximation:  Every electron in a molecule is 

supposed to move in an average potential field exerted by the 

nuclei and other electrons.  
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separation of variables!  

Mean field exerted on 

electron i by all nuclei 

and other electrons. 



• {i} are a set of one-electron wavefunctions describing the 

motion of n electrons within a molecule, thus are called 

Molecular Orbitals. 

 


n

i iE
1

  & 
iiiih  )(ˆ

)()...()()(),...,( nin n

i

i  2121 21 

Accordingly, the total wavefunction can be approximately expressed 

as the product of single-particle wavefunctions, 
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Separation of variables 
Energy of the ith e 

Single-particle eigenequation! 



• The MO’s can be approximated by the linear combination of 

atomic orbitals (LCAO). 

b. The formation of molecular orbital (MO). 

• The atomic orbitals of all atoms within a molecule form a set of 

basis, {j} (j =1, 2,…, ), for the construction of MO’s. 

• The Schrödinger equation can be approximately solved by using 

the Variation theorem in combination with the HF-SCF method!  

  AO)th :(        jcMO j

j

jj  : LCAO-MO 

To be determined by the variation theorem! 



Process of HF-SCF: 
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Computer makes the SCF process readily accessible!   
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Qualitatively, there are three basic requirements for AO’s to form a 

bonding MO (i.e., mathematically to have remarkable |cj| values for 

the AOs that constitute a MO!).  

 ×  

The AOs to form a bonding MO should  

                      * have comparable energy, 

                      * have compatible symmetry, 

                      * be able to have maximum overlap.                      

The formation of molecular orbital (MO)： 
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ii) However, if (Eb-Ea)>>|| ,  then  E1Ea, E2 Eb 

                 -----nonbonding at all! 

Ea Eb 

E1 

E2 

Why should the AOs have comparable energy? 
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i) If  Eb=Ea,  

E1 = Ea-||, E2 = Eb +|| 

Bonding MO stabilized! 
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Ebind = 2E1 – (Ea+ Eb) 

= –2||  
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Why should the AOs have comparable energy? 
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Polar bond with more electron 

density around atom a.   



     The overlap integral S may be positive (bonding), negative 

(antibonding) or zero (non-bonding interaction).  
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S > 0

s



p

p



g)

u)

g)

S < 0

u)

g)

u)


*
s


*


*
p


*


*
p

S = 0

(no symmetry 
match)
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Why should the AOs have compatible symmetry? 
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2. The characteristic distribution and classification of molecular orbital 

a.  -orbital and -bond of homonuclear diatomics 

No nodal surface  

One nodal surface  

Constructive 

interference 

destructive 

interference 

Constructive 

interference 

destructive interference 



2. The characteristic distribution and classification of molecular orbital 

  b.  -orbital and -bond of homonuclear diatomics 

• “u”-disparity, i.e., anti-

symmetric upon inversion.  

• One nodal surface.  

• “g”-parity, i.e., symmetric 

upon inversion.  

• Two nodal surfaces.  

p +  p 

• “g” & “u”: only used when exists an inversion center! 

• The complex form of -type MO’s :   

          p+1 + p+1  +1 & p-1 + p-1  -1     

u 

g 

p -  p 



b.  -orbital and -bond of homonuclear diatomics 

Asymmetric upon inversion.  

Symmetric upon inversion.  

d ±  d 

Bonding  

Antibonding 



c.  -orbital and -bond of homonuclear diatomics 

• Similar to the corresponding d-orbital, bonding -orbital has 

two orthogonal nodal surfaces. 

• Antibonding -orbital has three nodal surfaces. 

x x 

z z 

y y 

g g 

Note：These - and -orbitals are plotted in real form, which 

can be linear combination of their original complex form! 



3. The structure of homonuclear diatomic molecules 

a. The ground-state electronic configuration 

The aufbau (building-up) principle for ground state: 

• Pauli exclusion principle (for Fermionic system) 

• The minimum energy principle 

• Hund’s rule. 
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e.g., For a n-electron molecule 
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   MO        E   


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







n

n

n

n

n

n

(n = even) 

HOMO 

LUMO 

{1 < 2 < …< i <…< n} 

HF-SCF 

MO: {1, 2, …, i, …,n} 

(If i = i+1, the two MO’s are degenerate!)  



H 
E

n
e
rg

y
 
H H2 

1s 1s 

1g 

1*u 

Diatomic molecules: The bonding in H2 

Electronic 

configuration: 

H2
      1g

2 

H2
+     1g

1 

 

b(H2
+)  = 0.5;     

)(
2

1
=b

:order 

*nn

Bond



n: Electrons in bonding orbitals 

n*:Electrons in antibonding orbitals 

1s-1s 

1s+1s 

b(H2)= 1;    H + H  H2  E = 432 kJ/mol. 



Diatomic molecules: The bonding in He2 
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He He2 

1s 1s 

1g 

1*u 

• The bond order (BO) of He2: b = (2-2)/2 = 0     

     He2 does not exist as a covalently bounded molecule! 

     Accordingly, the molecular form of He is a single atom! 

• He2
+:  b = (2-1)/2 = 0.5,   exists!   (1g

21u*1) 



Diatomic molecules:  

              Homonuclear Molecules of the Second Period 

• b(Li2) = (4-2)/2 = 1 

• Li2 could exist.   

• Li2 Li + Li  

   E  = 105 kJ/mol 

Li 

E
n
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Li Li2 

1s 1s 

1g 

1*u 

2s 2s 

2g 

2*u 

2s+2s 

2s-2s 
Electronic Configuration: 

(1g)2 (1u*)2 (2g)2 
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Be Be2 

1s 1s 

1g 

1*u 

2s 2s 

2g 

2*u 

Diatomic molecules:  

              Homonuclear Molecules of the Second Period 

• b = (4-4)/2 = 0 

• Be2 could not exist!   

2s - 2s 

2s + 2s 



• This produces an antibonding MO of *u symmetry. 

The bonding in F2 

2pzA 

+ 

2pzB 

The combinations of  symmetry: 

• This produces a bonding MO of 

g symmetry. 

