Chapter 3

Molecular symmetry and symmetry point group

Part B

(ref. Chemical Application of Group Theory, 3" ed., F.A.
Cotton, by John Wiley & Sons, 1990.)



% 3.5 Group representation Theory and irreducible
representation of point groups

3.5.1 Representations of a point group:

reducible vs. irreducible
For a point group,

» Each element is a unique symmetry operation (operator).
» Each operation can be represented by a square matrix.

» These matrices constitute a matrix group, i.e., a matrix
representation of this point group.

Example: C,=/E,i} ~ a general point (x,),z) 1n space.

ilyl=l 0 =1 0|yl=|-»| 4 i=l0 -1 o E=|0 1 o] }
0 0 0 1

gy WO U= E ) )
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a matrix group 16



Example: C; one unit vector x

E(x)=(1)x)=(x) i(x)=(-1fx)=(-x)

The corresponding matrix representation of C; 1s {(l ), (_ 1)}

Q1:How many representations can be found for a particular group?

A large number, limited on our ingenuity in devising ways to
generate them.

Q2: If we were to assign three small unit vectors directed along the x,
y and z axes to each of the atoms in H,O and write down the matrices
representing the changes and interchanges of these upon the
operations, what would be obtained?

A matrix representation consisting of four 9x9 matrices would be
obtained upon operating on a column matrix (X, Yos 205 Xu Y Sup

12
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Example: C,,

{E9 CZ’ ze’

E

()
Y

Q>

Xz

Oy, Principal axis: z-axis.
(1 0 0Yx) (x) (x) (-1 0 0Yx) (—x)
0 1 0ly|=|y| &lyl=|0 -1 0fy|=|-y
0 0 1hz) (z) z) {0 0 TRz) \ z)
1 0 0oV x) ( x) [y ) (_1 0 0V x\ (—=x)
0O -1 0 Yi=|—Y &yz V= 0 1 O v i=| Yy
O 0 1TAz) \ z) z) (0 0 1Thz) \ z)
—)> a matrix representation of C,,

E C, o, o,
(10 0 (=1 0 0) (1 0 0) (=1 0 0)
20 1 0 0 -1 0| |0 =1 0 0 1 0

00 1){o o 1){0 0o 1) {0 0 1)

\Z)
£3)

Y

=y

.

three unit vectors (x,y,z) or a general point



Bases, representations and their dimensions
* Dimension of a representation = The order of matrices.
 Different basis - Different representation.

Example: C,,

Basis ~ a general point or tl

1 0 0)
N
0 0 )

E

)

CZ

0 0)
0\1\?
\0 0 y,

(1
0

\O

o)

XZ

0 0)
\\(1)
0 1

C)'yZ

(~1. 0 0
o\x\o
L0 0

1ree unit vectors.

A 3-D rep.

Simple basis: a translational vector as X, y, or z, or a rotor Rz

Reduced to 1D matrices

Irreducible representation

X|[1][-1][1][-1] I-DReps. T = 1 -1

y[[1FIH101] ) T,= 1 -1 1

z[[1 111011 1] T T,= 1 1 1 1
/R FRZ=1 1 ‘1 ‘1 12
L z (3



Reducing of representations

« Suppose that we have a set of n-dimensional matrices, A, B,

C, ..., which form a representation of a group. These n-D

matrices themselves constitute a matrix group 7'={A, B,.

 If we make the same similarity transformation on each
matrix, we obtain a new set of matrices, namely,

A'=X'4X, B'= X 'BX,
C'=X'CX, ..

that forms a new matrix group: I = {A', B, (', }

« [ is also a representation of the group!

.},



« ltis provable that if any of the matrix (e.g., A”’)in /" is a
block-factored matrix, then all other matrices (e.g., B,C’,...)
iIn 7 are also blocked-factored.

4] o o o] [[B] o o o] [l o o o
. [4] 0 o a| © B,] 0o 0 | 0 [c,] o o
o o [4] of o o [B] of o o [c] ol
o 0o o [4]] [o o o [B]] |0 o o [g]

In which A,,A,A;... are n,n,,n,...-order submatrices with n =
n,+n,+n,+ ...

* These n-order matrices can be simply expressed as

A=A®A, ®A, ® ... B=B®B,®B,® ...,
C'=C,®C,®C,® ..., ......

(Direct sum of submatrices! ) L



It is also provable that the various sets of submatrices,
T,={A,,B,,C,...}, T~{A,,B,,C,...}, T3={A;,B;,Cs...}, ...,

are in themselves representations of the group.

We then call the set of matrices 7={A,B,C, ...} a reducible
representation of the group, which breaks up into a direct
sum of the representations, i.e., ' =T, T,® T; ® ...

If it is not possible to find a similarity transformation to
reduce a representation in the above manner, the
representation is said to be irreducible.

The irreducible representations of a point group are mostly
countable and of fundamental importance! )



Example: C,, Is this 3-D Rep. reducible?
Yes. These matrices are block-factored!

0 0
0 0 0 | 0 0 N0 0 0 e
l

[, =I,@I, @I The3-Drep.isreduced to 3 1-D rep. 7.

Xyz



Point group R R={R,, Rg, R, ...} (symm. ops.)
Exerted on any set of bases

(e.g., AO’s, MO's, vectors, rotations etc.)
A 'matrix group, " = A, B, C, ...}

(a matrix rep. of group R, dimension = order of the matrix)

Similarity transformations (reducing of a representation!)

A block-factored matrix group, /" ={4°, B’, C’, ...}
A" =4A,PA4,...,B"=B,®B,P...,C"=C,P
C,@...,...) and I; ={A,B,C;,...} , I, ={A,,B,,C,,...} ...
&I"=1,@I,P...

|

Direct sum of irreducible representations! W



The irreducible representations of a point group are
mostly countable and of fundamental importance!!!

The character table of a point group lists up all
essential information of its irreducible
representations.



v

Top line: point group

3.5.2. Character Tables of Point Groups

Example - point group C,,

C, o,(x2)o,(yz) h=4
+1 +1 +1

-1 -1

+1 -1

-1 +1

Characters

symmetry operations
order of group, h = number of symmetry operations

Symmetry species of irreducible representations. WE




Characters & reducing representation!

C,
I,

v

Xyz

X

z
I,

Xy<

1]
4
1]

« Character of a matrix A: 2(A)=) a,(A)
(sum of its diagonal elements!) "
E ) ) (1_’ ) ) Oy ) ) O_-\': )
\\0\0 \\0\0 1\ 0 0] 5 p Rep.
0 0 0 N 0 0 N0 0 0
00N [0 ONJ [0 0 N |0 0
XE)=3  pCY=-1 Hlo)=1 jlo)=1
Reduced to 1D matrices L E C, o, o,
1] [ 1] [1] B, 1 -1 1 -1
y [T > B, 1 1 -1 1
10T 1] A, 1 1 1 1
If Z FOr,OI®.., x(R)=D xR )
] ; 4-3

[~-1Rs




Translations

Movements of whole molecule — represent by vectors

e.g. y vector E operation y’ (after operation) =y
C, y =-y (ile.y' =-1xy)
c,(x2)
c,(y2)

z vector all operations

X vector E operation
C,
c,(x2)
o\(y2)




Translations

Consider effect of symmetry operation on the vector

Write +1 for no change, -1 for reversal

E C,
Z vector +1 +1

+1

+1 -1

C, o,(x2) ¢ ,(yz)

+1 +1

c,(y2)
+1 +1

-1 +1
+1 -1

o, (x2)

Labels A, etc. are
symmetry species;

-1

they summarise the
effects of symmetry
operations on the
vectors.




Rotations

Similarly for rotations of the molecules

E C, o/(x2) o,(y2)
z vector + 1 +1 +1
-1 -1
-1 +1
-
+1

-1




Characters

The numbers +1 and -1 are called characters.

The character table has all possible symmetry species for
the point group. It is the same for all molecules belonging to
the point group - e.g. C,, for H,0, SiH,Cl,, Fe(CO),Cl,, etc.

Note: the character table
lists the symmetry C,
species for translations
and rotations.

o/(x2)o(yz) h=4
+1 +1
-1

A,B show symmetry with
respect to rotation.

1,2 distinguish symmetry
with respect to reflections




Symmetry species: Mulliken symbols

C3‘. E 2C1 30’,,

A |1 1 1|z x* + y*, 2

A2 1 1 - 1 R:

E 12 -1 0] (xy)R.R) | (x*=y%xy)xz,yz)

All 1-D irreducible reps. are labeled by either A or B, 2-D
irreducible rep. by E, 3-D irreducible rep. by T and so on.

A: symmetric with respect to C,, rotation, i.e., x(C,)=1.
B: asymmetric with respect to C,, rotation, i.e., x(C,)=-1.

Subscriptions 1 or 2 designates those symmetric or
asymmetric with respecttoa C,L or a g, .

Subscripts g or u for universal parity or disparity.

Superscripts “or '’ designates those symmetric or 12
asymmetric with respect to o,



3.5.3 The “Great Orthogonality Theorem™ and Its

Consequences e
Some notations: I XI1IEXEHE

h — the order of a group; R — operations (elements) of a point group.
l. — the dimension of ith representation (i.e., the order of its matrices)

I (R),, — the element in the mth row and nth column of the matrix
corresponding to the operation R in the ith representation.

Z/Fi(R)m/[r,-(R)m,n,/*—lild,émmé

L]

It means that in the set of matrices constituting any one
irreducible representation, any set of corresponding matrix
elements, one from each matrix, behaves as the components of a
vector in a h-dimensional space such that all these vectors are
mutually orthogonal and each is normalized so that the square of
its length is h/l.. > Lo



Five important rules
regarding irreducible representations and their characters:

Rule 1 — the sum of the squares of the dimensions of the
irreducible representations of a group is equal to the order of a

group. Zlf _

C_],- E .?.C'{ 30 "

e.g., for C,,,

A 1 1
D=1+ 42 =6=h Al

oy (E)=1 = Z[;a-(lk?)]2 =h

Rule 2 — the sum of the square of the characters in any
irreducible representation of a group equalis h,

2 _
ZR:[Zi(R)] =h e.g., A, fOI’C3v,12+2‘12+3'(_1) =0,
L




Five important rules

Rule 3 — the vectors whose components are the characters of
two irreducible representations are orthogonal,

S 2RI x,(R)] =0 e | E 26, 34,
: A |1 D 1

e.g., The 4, and E I.R. of C;, are orthogonal. A,

1(1:2)+2(1-(—1)) +3((~1)-0) = =t

Rule 4 — In a given representation, the characters of all
matrices belonging to operations in the same class are identical.