2pzA 

- 

2pzB 3g 

- 

3*u + 

+ 

= 2pzA (-2pzB) + 

i)  

ii)  



• bonding MO of 

u symmetry. 

The bonding in F2 

2pyA 

+ 

2pyB 

The first set of combinations of  symmetry: 

1y 

• antibonding MO 

of *g symmetry. 
- 

2pyA 2pyB 1*y 

Note:  For AO,   px = A(p+1 + p-1) & py = A(p+1 - p-1)   

           For MO，x = B(+1 + -1) & y = B(+1 - -1) 

iv)  

iii)  

v&vi) Similarly, the combinations of two 2px AOs of the two 

atoms result in a bonding  x MO and an antibonding *
x MO. 



The bonding in F2 

2pyA 

+ 

2pyB 

2p MO vs  2p MO. 

1u 

2pzA 

- 

2pzB 
3g - 

As       <  < 0        

  E < E  

  E  >  E,  E*  <  E* 

2pA 2pB 2pA 










S
E

1
1










S
E

1
2

212  EEE

E



F 
E

n
e
rg

y
 

F F2 

2s 2s 
1g 

1*u 

2p 2p 

2g 

2*u 

1u 

1*g (px,py) 
pz 

F2: KK(2s)
2 (*

2s)
2 (2p)2 

(2p)4 (*
2p)4  

or  KK(1g)
2 (1*

u)2 (2g)
2 

(1u)4 (1*
g)

4  

For oxygen and fluorine, 

2p and 2s AO’s are well 

separated in energy！ 

No need to consider the 

bonding between 2s and 

2p AOs of different atoms.  

The latter notation is more reasonable and widely used!  

Bond order of F2:  

b =  (8-6)/2 =1  
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O O2 

2s 2s 
1g 

1*u 

2p 2p 

2g 

2*u 

1u 

1*g (px,py) 
pz 

O2:   KK(2s)
2 (*

2s)
2  

( 2p)2 (2p)4  (*
2p)2  

or  KK(1g)
2 (1*

u)2 

(2 g)
2 (1u)4  (1*

g)
2  

For oxygen and fluorine, 

2s and 2p AO’s are well 

separated. 

Bond order of O2:  

b =  (8-4)/2 =2  



For  B, C and N, their 2s- and 2p-orbitals are close in energy 

and have non-negligible interatomic s,p-orbital interaction.   

Accordingly, mixing of 2s- and 2p-orbitals should be considered. 

Mixing of s- and p-orbitals  

 

 

       

 



When does sp mixing occur? 

B, C, and N all have  1/2 filled 2p orbitals 

O, F and Ne all have  1/2 filled 2p orbitals. 

• If two electrons are forced to be in the same atomic orbital, 

their energies go up. 

• Accordingly, having > 1/2 filled 2p orbitals raises the 

energies of 2p orbitals due to enhanced e -e repulsion. 

• sp-mixing occurs when the ns and np atomic orbitals are 

close in energy ( 1/2 filled 2p orbitals), which allows the ns 

(np) AO of one atom to interact strongly with both the ns and 

np AOs of another atom.  
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2s 2s 1g 

1u 

2p 2p 

2g 

2u 

1u 

1g 

HOMO 

LUMO 

N2: KK(1g)
2 (1u)2 (1u)4 (2g)

2 )()2( 221 sBsAg cs  

 )()()( pcscsp gbgag 222 

spz-hybridization of AO’s 

)''()''(

)2()2()2(

 

22212221 BpsBApsA

ubuau

zz
cccc

pcscsp

Similarly









sp-mixing 

)()( pBpAg cp 2222  

Both 2g and 2u are destabilized!  E(2g) > E(1u)  

 )(')(' BpApsBsA zz
cc 222221 

sp-mixing = sp-hybridization！ 



 

MO diagram with sp-mixing  (for B2, C2, N2 etc) 

No sp-mixing sp-mixing 

1g (2s) 

1u (2s) 

2g (2p) 

2u (2p) 2u (2sp) 

2g (2sp) 

1g (2sp) 

1u (2sp) 

the higher energy orbital is destabilized.  



Energy diagram for X2: (a) with and (b) without 2s-2pz mixing. 

The 1s atomic orbitals are omitted. 

(a) (b) 

1g 

1u* 

1g 

1u* 

2g 

2u* 

1u 

1g* 

1u 

2g 

1g* 

2u* 
E 1)Mixing of -MO’s with 

the same symmetry.  

2)Enhance the bonding 

and antibonding nature of 

1g and 2u*, respectively. 

3)Weaken the bonding and 

antibonding nature of 2g , 

1u*, respectively.  

4)Stabilize 1g , 1u*. 

5)Destabilize 2g , 2u*. 

Effects of spz-mixing 



Theory OrbitalMolecular 

N2:  KK(1g)
2 (1u)2 (1u)4(2g)

2  
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B B2 

2s 2s 

1g 

1*u 

2p 

2p 

2*u 

1u 

1*g (px,py) 
pz 

At the start of the second row 

Li-N, we need to consider 

mixing of 2s and 2p.  

B2:  KK(1g)
2 (1u)2 (1u)2 

2g 

C2:  KK(1g)
2 (1u)2 (1u)4  

b =1  

b =2  

b =3  



H2 2 (σg1S)
2 

He2
+ 3 (σg1s)

2 
(σu1s)

1 

Li2 6 KK(1σg)
2 

B2 10 KK(1σg)
2 

(1σu)
2 

(1πu)
2 

C2 12 KK(1σg)
2 

(1σu)
2 

(1πu)
4 

N2
+ 13 KK(1σg)

2 
(1σu)

2 
(1πu)

4 
(2σg)

1 

N2 14 KK(1σg)
2 

(1σu)
2 

(1πu)
4
 (2σg)

2  

O2
+ 15 KK(σg2s)

2 
(σu2s)

2 
(σg2p)

2
 (πu2p)

4
 (πg2p)

1 

O2 16 KK(σg2s)
2 

(σu2s)
2 

(σg2p)
2
 (πu2p)

4 
(πg2p)

2 

F2 18 KK(σg2s)
2 

(σu2s)
2 

(σg2p)
2
 (πu2p)

4 
(πg2p)

4 

 



Diatomics

Molecule Li2 Be2 B2 C2 N2 O2 F2 Ne2 

Bond Order 1 0 1 2 3 2 1 0 

Bond Length (Å) 2.67 n/a 1.59 1.24 1.01 1.21 1.42 n/a 

Bond Energy (kJ/mol) 105 n/a 289 609 941 494 155 n/a 

Diamagnetic(d)/Paramagnetic(p) d n/a p d d p d n/a 

Bond orders :

b =
1

2
(n n* )

2s-2pz mixing 

Paramagnetic: 

unpaired electron(s) 

EPR-active 

 

Diamagnetic: 

all electrons are paired! 