Rule 5 — the number of irreducible representations of a group
is equal to the number of classes (of operations) in the group.

12

e



Hlustration of the Five important rules

Example — Direct construction of the character table of C,,
» Four classes of elements/operations: {E, C,, ¢', ¢"'} & h =4

e Rule 5 > FourlR.

* Rulel 23I?=h=4>1,,=1 >41-DILR ¢, E C, o o”
o There is always an all-symmetric representation, 4, 1 1 11
A4, 1 1 -1 -1
I R))’=h=4& y(R)=1 2
1 ;[Zl( )] Ji(R) B, 1 -1 1 -1
B, 1 -1 -1 1

[\S)

* Other I-D LR., y(E) =1
YA X(R)P =h=> 1(R)=*+]
R

« Each of them is orthogonal to I'; (rule3) = Z,l’l- (R)y(R)=0
R

—> Two y(R) =1, two y(R) = —1!

12

o If necessary, define the symmetry species (Mulliken symbols ). - -



Hlustration of the Five important rules

Example — Direct construction of the character table of C;,

» Three classes of elements/operations: {E, 2C,;, 30} & h =6

* Rule5 -2 Three 1.R.s c. | E 2¢, 3.

* Rulel > I+1+1°2=6>1,=1,=1,1,=2 A1 1 (T
1

* & y(E)=x,(E)=1, y;(E)=2 A, |1 1 -1

o Thereis always an all-symmetric 1-D L R. | e T }

W(E)=2(Cy)=x(0,)=1 (I, =A))
* Another 1I-D LR. I, should follow rules 2 &3.

DUX(RIP=h D 1. (R)(R)=0 >, Cy=1, y,(c)=-I

» Similarly for the 2-D LR. I, 2);(Cy)=-1, y;(c,)=0
o If necessary, define the symmetry species (Mulliken symbols ). - -



An important practical relationship

Between any reducible representation and the |.R.s,
The number of times that the jth I.R.

/
Y(R)= Z%Mrs in a red. REP.
d Character of a matrix

Character of a matrix
corresponding to operation R in
a red. REP.

corresponding to operation R
in the jth LL.R..

— ZZ;‘(R)Z(R) = ZZ;‘(R)ZC‘]Z](R)

= =2 Y (R)Z(R)

=>a,[ x.(R)I’ = ha,
R /
\ /
Rule 3 Rule 1

representation of a group.

This relationship thus provides an easy way for reducing a

/\E




3.5.3 Symmetry of molecular properties &
Application of the representation theory of group

« Translations and rotations can be assigned to symmetry
species (of irreducible representations).

« So can other molecular properties, including molecular
vibrations, hybrid orbitals, molecular orbitals and so on.

* The theory of molecular symmetry & point group
facilitates the construction of hybrid orbitals, symmetry
adapted MQO'’s, and analyses of molecular vibrations etc.

12
WE



1. Vibrational spectroscopy | FNiRES

The normal vibrations (or normal modes of vibrations) of a
molecule are the bases of |.R.s of the point group it belongs to.

* H,0 has (3N-6)=3 normal modes of vibration!

t - t
Lo N 7 N PO N

H H H H H H

/ N\ N\ \ /
A; IR active B, IR active A, IR active

* CO, has 3 normal modes of vibration I
— 0=C=0 — 0=C=0 0=C=0
Infra-red inactive! | |

no dipole change! IR active IR active

12

The Number of active modes tells us about symmetry! -~ S



IR — active:
The vibrations that induce a change in dipole moment.

* A /R-active vibration and a component of molecular
dipole moment (i.e., vectors X, y, z) belong to the
same symmetry species.

Raman — active:

The vibrations that induce a change in polarizability.

A Raman-active vibration and a component of
molecular polarizability (i.e., x?, y?, z?, Xy, yz, Xz and
x?-y? etc.) belong to the same symmetry species.

12
e



Molecular vibrations - number of modes

Each atom can move independently in x, y, z directions.
3N degrees of freedom for a N-atom molecule.

If atoms fixed, there are: 3 translational degrees
3 rotational degrees

and the rest (3N-6) are vibrational modes



No. of modes of each symmetry species

Example - SiH,Cl, Point group C,,
Character table
£ C, E C, oJxz)olyz) h=4
R 4 R 4 y

I I A, +#1  +1  +1 +1 z X2, y?, z?
H1—> Hz— X

] / A, +1 #1111 R, xy

Si— B, +1 -1 +1 1 xR, xz

Cl—Cl— « Draw x, y and z vectors on all atoms.
 Perform symmetry operations.

« Count +1, -1, 0 if vector transforms to itself, minus itself,
or moves. 12

e



I |Z y Character table

""" C,, E C, o/(xz) o (yz) h=4
N .~ A, +1 # # Mz X%y 22
Si— A, +1  +H1 1 A R, xy
l/ ,' B, +1 -1 +#1 - x,R, xz
Cl—Cly— B, #+1 1 4 +1  yR,  yz
Operation E
Si atom x transforms into Six  count +1

y transforms into Siy  count +1

Z transforms into Si z count +1

Same for other 4 atoms

total +3
grand total +15

12

e



R
.
.