Magnetic moment of paramagnetic molecules 

The magnetic moment (m) of a paramagnetic molecule depends 

mainly on electron spin and can be given by   

eem nnSS  )2()1(2 

S: total electron spin quantum number 

n: the number of spin-unpaired electrons 

e:  Bohr magneton. 

2/nS 

e.g., for O2 and B2,   n=2, S =1  
em  22



Schrödinger equation: 

Wavefunction: 

Hamilton operator: 

One-electron 

wavefunctions and 

eigenequation: 

§2 Molecular orbital theory and diatomic molecules 

1.  Molecular orbital (MO)  theory 

•  Independent Electron Model:  Every electron in a molecule is 

supposed to move in an average potential field exerted by the nuclei 

and other electrons.  
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(Independent Electron Approximation)! 

Mean field 

exerted on ei 

Summary 

• LCAO-MO:       AO)  th :(        : jcMO j

j

jji  



 Atomic orbital overlap and bonding 

 Interaction between atomic orbitals leads to formation of covalent bonds 

only if the orbitals:  

1) are of the same symmetry;  

2) can overlap well; 

3) are of similar energy (less than 10-15 eV difference). 

 Any two orbitals A and B can be characterized by the overlap integral S.  

 Depending on the symmetry and the distance between two orbitals, the 

overlap integral S may be positive (bonding), negative (antibonding) or zero 

(non-bonding interaction).  

 



HH

HP

CC

PP

CM

S > 0

s



p

p



g)

u)

g)

S < 0

u)

g)

u)


*
s


*


*
p


*


*
p

S = 0

(no symmetry 
match)

     The overlap integral S may be positive (bonding), negative (antibonding) or 

zero (non-bonding interaction).  

 
 dVS BA





sp-mixing 



MO diagram for F2 

F F F2 

2s 2s 

2g 

2*u 

2p 

2p 

3g 

3*u 

1u 

1*g 

(px,py) 
pz 
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B B2 

2s 2s 

2g 

2*u 

2p 

2p 

3g 

3*u 

1u 

1*g 

(px,py) 
pz 

MO diagram for B2 

sp-mixing   

No sp-mixing! 



 

 

H2 2 (1σg)
2 

He2
+ 3 (1σg)

2 
(1σu)

1 

Li2 6 KK(2σg)
2 

B2 10 KK(2σg)
2 
(2σu)

2 
(1πu)

2 

C2 12 KK(2σg)
2 
(2σu)

2 
(1πu)

4 

N2
+ 13 KK(2σg)

2 
(2σu)

2 
(1πu)

4 
(3σg)

1 

N2 14 KK(2σg)
2 
(2σu)

2 
(1πu)

4
 (3σg)

2  

O2
+ 15 KK(2σg)

2 
(2σu)

2 
(3σg)

2
 (1πu)

4
 (1πg)

1 

O2 16 KK(2σg)
2 
(2σu)

2 
(3σg)

2
 (1πu)

4 
(1πg)

2 

F2 18 KK(2σg)
2 
(2σu)

2 
(3σg)

2
 (1πu)

4 
(1πg)

4 

Electronic configurations 

2s-2pz mixing 

 

3u 

 

1*
g 

 

3g 

 

 

1u 

 

2*
u 

 

2g 

 

 

 

 

 

 

Homogeneous diatomic molecules sp-mixing 



Diatomics

Molecule Li2 Be2 B2 C2 N2 O2 F2 Ne2 

Bond Order 1 0 1 2 3 2 1 0 

Bond Length (Å) 2.67 n/a 1.59 1.24 1.01 1.21 1.42 n/a 

Bond Energy (kJ/mol) 105 n/a 289 609 941 494 155 n/a 

Diamagnetic(d)/Paramagnetic(p) d n/a p d d p d n/a 

Bond orders :

b =
1

2
(n n* )

2s-2pz mixing 

Paramagnetic: 

unpaired electron(s) 

EPR-active! 

 

Diamagnetic: 

all electrons are paired! 



Magnetic moment of paramagnetic molecules 

The magnetic moment (m) of a paramagnetic molecule depends 

mainly on electron spin and can be given by   

eem nnSS  )2()1(2 

S: total electron spin quantum number 

n: the number of spin-unpaired electrons 

e:  Bohr magneton. 

)2/1( nS

E.g., for O2 and B2,   n=2, S =1  
em  22



3. The structure of homonuclear diatomic molecules 

c. The molecular spectroscopy – spectral term 

• For a many-electron diatomic molecule, the operator for the axial 

component of the total electronic orbital angular momentum 

commutes with the Hamiltonian operator, possible eigenvalues of 

which can be MLħ (ML = 0, ±1, ±2, …), with  
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ji  1-electron wavefunction: 

Total wavefunction of a n-

electron system: 

• Now define 

• For 0, there are two possible values of ML, +/-. 
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i

L imM )(

Vector 

Axial component 

 of total orbital 

Angular momentum 

Total spin 

(ML = +, -) 

(MS = +S, +S-1,…, 

-S+1, -S) 

• A given set of  and S include 2(2S+1)  (if   0)  or (2S+1)  (if 

 = 0) degenerate eigenstates! 

• Now define the total electronic spin S as 



n

im
1i

s )(


S

• The component of S along an axis has the possible values Msħ, 

where Ms = S, S1, …, S+1, S.  

whose magnitude has the possible values S(S+1)1/2 ħ (S –- total 

spin quantum number).   