\ ] ‘/ A1 +1 +1 +1 +1 y 4 XZ’ yz’ 22
Si— A, #1 +#1 4 4 R, xy
l/ ,| B, #1 -1 +#1 4 xR, xz
Cl—Cls— B, #1 1 1 +  yR, yz

Operation C, Si atom x transforms into Si -x count -1
y transforms into Si -y count -1

Z transforms into Si z count +1

total -1
H, and H, move - swap places count 0
Cl, and CI, swap places count 0

grand total -1

12

e



R
.
.

] r y Character table

H1_ HZ— X C2v E C2
\ ] / A, +1 +1
Si— A,  +1 +
Vil . moe
Cl—Cl— B, +1 -1

Operation 6 (xz) Siatom

H, and H, also lie in xz plane, and behave as Si

Cl, and Cl, swap places

+1 b4 x?, y?, z2
-1 R, xy
-1 X, Ry XZ

+1 YR, yz

x transforms into Si x count +1

y transforms into Si -y  count -1

Z transforms into Si z count +1

total +1
count +1 each
count 0

grand total +3 12



R
.
.

C
Hi— H—x %
N7 A
S‘I — A,
C|‘1—Ci2—' 52

Operation 6 (yz) Siatom

H, and H, swap places

] r y Character table

E C, o/(xz) o (yz) h=4

+1 +1 +1 #H z X2, y?, z2
+1 +1 -1 -1 R, xy
+1 -1 +1 -1 X, Ry XZ

+1 -1 -1 +1 YR, yz

x transforms into Si -x count -1

y transforms into Siy  count +1

z transforms into Si z count +1
total +1

count 0

Cl, and Cl, also lie in yz plane, and behave as Si count +1 each

grand total +3

12

Ve



No. of modes of each symmetry species

Example - SiH,ClI, Point group C,,

Overall we have:
E C, ov(xz) o,(yz)
+15 -1 +3 +3

This is the reducible representation of the point
group on the basis of the set of 3N (=15) atomic
displacement vectors.

We reduce it to the irreducible representations,
using a formula



Reduce the reducible representation

|
Formula is — > g X(R). x(R)
/h N AN
Character table /

C, JE 1C, 1o,(x2)10,(y2) h=4
+\ +1 +1 +1 Z X2, y2, z2
1

2 +1 -1 -1 R, xy
B, +1 -1 +1 -1 x, R, xz
B, +1 -1 -1 +1 YR, yz
Red. Rep. I” 1& -1 3 3

No. of A, motions =1/4 [1.151 +1.(-1)1+1.31+13.1] =5

AR .



ch ( c). y(c)

TN \
7 \\\

Character table
c,, 1E 1C, 1o,(x2)105,(y2) h=4
A, +1 /~1 M H oz X%y 2

A, +1 +1 -1 -1 R, Xy
B, +1 -\ +1 -1 X, R, xz
B, +1 -1 -1 +1 YR, yz
Red. Rep. I” 15\ -1 3 3
No. of A, motions =1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] =5
No. of A, motions = 1/4[1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] =2

</ I\



a, =%ch-z(c)-x,(c)

Character table

c,, 1E 1C, 1o,(x2)10,(y2) h=4

A, +1 +1 +1 +1 b4 x?, y?, z2
A, +1 +1 -1 -1 R, xy

B, +1 -1 +1 -1 X, R, xz

B, +1 -1 -1 +1 YR, yz

Red. Rep. " 15 -1 3 3

No. of A, motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] =5
No. of A, motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) +1.3.(-1)]] =2
No. of B, motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.1 +1.3.(-1)] =4
No. of B, motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.(-1) +1.31] =4 .




Translations, rotations, vibrations

Symmetry species of all motions are:-
SA, © 2A, ® 4B, © 4B, - the irreducible representation

« 3 of these are translations of the whole
molecule

« 3 are rotations

 Symmetry species of translations are given
by vectors (x, y, z) in the character table.

 Symmetry species of rotations are given by
R,, R, and R, in the character table.



Translations, rotations, vibrations
Symmetry species of all motions are:-

5A, +2A, +4B, +4B,

Translations are:- A, /+B1 + B,
Rotations are:- / Al +B, 7+B,,
- so vibrations are:- 4A, + A, +2B, +2B,

Character table
C,, 1E 1C, 1o,(x2)10,(y2) h=4
A, +1 +1 +1 +1 /z X2, y2, 22

A, +1 +1 -1 -1 R,.... xy
B, +1 1 #  1_xR.x
B, +1 -1 A  +L—yR.yz :



Vibrational modes of SiH,ClI,

Symmetry species of vibrations

What does each of these modes look like?
Two rules

(i) there is 1 stretching vibration per bond

(ii) must treat symmetry-related atoms together



Vibrational modes of SiH,ClI,

Two rules
(i) there is 1 stretching vibration per bond

(ii) we must treat symmetry-related atoms together

We therefore have:-
two stretching modes of the SiCl, group
two of the SiH, group

The remaining five modes must be deformations
(angle bending vibrations)



Vibrational modes of SiH,ClI,

We therefore have:-
two stretching modes of the SiCl, group

We can stretch the two Si-Cl bonds
together in phase Why?
or together out of phase

hint: 1) use the two Si-Cl bond stretching as basis

set. g ¢, o, Oy H1\ /H

2

Ri/ iR
2) Use the projection operator to work on R;: %/ L2

A, stretching = (R, + R,)/2 symmetric stretching Cl, Cl )

B, stretching = (R, - R,)/2 anti-symmetric stretching > Lo



Is vibration symmetrical with
respect to each symmetry
operation?

- if yes +1, if no -1

E C, o, Gy,

+1 +1 +1 +1

From the character table,
this belongs to the symmetry
species A,

We call the mode of vibration
SiCl,

Vsym

Y
“““
Y



Is vibration symmetrical
with respect to each
symmetry operation?

- if yes +1, if no -1

E C, o, Gy,

+1 1 1 +1

From the character table,
this belongs to the
symmetry species B,

We call the mode of
vibration v, SiCl,

Y
“““
Y



Vibrational modes of SiH,ClI,

We therefore have:-

two stretching modes of the SiCl, group

and two stretching modes of the SiH, group

We can stretch the two Si-H bonds
together in phase

or together out of phase



E C, o, Gy,

+1 +1 +1 +1

From the character table, this
belongs to the symmetry
species A,

We call the mode of vibration
SiH,

Vsym

Y
“““
Y



E C, o, Gy,

+1 1 +1 -1

From the character table, this
belongs to the symmetry
species B,

We call the mode of vibration
SiH,

Vasym

Y
“““
Y



Vibrational modes of SiH,ClI,

We now have:-
two stretching modes of the SiCl, group
two of the SiH, group

The remaining five modes must be deformations
(angle bending vibrations)

As with stretches, we must treat symmetry-
related atoms together



E C, o, Gy,

+1 +1 +1 +1

From the character table, this
belongs to the symmetry
species A,

We call the mode of vibration
Osym SICI, (or SiCl, scissors)

Y
“““
Y



E C2 Oxz cSyz

+1 +1 +1 +1

From the character table, this
belongs to the symmetry
species A,

We call the mode of vibration

Osym SIH, (or SiH, scissors)

Y
“““
Y



E C, o, Gy,

+1 1 +1 -1

From the character table, this
belongs to the symmetry
species B,

We call the mode of vibration ©
SiH, (or SiH, wag)

Y
“““
Y




E C, o, Gy,

+1 1 1 +1

From the character table, this
belongs to the symmetry
species B,

We call the mode of vibration p
SiH, (or SiH, rock)

Y
“““
Y



E C, o, Gy,

+1 +1 1 -1

From the character table, this
belongs to the symmetry
species A,

We call the mode of vibration t
SiH, (or SiH, twist)




Vibrational modes of SiH,ClI,

Overall, we now have:-

two stretching modes of the SiCl, group
A + B,

two of the SiH, group
A, + B,

five deformation modes
2A, +A,+B,+B,

Together, these account for all the modes we
expect:

4A, + A, + 2B, + 2B,



Observing vibrations

Infra-red spectroscopy

Process — quantum of energy is absorbed by exciting a vibration

— may also increase or decrease rotational energy

IR sample e

. —_—
radiation absorbed

Activity — absorption possible if and only if the vibration
involves a dipole change




Observing vibrations

Infra-red spectroscopy

Consider symmetry properties 6.(x2) 6,(y2) h=4
of dipoles u,, y,and p, ) )

e.g. SiH,Cl,

+1

R

Si
-
-
-
-
-

NG

* Dipoles are vectors, with same symmetry properties as x, y,
and z. In this case, u, has A, symmetry.

 Those A, vibrations involve dipole changes along the z axis
and so all A, modes must be infra-red active. ;

e



Observing vibrations

Infra-red spectroscopy

Consider symmetry properties
of dipoles u,, y,and p,

e.g. SiH.Cl, ~_ " 1

o/(xz) o (yz) h=4

+1 4

.
Si
-
-
-~
-
-

cl Cl

» Similarly B, and B, modes involve dipole changeds along x and
y axes, and so must be infra-red active.

* A, modes cannot involve dipole changes, and are infra-red
Inactive.

* For any point group, no more than 3 IR-active symmetry species.

9 3



Observing vibrations

Infra-red spectroscopy
Example 1: SiH,Cl,
Iy, =4A, +A, + 2B, + 2B,
4 +2 +2 active modes
8 absorption bands in IR spectrum

Example 2: XeOF,

I, =3A, +2B, + B,+ 3E
3 + 3 active modes

6 absorption bands in IR spectrum




Observing vibrations

Raman spectroscopy

Process - large quantum of energy E is scattered with energy E - hv

radiation E

sample Sample usually liquid,

occasionally solid or gas
scattered

radiation
E - hyv

Activity — vibrational mode active if and only if it
involves a polarisability change




Observing vibrations

Raman spectroscopy

Dipoles are vectors - u, etc. — symmetry properties as x, y, z
olarisabilities are tensors - a,,, a,, etc. — properties as xx, xy

- listed in final column of character table

SiH,Cl, T, =4A, +A,+ 2B, + 2B,




2. Molecular orbitals (wavefunctions) as the bases of
irreducible representations of molecular point group.

Symmetry of wavefunctions of a molecule
Symmetry Operation R on Schrodinger Eq.