• Spin multiplicity = 2S +1.  


i

s imS )(


LM  

Quantum number 



Molecular Orbital Theory Diatomics Term    symbols    

H2


Molecule     Configuration              Term symbol    

(1g)1 g

2

12 S

)(SYM

ty  multiplici Spin

        

2    1    0    :

Parity

Reflection

Parity:    

g ×g  = g 

g ×u  = u 

u ×u  = g 








i

s

i

imS

im

|)(|

|)(|

e.g.,  (1u)2: (1+1)
1 (1-1)

1    

 = +1 -1 = 0,  S = 1, u×u  = g 

or 

 =0, S=1/2 

m = 0  
ms = 1/2  

Note: These are 

related to inversion 

center and reflection 

plane, respectively. 



Molecular Orbital Theory Diatomics Term    symbols    

H2

Molecule     Configuration              Term symbol    

(1g)2


g

1Σ



2H
1

u

2

g )(1σ)(1σ


u

2
Σ

2He
2)(1σ)(1σ u

2
g



g

1Σ

Li2 (1g)2(1u)2(2g)2


g

1Σ

1g1s 1s

1u1s 1s

2g2s  2s

2u2s  2s

Be2 (1g)2(1u)2(2g)2(2u)2


g

1Σ

• For homonuclear diatomics, a closed-shell electronic configuration 

has S = 0 and  =0 , giving rise to the spectral term         .   

gΣ
1

• The spectral terms of molecules with open shell(s) are 

determined by the electrons in the open shell(s)! 



Molecular Orbital Theory Diatomics Term    symbols    

Molecule     Configuration              Term symbol    

B2
2

u )(1π

C2
4

u )(1π



g

3Σ g

1Δ 

g

1Σ

N2
 1

g

4

u )(3σ)(1π

N2
2

g

4

u )(3σ)(1π 

g

1Σ



g

1Σ



g

2Σ

1u

3g

Excited states 

+1 -1 

• For equivalent electrons in an open shell (e.g.,                ), 
2

u )(1π

Pauli exclusion principle & Hund’s rule should be fulfilled to 

determine its ground term. (here MSmax=1  S=1 & MLmax = 0) 

Ground-state term 

… 

… 

… 

… 

• Note: (1u)2 has a total of 6 (i.e., C4
2) microstates! 



For equivalent electrons in an open shell: 

u
2 has in total C4

2 = 6 microstates.  (e.g., for B2 and O2) 

3g
 

m  +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 

1g
+ 1g 

ML= 0  

MS = 1, -1, 0 

 = 0, S = 1 

ML= 0  

MS = 0 

 = 0, S = 0 

ML = 2, -2 

MS= 0 

 = 2, S = 0 

The ground-state term includes the microstates that fulfills the 

minimum energy rule, Pauli exclusion & Hund’s rule. 

ML=   0  

MS =  1 

0  

-1 

0  

0 

0  

0 

2  

0 

-2  

0 

Msmax 

 S =1 & 

MLmax = 0 

 L =0 



)()(),( 211121 gg 

• Electrons in a molecule are Fermions and indistinguishable!  

  The total electron wavefunctions of a many-e molecule should 

be antisymmetric upon permutation of any two electrons.  

)]()()()([ 1221  

1g Orbital part 

spin part 

)]}()()()()[()({ˆ),(ˆ 1221211121 1212   ggPP

Permutation: 

Linear combination of two 

indistinguishable spin states 

   Its orbital (spatial) part is symmetric upon permutation! 

   Thus its spin part has to be antisymmetric upon permutation 

to make the total wavefunction antisymmetric upon permutation! 

• e.g., for H2 
1g

+ 

),()]()()()()[()( 2121121121   gg

(After-class reading:  the following five pages! ) 



• For equivalent electrons in an open shell (e.g.,             ), Pauli 

exclusion principle & Hund’s rule should be fulfilled to determine its 

ground-state term, for which ML = 0 (=0) and MS = 1 , 0(S=1).   

2

u )(1π

m +1 -1 

))ππ))ππ 1(2(2(1( 1111  

)))) 2(1(   :1    2(1(   :1   MsorMs

The spatial part has to be asymmetric upon permutation, i.e.,  

 which is also asymmetric upon v//z reflection; the superscript “–” 

refers to the eigenvalue of v (e.g, (xz)) reflection. i.e.,  

]1(2(2(1([

]1(2(2(1([]1(2(2(1([

1111

11111111

))ππ))ππ

))ππ))ππ))ππ))ππ







v

1)-/ (m   



m

)im(im

xzmxz πeAF(ξ]e,η[AFσπσ   ),)(

or 
+1 -1 

)2()1(]1(2(2(1([ 1111 ))ππ))ππ   )2()1(]1(2(2(1([ 1111 ))ππ))ππ  

 The total wavefunctions for ML = 0 & MS = 1  ( of 3g
-) are 

& 

i)  For the cases of =0, ML = 0 and S= 1, MS = 1, the spin factor 

(inner-shell neglected) is symmetric upon permutation, i.e.,   



ii)  Similarly, for the case of  ML= 2 (= 2 ) and Ms =0 (S = 0),  

m +1 -1 

))ππ))ππ 2(1(   :2     2(1(  :2 1111   LL MorM

 The spin factor has to be antisymmetric upon permutation, i. e.,  

 Neither spatial functions is the eigenfunction of v(xz) reflection! 

))ππ))ππ 2(1(]2(1([ 1111  v

or 
+1 -1 

)))) 1(2(2(1(  

 The spatial part is definitely symmetric upon 

permutation, i. e.,  

))ππ))ππ 2(1(]2(1([ 1111  v

Similarly, the spatial factor of the total wavefunction for the 

ground-state term 2 arising from ()1 or ()3 is not eigenfunction 

of v reflection! 

)]1()2(2(1(][2(1([ 11   ))))ππ

 The total wavefunctions for ML = 2 & MS = 0  (of 1g) are   

)]1()2(2(1(][2(1([ 11   ))))ππ

1)-/ (m   



m

)im(im

xzmxz πeAF(ξ]e,η[AFσπσ   ),)(



a)  If the spin factor is antisymmetric, the spatial part has to be 

symmetric upon permutation, i.e.,  

iii)  For the two microstates with  ML=0 and Ms =0,  

m +1 -1 

))ππ))ππ 1(2(2(1( 1111  

 The spin factor can be either antisymmetric or 

symmetric upon permutation, i.e.,  

 which is also symmetric upon v reflection; the superscript “+” refers 

to the eigenvalue of v reflection. Thus the state described by the 

following wavefunction (ML=0,MS=0) belongs to 1g
+,  

and 
+1 -1 

)))) 1(2(2(1(   )))) 1(2(2(1(  or 

]1(2(2(1([]1(2(2(1([ 1111 ))))))ππ))ππ   

b) If the spin factor is symmetric, the spatial factor has to be 

antisymmetric upon permutation, i.e., 

       which is antisymmetric upon v reflection. The derived state with 

the following wavefunction (ML=0,MS=0) belongs to 3g
. 

))ππ))ππ 1(2(2(1( 1111  

]1(2(2(1([]1(2(2(1([ 1111 ))))))ππ))ππ   

))ππ))ππ))ππ))ππ 1(2(2(1(]1(2(2(1([ 11111111  v



Accordingly, without considering orbital-spin interaction, the 

electronic configuration  u
2  contains a total of six quantum 

states differing in (, ML; S, Ms), splitting into three energy 

levels, i.e., 3g
, 1g and 1g

+: 

1) The ground term 3g
 has three degenerate quantum states 

described by the following sets of quantum numbers, 

       (0, 0;1, 1), (0, 0;1, 0), (0, 0;1, -1) 

2) The first excited level, 1g , has two degenerate quantum states, 

(1, 1;0, 0), (1, -1;0, 0).  

3) The second excited level, 1g
+, has only one quantum state, 

(0,0;0,0) 

Please derive the ground term of B2
+ 
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Molecule     Configuration              Term symbol    

3g

1u

3u

1g



2N
1

g

2

g

4

u )(1π)(3σ)(1π
g

2
Π

2O
2

g

4

u

2

g )(1π)(1π)(3σ


g

3Σ g

1Δ 

g

1Σ

2F 4

g

4

u

2

g )(1π)(1π)(3σ


g

1Σ



2O 1

g

4

u

2
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g

2
Π

12ST 

)SYM(Lz

ty  multiplici Spin

Δ    Π   Σ

2    1    0    :L
zT

Parity

Reflection

• Herein the “+”/“-”  designations are only used for  terms! 



Electronic states of O2 

Caution:  combination of two such microstates gives two 

eigenfunctions belong respectively to 3g
- and 1g

+ . 



4. The structure of heteronuclear diatomic molecules 

Differing from homonuclear diatomic molecules in the 

following aspects, 

• No inversion center   no parity of MOs 

• Difference in electronegativity  polar MOs  polarity. 

• MO’s no longer contain equal contributions from each AO. 



MO Theory for Heteronuclear Diatomics 

• MO’s no longer contain equal contributions from each AO! 

– AO’s interact if symmetries are compatible. 

– AO’s interact if energies are close. 

– No interaction will occur if AO’s energies are too far apart.  A 

nonbonding orbital will form. 

 

 Y makes a greater 

contribution to the MO. 

 MO =CX X +CY Y  ;(|CX|< |CY|) 

 X makes a greater 

contribution to the *
MO. 

 *MO =CXX -CY Y ; (|CX|> |CY|) 



Example: HF  (VE=8) 

• The F 2s is much lower in 

energy than the H 1s so they 

do not mix.  

 The F 2s orbital makes a 

non-bonding MO (2). 

(1σ)2 (2σ)2 (3σ)2 (1π)4 

More F-like 

More H-like 

2 

3 

1 

4 

belongs to F 

• The H 1s and F 2pz are close in energy and do interact to form a 

bonding MO (3) and an antibonding MO (4).  

• The F 2px and 2py, finding no symmetry-matching AO in H,  

form non-bonding MO’s (1). 

H F z 

HOMO 

LUMO 

 So does the F 1s. (1) 

 

2px/y 



1sH 

+ 

2pzF 

1sH 

- 

2pzF 

This bonding MO is more F-like! 

This MO is more H-like. 

• The occupied 3 bonding MO of HF is thus strongly polar with 

the F-end being remarkably negative.  

)2p 0.91s 0.1(3σ zFH 

)2p 0.1s 0.(σ zFH 19*4 

• The empty 4 MO of HF is anti-bonding.  

• The F atom in HF is F- like.  



Energy (au) Symmetry 

  H Li C F   

1s -0.5 -2.48 -11.33 -26.38  

2s   -0.20 -0.71 -1.57  

2p     -0.43 -0.73  and  

Atomic Configurations 
Ground-state 

Configurations 

Li 1s22s1 LiH 1222 

C 1s22s22p2 CH 12223211 

F 1s22s22p5 HF 12223214 

Atomic Orbital Energies and Symmetry Properties 

Bonding MO:   1)  LiH-2, more H 1s-like;    

2)  CH-2, covalent;  3)  FH-3, more F 2pz-like. 



LiH 

 

4 

 
K(2σ)2 

BeH 

 

5 

 
K(2σ)2 (3σ)1 

CH 

 

7 

 
K(2σ)2 (3σ)2 (1π)1 

NH 

 

8 

 
K(2σ)2 (3σ)2 (1π)2 

OH 

 

9 

 

K(2σ)2 (3σ)2 (1π)3 

HF 

 

10 

 

K(2σ)2 (3σ)2 (1π)4 

Electronic configurations 

Heterogeneous diatomic molecules, HX 

MO diagram for HF 

F2p

F2s

H1s

2

3

1

4

Mainly H

Mainly F

Exclusively F

• The  MOs in such these XH molecules are non-bonding and 

exclusively localized on the X atom.    

• The 3 bonding MO in HF, HO etc is highly polar with the X-end 

being remarkably negative! 

• In CH and NH: 2 -bonding,  3 - non-/weakly anti-bonding 



Simplified MO diagram of heteronuclear diatomic molecules 

A  B A = B 

no i-symmetry    i-symmetry 

Inner 1s AOs omitted! 