A

Ay, = E,y——s Ry, = RE,y
<
HRy,=ERy, == RHR'Ry;, =E, Ry,

&

Ry is also an eigenfunction of H, with the same eigenvalue

E; as y; corresponds to.




Symmetry of wavefunctions
 If eigenvalue E;is not degenerate, as y; is normalized, it

requires
Ry, =cy.=£ly,

in order that Ry; is also normalized.

* Hence, by applying each of the operations of the group to
an eigenfunction y; with a nongenerate eigenvalue, we
generate a 1-D representation of the group with each matrix,
I(R), equal to +/-1.

« Thatis, each of the nondegenerate eigenfunctions is a
basis of a 1-D I.R. of the very group!



If the eigenvalue E; is k-fold degenerate with the eigen-
functions {v;, v, ..., W},

,. R ,.
HWim= iVYVim 4 HRl//im=EiRl//im

where Ry;,, may be a linear combination of y; (j=1,2,...,k).

L Wi iy Hyooeee Ty | Wi

Ry, :erm!)yij - > R Wia | |[Ta T e Wy | Vi
j= B

Vil T T2 e T ) Vi

That is, the set of eigenfunctions {v;,, vy, ..., ¥} IS a basis for

12

this k-dimensional irreducible representation! we



In LCAO approach of MO theory, each of the MOs can be

CXPIEsSsS as

W = i Ci¢i (AOS . ¢1 ’ ¢2 geeey ¢n )

So we need to solve the secular equation

Se(H,~ES)=0 (r=1,2,-3n)

_Hll_ESll le_ESlz Hln_ESln
HZI _ESzl sz _ESzz HZn _ES2n
_Hnl_ESnl HnZ_ESHZ Hnn_ESnn_




Symmetry of wavefunctions

We can transform the original bases of AO’s into Linear
Combinations of AO’s which have the same properties of some

[.LR.s (Symmetry Adapted Linear Combination), therefore the
Secular Equation is block-diagonalized.

AO SALC(MO)
¢ ; Z
?, - V>

9, v,




Symmetry of wavefunctions

( A
I
H-ES
nxn
\ J
AQO bases

Block Diagonalized

I

ny X ny

I'=nl ®n,l,D

1

Ny X 1,

0

SALC bases

\




Symmetry of wavefunctions

Step 1 Obtain the REP spanned by a set of AO basis
(normally called basis set!)

Step 2 Reduce the REP spanned by the AO basis.
Obtain the n,’s for each L.R.

Step 3 Construct n; SALCs for each L.R..

Step 4 Transform the hamiltonian matrix into block
diagonalized form, and solve 1it.

v

Symmetry greatly facilitates the computations!

12
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Use Projection operator to construct SALCs

_ . - 2
Projection operator: p/=_L Z 2 (R)R

j-th I.R. of the group

derived from the “great orthogonality theorem”.

A non-normalized SALC can be constructed from AO-basis

set by using the formula:

_ n [ n
V., c=P'¢ = ZJZ 2, (R)RG
R

e \
An AO from the set of AO bases.




Example 1: n,0

LCAO with the following atomic orbitals
O: 2s; 2p,, 2py, 2p,
2H: s, Ls,
Symmetry: G,

First classify these AOs according to symmetry!
» Neglecting the O 1s orbital/electrons.



e.g. p, orbital on O
atom of H,O

Unchanged by all
operations H

p, orbital

Character Table
G, E (C, o,
A, 1 1 1
A, 1 1 -1
B, 1 -1 1
B, 1 -1 -1

9%
X, XZ

Y, Y2

C, c,(x2) c,(y2)
+1 +1

Symmetry of AOs
from Oxygen



2H: s, 1s,

Symmetry Reduction of 2-D Basis Set {1s,
E G,

%

1 1
1 1
1
1

~

-1

> & A

\S)

I 2 0

Ix2+1

1
-1

O,

» O,

1 %

1

-1
-1

1x0+1x2)/4=1
I1x0+1x2)/4=1

4
Xy
X,X7Z

Wy

/z?‘ ~
o 15} H, H,

X

a, =%ZgR-z(R)-z,-(R)

n, =0&n, =0

m==> Two I-D L.R.s



SALG - Symmetry Adapted Linear Combination
of AOs

For this trivial problem, 1t 1s very simple. We intuitively
determined the new basis as

A

B,:

1
J2

(Is, + Isy )

1

J2

(1s,

- 1sy )

- +

For more complicated problem, the projection operator can be
used to construct SALC of AOs. Plz confirm the above two

SALCs by using the projection operator.

12
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H,0

A, symmetry AOs or SALCs for LCAO

Az 02, 02p. 7, 4

Q¥ . .

 Both AOs of the O atom can interact with the SALC of H
1s AO:s.

* Hybridization of the two AOs of O atom 1s needed!
e



H,O- Hybridization of Oxygen’s 2s and 2p,

n,=2s+2p,




H,O- Hybridization of Oxygen’s 2s and 2p,

P

[n'g,de

[n'g,dr

h ¢A1

Small, not effective bonding

Large, cffective bonding



H,0- Chemical Bonding in A, REP

0<A <1

Anti-bonding!