CO O2 

O 

O C O O 

sp-mixing 

No 

sp-mixing 

No 

sp-mixing 



BeO  

 

12 

 
KK(3σ)2 (4σ)2 (1π)4 

CN 

 

13 

 
KK(3σ)2 (4σ)2 (1π)4 (5σ)1 

CO 

 

14 

 
KK(3σ)2 (4σ)2 (1π)4 (5σ)2 

NO 15 KK(3σ)2 (4σ)2 (1π)4(5σ)2 (2π)1 

Heteronuclear diatomic molecules, YX 

Isoelectronic rule:  

The MO’s bond formation and 

electronic configurations are 

similar among the isoelectronic 

diatomic molecules. 

CO is isoelectronic with N2! 

(1σ)2(2σ)2 (3σ)2 (4σ)2 (1π)4 (5σ)2                              

CO 

O 

C 

sp-mixing 

like  C2 

like  N2 

like  O2
+

 

like  N2
+

 



N2:  KK(1σg)
2 (1σu)2 (1πu)4 (2σg)

2 

E
n
e
rg

y
 

2s 2s 1g 

1u 

2p 2p 

2g 

2u 

1u 

1g 

HOMO 

LUMO LUMO 

HOMO 

CO: KK(3σ)2 (4σ)2 (1π)4 (5σ)2 

CO is isoelectronic with N2.     

C O N N 

However, for CO, its 5 MO is more like a lone pair located at C 

atom, and is weakly antibonding! 



OH:  K(2σ)2 (3σ)2 (1π)3 

The bonding in OH is quite similar to that of HF. 

Non-bonding 

MO (O 2s) 

bonding MO  

(O 2pz + H 1s)  

Non-bonding MOs 

(O 2px, 2py) 

LiO:  KK(2σ)2 (3σ)2 (1π)3 

Non-bonding 

MO (O 2s) 

bonding MO  

(O 2pz + Li 2s)  

Non-bonding or weakly 

bonding MOs  

(Mainly O2px, 2py,  with minor 

contribution from Li 2px, 2py. B.O.  1      

B.O. = 1      

2Π 

2Π 

BeO:  KK(2σ)2 (3σ)2 (1π)4 

(Li, Be, sp-mixing)  

Non-bonding 

MO (O 2s) 

bonding MO  

(O 2pz + Be 2s)  

Weakly bonding MOs  

(Mainly O2px, 2py,  with 

substantial contribution from 

Be 2px, 2py. 

B.O. = 3  (2<B.O. <3)      

• Be adopts 2s12p1 in order to form BeO. 



LiH 4 

 
K(2σ)2 

1Σ+ 

 
BeH 5 

 
K(2σ)2 (3σ)1 

2Σ+ 

 
CH 7 

 
K(2σ)2 (3σ)2 (1π)1 

2Π 

 
NH 8 

 
K(2σ)2 (3σ)2 (1π)2 

3Σ 

 
OH 9 

 
K(2σ)2 (3σ)2 (1π)3 

2Π 

 
HF 10 

 
K(2σ)2 (3σ)2 (1π)4 

1Σ+ 

 
BeO, BN 

 

12 

 
KK(3σ)2 (4σ)2 (1π)4 

1Σ+ 

 
CN, BeF 13 

 
KK(3σ)2 (4σ)2 (1π)4 (5σ)1 

2Σ+ 

 
CO 14 

 
KK(3σ)2 (4σ)2 (1π)4 (5σ)2 

1Σ+ 

 
NO 15 

 
KK(3σ)2 (4σ)2 (1π)4 (5σ)2 (2π)1 

2Π 

 

Molecule   electrons         electronic configuration             term    B.O. 

1 

0.5 

1 

1 

1 

1 

2 

3 

2.5 

2.5, 

0.5 



Please derive the spectral term of  the first excited 

state of CH ?     

Electronic configuration:  K(2σ)2 (3σ)1 (1π)2) 



§3 Valence bond(VB)  theory for the hydrogen molecule and 

comparison of VB theory with Molecular Orbital theory(MO) 

 In valence bond(VB)  theory, each atom contributes an 

electron to form a covalent bond. 

 or BA

 e1  e2 

BA

 e2  e1 

 The Heitler-London treatment: 

 f1  =  A(1)B(2) &  f2  =  A(2)B(1)   (two covalent VB structures) 

 The trial variation function for the whole system: 

  =  c1f1+ c2f2  =  c1A(1)B(2) +  c2A(2)B(1) 

   )]2()1()2()1([)]1(A(2))2(N[A(1)=(1,2) VB   BB

e.g., H2 

In case electron spin is concerned, the wavefunction is 



VB theory solution of  H2 

Following the Variation Theorem, we have  
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Then we have seqular equations and seqular 

determinant, the roots of which are    
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 In molecular orbital (MO)  theory each electron moves over the 

whole molecule.  

BA BA and 

e1 e2 

Both electrons can be on the same nuclei 

 The LCAO-MO wavefunction for the H2 ground state (1g
2) is: 

   2121211N[1=(1,2) ggMO )]()()()([)]()][(  

  )1(A(2)+(2))1()2()1(+A(1)A(2) BBABB 

H-H+     H+H-    
covalent terms    ionic terms    

The bonding MO is    ]+c[A=1 g B

Following the 1-particle approximation, variation theorem & 

SCF process give rise to a series of 1-e wavefunctions (MOs).   

Spatial part   +c[A(i)=i1 g )]( iB）（



QM treatments of H2:   MO  vs. VB   

• Both treatments employ the variation theorem. 

• Orbitals:   VB-localized;  MO-delocalized! 

• Wavefunctions differ.   

   )]2()1()2()1([)]2(+A(2))][1(+N[A(1)=(1,2) MO   BB

free)-(spin     )1(A(2)+(2))1()2()1(+A(1)A(2) BBABBor 

   )]2()1()2()1([)]1(A(2))2(N[A(1)=(1,2) VB   BB

 free)-(spin        )1(A(2))2(A(1)=r BBo 

H-H+     H+H-    Covalent forms 

  The accuracy of VB treatment depends on how to enumerate 

possible VB structures!  