#, =1s, +1s,

+ o+

Weakly
bonding/ almost

nonbonding

Strongly
Bonding! 43




H,0O- Chemical Bonding in B, REP
0<A<1
(O 22p, -4,

@ ]

Anti-bonding!

Vs N
’ A
/ N\
7 N
Vs N\
/ />_ -
/
/7
4 /7
< /7
~ /7

= @ 2py ) ¢Bz Bonding!




H,O- Summary on Molecular Energy Level Sequences

000

2a,

<

IN

@D

1b,

IN

IN

1b,
(O 2p,)



H,0O- Summary on Chemical Bonding

- ) T l‘.?,"
/\ 2s . il
O <8 e H2

The lowest energy transitions are broad at 7.61 and 9.36 eV for the

4a,<—1b, and 4a,;<—3a, transitions respectively for the gas phase and

at 8.09 and 9.74 eV 1n the liquid. 2
J. Chem. Phys. 130 (2009) 084501 & 125(2006) 184501. {:



Questions

* For H,0O, which two MOs of its MO model can be regarded
as equivalence of the two lone pairs of its VB model?

* H,0O can form hydrated cations with metal cations in
aqueous solution. However, it is seldom to find the M-H,O
bonding in the coplanar manner. Why?

H
M —o/ Y _O\\H



Example 2: n-MOs of C;H; (Dy;) = Zci¢i

D3h E 2C3 3C2 O 253 30‘v (¢ =p_ = pz)
Aj 1 1 1 1 1 1 | Basis set
Aé 1 1 "'1 1 1 "'"'1 {¢1) ¢2’ ¢3}
E’ 2 -1 0 2 -1 0
Step 1: get
Al |1 1 1 -1 =1 =1 | a e
Aj 1 1 -1 -1 — 1
E" 2 -1 0 -2 1 0
I 3 0 -1 -3 0 1 Reducible!
. C, 85"
 Step 2: By applying |, =13 s xc). 1(c) 3 :
to all I.R.s, we have = \2‘8’*_’ Z—'8’3/
I'=A," ®E" P“qﬁl—;—f;z,-(ﬁ)ﬁcél _— () /\
« Step 3: use projection operator to C,"%c” /J G0
obtain SALCs. (a bit tedious!) ol | <



To save time, use subgroup D,

C,

Basis set {¢1, Py 93}

Now reduce 7/, by using the formula,

D, | E 2C3 3C;

3_ Sym. op. -> count 1,- A | a 1

3
1 0 1f an AO A. 1 1 _1
/ 0 / transforms to itself, | = -
o

minus itself or moves.| F | 2 1

| > I, 3 0

a, =%ch-z(c)-z,-(c)

a, :é{3.1+2.(0-1)+3.(—1)-1}:0 a,, =é{3.1+2.(0.1)+3.(—1)(—1)}=1

a, =é{3-2+2-0-(—1)+3(—1).0)}:1

—

[L=A, @E




C, s 29, QY
02 ’ , 5 2Cs 3C2 Basis set
- A | 1 1 1
\ U Az 1 1 il {¢1: ¢2’ ¢3}
O | I | 0 |4 :%Zc:gc-l(c)-%(c)
2 r, 3 0 -1 I,=A,@E

* Now use the projection operator
to derive the SALCs (MOs).

2 O = %le(ﬁ)jé@

ﬁAz¢—liZ (R)R¢, = L(Eg,+Clg,+ C24—C o~ Cigp — C.
1~ i RZAz l—g( ¢1+ 3¢1+ 3¢1_ 2¢1_ 2¢1_ 2¢1)

=é(¢1+¢2+¢3+¢1+¢3+¢2)

— %( ¢+ @, +@,) (not normalized yet!)

suppose J‘¢i¢jdr R
Hiickel approx.

L
—\/5(¢1+¢2+¢3) z

Normalization




Ca. 8y
C3

—
/;NQ O A,

N AR

C2-0'u

. 7 A
For one of the E-type MOs, we have Phg = ZIZ%( R)R¢,
R

7 Li QC: 3C Basis set
o | 1 -1 (D1 02 03f

-

1
- 0 |4 :Zzgc-l(c)-ﬂé(c)
3 0 -1 I,=-A,@E

P =% 1 (RORG, =(2E,~Clg~Cg,)

|
:§(2¢1_¢2_¢3) > o
Normalization
I e
lIJl - \/6(2@ ¢2 ¢%)

« Using orthogonality and
normalization, we have

¥, = ﬁ(% ~#)  Yet not simple!

12
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Another way to derive the third MO:

Step 1. Find an operation to covert the second wavefunction into an
nonequivalent one (not +/- of the original one). A C; operation

works well. Then we have o
C3\P1 — (2¢2 _¢3 _¢1)

Step 2. A linear combination of this new one and the original one
gives rise to

CIWE + Ao WE = (24, ¢, —¢1)+(%)(2¢1 4 —4,)

_3 04— ) p_ 1y
S (9.=9,) >T2—ﬁ(¢2 #:)

normalization

For high-symmetry molecules that have degenerate MOs
pertaining to 2- or 3-D L.R.s, 1t 1s more convenient to make use

12

of cyclic group REP! o s



A general simplification
* Further reducing the symmetry to C; subgroup, a cyclic group.