Only when the ionic valence structures are included can we have 

free)-(spin     )1(A(2)+(2))1()2()1(+A(1)A(2) BBABBVB 

Heitler-London VB treatment: 



Comparison of MO and VB theories 

VB Theory 

• The electrons in the molecule 

pair to accumulate density in the 

internuclear region. 

• Electrons are localized (to 

specific bonds). 

• Hybridization of atomic orbitals 

• Basis of Lewis structures, 

resonance, and hybridization. 

• Good theory for predicting 

molecular structure.  

Molecular orbital theory 

• Molecular orbitals are formed 

by the overlap and interaction of 

atomic orbitals. 

• Electrons are “delocalized” over 

molecular orbitals consisting of 

AOs. 

• Electrons fill up the MOs 

according to the aufbau 

principle. 

• Give accurate bond dissociation 

energies, IP, EA, and spectral 

data. 



Recent development:   Quadruple bond in C2 ! 

• Triple bond is conventionally considered as the limit for multiply 

bonded main group elements! 

• Recently, high-level theoretical computations show that C2 and its 

isoelectronic CN+,  BN and CB- are bound by a quadruple bond. 

• The fourth bond is an ‘inverted’ bond with an bonding energy of 

12-17 kcal/mol, stronger than a hydrogen bond.  

P.F. Su, W. Wu, et al.,  Nat. Chem. 2012, 4, 195. 

“Inverted” 

bond! 



The End of This Chapter！ 

• 第二版： pp. 111-112,  

    questions 4.8, 4.11,  4.19, and 4.21. 

• 第三版： p95-96,  

    questions 4.12, 4.15,  4.19, and 4.21. 

 



 = |m| 0 1 2 3 4 

letter      

i)  MO ( =0, m = 0) 

 im

elec eF ),()2( 2/1

Bonding 

Anti-

bonding 

Anti-

bonding 

Bonding ns (l=0,ml=0) + ns (l=0,ml=0)  

Relationship between MO (,m) and its component AO(l,m)  

AO components 

ns (l=0,ml=0)  ns (l=0,ml=0)  

np0 (l=1,ml=0)  np0 (l=1,ml=0)  

np0 (l=1,ml=0) + np0 (l=1,ml=0)  

Note: Herein  p0 = pz 

)]()([ 21 nlmnlmelec N  

Now suppose MO can be 

composed of AOs, i.e., 

AO of atom 2 



 = |m| 0 1 2 3 4 

letter      

ii)  MO (m= 1) 

 im

elec eF ),()2( 2/1

Anti-

bonding 

Bonding 

Relationship between MO (,m) and AO(l,m)  

np1 (l=1,ml= 1) + np1 (l=1,ml= 1)  

np1 (l=1,ml= 1) - np1 (l=1,ml= 1)  



 = |m| 0 1 2 3 4 

letter      
iii)  MO (m=2) 

 im

elec eF ),()2( 2/1

Bonding 

*  Subscription (g/u): the parity of one-electron wavefunction. 

Relationship between MO (,m) and AO(l,m)  

nd2 (l=2,ml= 2) + nd2 (l=2,ml= 2)  

Anti-

Bonding nd2 (l=2,ml= 2) - nd2 (l=2,ml= 2)  Not depicted! 



 0 1 2 3 4 

letter      

elec = F(,) (2)-1/2 eim 

 =|m|  

   

Summary 



2. The Variation Theorem 

For any well-behaved wavefunction , the average energy from 

the Hamiltonian of the system is always greater or close to the 

exact ground state energy (E0) for that Hamiltonian, 

0*

ˆ*
E

d

dH
E 





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



ic



    Based on this principle, the parameters 

are regulated by the minimization routine so 

as to obtain the wavefunction that 

corresponds to the minimum energy. This is 

taken to be the wavefunction that closely 

approximates the ground state. 
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E
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3. Linear Variation Functions 
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1

2211 ...

A linear variation function 

is a linear combination of 

n linearly independent 

functions f1, f2, …fn. 
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The algebraic equation has n roots, which can be shown to be real. 

Arranging these roots in order of increasing value: E1 E2… En. 

The algebraic equation has 2 roots, E1 and E2. 



3. The structure of homonuclear diatomic molecules 

c. The molecular spectroscopy - term 

Summary 



Molecular Orbital Theory Diatomics Term    symbols    

H2


Molecule     Configuration              Term symbol    

(1g)1 2
g


2ST 1

SYM(Lz)

Spin multiplicity  

        

LTz
:     0    1    2

Parity

Reflection    



Molecular Orbital Theory Diatomics Term    symbols    

H2

Molecule     Configuration              Term symbol    

(1g)2 1
g


2ST 1

SYM(Lz)

Spin multiplicity  

        

LTz
:     0    1    2

Parity

Reflection    

H2
 (1g)2(1u)1 2

u


He2 (1g)2(1u)2 1
g


Li2 (1g)2(1u)2(2g)2
1
g


1g1s 1s

1u1s 1s

2g2s  2s

2u2s  2s

Be2 (1g)2(1u)2(2g)2(2u)2 1
g




Molecular Orbital Theory Diatomics Term    symbols    

2ST 1

SYM(Lz)

Spin multiplicity  

        

LTz
:     0    1    2

Parity

Reflection    

Molecule     Configuration              Term symbol    

B2 (1u )
2

C2 (1u )
4

3
g


gΔ
1 1

g


N2
 (3g )

1
(1u )

4

N2 (3g)2(1u)4
1
g


1
g


2
g


1u

3g



Molecular Orbital Theory Diatomics Term    symbols    

2ST 1

SYM(Lz)

Spin multiplicity  

        

LTz
:     0    1    2

Parity

Reflection    

Molecule     Configuration              Term symbol    

3g

1u

3u

1gN2


(3g)2(1u)4(1g)1 gΠ
2

O2 (3g)2(1u)4(1g)2
3
g


gΔ
1 1

g


F2 (3g)2(1u)4(1g)4 

g

1Σ



MO Theory for Heteronuclear Diatomics 

• MO’s will no longer contain equal contributions from each AO. 

– AO’s interact if symmetries are compatible. 

– AO’s interact if energies are close. 

– No interaction will occur if energies are too far apart.  A 

nonbonding orbital will form. 

 

Y makes a greater 
contribution to the 
MO 

X makes a 
greater 
contribution to 
the *

MO 

Summary 



LiH 
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K(2σ)2 
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K(2σ)2 (3σ)1 

 

CH 

 

7 

 

K(2σ)2 (3σ)2 (1π)1 

 

NH 

 

8 

 

K(2σ)2 (3σ)2 (1π)2 

 

OH 

 

9 

 

K(2σ)2 (3σ)2 (1π)3 

 

HF 

 

10 

 

K(2σ)2 (3σ)2 (1π)4 

 

Electronic configurations 

Heterogeneous diatomic molecules, HX 

MO diagram for HF 

F2p

F2s

H1s
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Mainly H

Mainly F

Exclusively F



Simplified MO diagram of heteronuclear diatomic molecules 

A  B A = B 

A B
z

yA
yB

xA xB

2p 2p

u

g

g

u

2s2s

g

u

1s1s

g

u

A B
z
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yB

xA xB
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


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BeO  

 

12 

 

KK(3σ)2 (4σ)2 (1π)4 

 
CN 

 

13 

 
KK(3σ)2 (4σ)2 (1π)4 (5σ)1 

CO 

 

14 

 
KK(3σ)2 (4σ)2 (1π)4 (5σ)2 

NO 15 
KK(3σ)2 (4σ)2 (1π)4(5σ)2 (2π)1 

Heterogeneous diatomic molecules, YX 

Isoelectronic rule:  

The MO’s bond formation and 

electronic configurations are 

similar among the isoelectronic 

diatomic molecules. 

CO is isoelectronic with N2. 
 

KK(3σ)2 (4σ)2 (1π)4 (5σ)2                              

2s
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LiH 
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K(2σ)2 

 

1Σ+ 

 

BeH 
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K(2σ)2 (3σ)1 

 

2Σ+ 

 

CH 
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K(2σ)2 (3σ)2 (1π)1 

 

2Π 

 

NH 

 

8 

 

K(2σ)2 (3σ)2 (1π)2 

 

3Σ— 

 

OH 
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K(2σ)2 (3σ)2 (1π)3 

 

2Π 

 

HF 

 

10 

 

K(2σ)2 (3σ)2 (1π)4 

 

1Σ+ 

 

BeO , BN 

 

12 

 

KK(3σ)2 (4σ)2 (1π)4 

 

1Σ+ 

 

CN , 

BeF 

 

13 

 

KK(3σ)2 (4σ)2 (1π)4 (5σ)1 

 

2Σ+ 

 

CO 

 

14 

 

KK(3σ)2 (4σ)2 (1π)4 (5σ)2 

 

1Σ+ 

 

NO 

 

15 

 

KK(3σ)2 (4σ)2 (1π)4 (5σ)2 (2π)1 

 

2Π 

 

Molecule   electrons         electronic configuration               term 



Comparison of MO and VB theories 

VB Theory 

• Separate atoms are brought 
together to form molecules. 

• The electrons in the molecule 
pair to accumulate density in the 
internuclear region. 

• The accumulated electron 
density “holds” the molecule 
together. 

• Electrons are localized (belong 
to specific bonds). 

• Hybridization of atomic orbitals 

• Basis of Lewis structures, 
resonance, and hybridization. 

• Good theory for predicting 
molecular structure. 

Molecular orbital theory 

• Molecular orbitals are formed 
by the overlap and interaction of 
atomic orbitals. 

• Electrons then fill the molecular 
orbitals according to the aufbau 
principle. 

• Electrons are delocalized (don’t 
belong to particular bonds, but 
are spread throughout the 
molecule). 

• Can give accurate bond 
dissociation energies if the 
model combines enough atomic 
orbitals  to form molecular 
orbitals. 
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Can we simplify the process by using the 

molecular symmetry? 

E1 

E2 

H2
+ is Dh-symmetric. The bonding and antibonding orbitals should be 

symmetric and asymmetric, respectively, upon inversion, i.e.,    

Now we have 

( E1 < E2) 
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Similarly, for the asymmetric MO, normalization gives  
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Molecular Orbital Theory H2


The electron density calculated  

by forming the square of the  

Wavefunction. Note the 

elimination of electron density 

from the internuclear region. 
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It is provable that this MO has no electron density at the midpoint of 

the H-H bond (i.e., the value of this function is zero at the midpoint）!  

Its density distribution function (or 

probability distribution function): 
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Both a and b are 1s AO of H. Their values depend 

solely on the electron-nuclei distance.  At the midpoint of 

H-H bond, ra=rb = RH-H/2,  thus we have  
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Structural Chemistry 

• Chapter 1. The basic knowledge of quantum 

mechanics  

•   1.1. The naissance of quantum mechanics  

•   1.2 The basic assumptions in quantum 

mechanics  

•   1.3 Simple applications of quantum mechanics  



• Chapter 2. The structure of atoms  

•   2.1 The Schrödinger equation and its 

solution for one-electron 

•   2.2 The physical significance of quantum 

number 

•   2.3 The structure of multi-electron atoms  

•   2.4 Atomic spectra and spectral term 



• Chapter 3 The symmetry of molecules  

•   3.1 Symmetry operations and symmetry 

elements  

•   3.2 Point groups  

•   3.3 The dipole moment and optical activity  



• Chapter 4. Diatomic molecules  

•   4.1 Treatment of variation method for the H2
+ 

ion 

•   4.2 Molecular orbital (MO) theory and diatomic 

molecules  

•   4.3 Valence-bond (VB) theory and the structure 

of hydrogen molecule  



Simple one-particle system Solvable 

Particle in a Box 

Harmonic Oscillator 

Hydrogen Atom & H-like ions 

Rigid Rotor 

Hydrogen Molecule Ion 

Complex system not separable 

For example: many-electron atom or molecule 

An approximation to the real solution of a complex 

system:   The variation theorem! 