(* I.LR.s of a cyclic group can sometimes have complex characters.)

&= e?m/3

7

Cs E C, C,®
A 1 1 1
,,
I A
. 3 0 0

Ay / A . A
P'g = ;sz(R)Rqﬁl
R

C;

3

[.=A®E

P ¢ 2> ¥(RY'Rg=Ep +Cip +Cip = + ¢, + 4,

PrO% 3 2(R)'ORg, = g +6Cih +£* Cigy = 6, + 89, + %4,
R

P*P¢ ~ Z Y(R)'D R = ¢+ &* ¢, + &,
R

12
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‘PlA = AP A¢1

= A(¢1 +¢2 +¢3) :%(@ +¢2 +¢3)

(Note that the Hiickel approximation is used in the normalization of these MOs!)

define [ ¢¢,dz ~ 5,

A for normalization!

W = APV + PFO¢)

= A(2¢,+2 cos(%’rw2 +2 cos(z?ﬂ)%) = % (29, — ¢, —¢3)

Wy = APTVg, - PO

= Ai(2 sin(%”ws2 -2 sin(%r)%) = % (9, —9;)

Now Let’s return to the D, point group. we can prove that ¥
belongs to A,"; and { ¥V}, V,£} belongs to E’. .,



Example 2: C.H, D, 2> C, Basisset{g, ¢, ....4

C, E C, C; Cc, C? C/ &= exp(27i/6)
A 1 1 1 1 1 1 z, R, x’+y?, 22
B 1 —1 1 —1 1 —1
E, |1 g —& —// —& ¥ (x, y) (xz,yz)
<_ 1 e* —£ —1 —&* g _» (R, R)
E, |[1 —&* - 1 —&* -] (x?-y?, xy)
<_ 1 -  —&* 1 —£ —g*;
I, 60 0 0 0 0 I.=A®B®E,®E,
PU =3 2(R)'Ro = E¢ + Cigh +Ciy +Cidy + Cith +Cigy 2 3
R
= O
:¢1+¢2+¢3+¢4+¢5+¢6:>LP :%(¢1+¢2+¢3+¢4+¢5+¢6)
6 5
P~ 2(R)" R = E¢,— Coth + Cidy—~ Cidh + Cith — Cod b =p
R i T

p_ 1 |
:¢1_¢2+¢3_¢4+¢5_¢6:>LP _%(¢1_¢2+¢3_¢4+¢5_¢6) o 43




A 1 1 1 1 1 1 z, R, x°+y?, 22
B 1 —1 1 —1 1 —1
E, |1 & — ~/ — &* 7 x, y) (xz,yz)
11 &* —& = | =E e ] (R, R)
E, |[1 —&* - 1 —&* - (x?-y2, xy)
-‘_ 1 —&  —&* 1 —& —5*_»
I, 60 0 0 0 0 I.=4A@B®E,®E,

ﬁEl(l)¢1 ~ ZZ(E)EL(DIQ@ — E¢1 +‘9Cé¢1 _5*C62¢1 _C§¢1 —8C2¢1 +5*C2¢1
R

=9 +EP, —EX P, — P, —EPs + E* P,
PR~ 1(R)" O R, = Egy + 6% Cih —eCiy — Coh— 6% C oy + 6Co

:¢1+5*¢2_5¢3_¢4_5*¢5+5¢6 y




WA ()= APV g+ PEOg) =24(4, + cos(%)aﬁz - cos(%)% —¢, - cos(%)@ + cos(%)a%)

|
—E(2¢1 +¢2 _¢3 _2¢4 _¢5 +¢6)

WE(2) = A(PEVg — PEDg) = 24i(- sin(%)@ - sin(§>¢3 + sin(§)¢5 + sin(%)qbé)

:%(4’52 +¢3 _¢5 _¢6)

Similarly, we have

W5 (1) = A(d+ ¢, ) =%{2¢1 b+ 20— b+ )

VE(2) = A=) =~ + b= 65+




Assignments:

»Please figure out all the normal vibrations of
NH; and discern whether they are IR- or
Raman-active!

» Construct the 1-MOs of Naphthalene with the
P, AOs of carbon atoms.

The End of Chapter 3!



Characters for more than one object
or action

We can make representations of several things

e.g. H 1s orbitals O
in H,0

orbital 1 orbital 2

E operation orbital 1’ = orbital 1
orbital 2’ = orbital 2

Each is unchanged (= 1 x itself), so the character is 2

the trace (sum of diagonal terms)
of the transformation matrix.

Strictly speaking the character is ( 1 0 )

0 1




Characters for more than one object
or action

Representations of several things

e.g. H 1s orbitals O
in H,O

orbital 1 orbital 2

C, operation orbital 1’ = orbital 2
orbital 2’ = orbital 1

There is no contribution from the old orbital 1 to the new one (= 0 x itself),
so the character is 0

The trace of the transformation
matrix is zero.




Characters for more than one object
or action

Representations of several things

e.g. H 1s orbitals O
in H,0

orbital 1 orbital 2

E operation character is +2

C2 0

c,(x2) 0

c,(yz) +2 C, o,(x2) o,(yz)
so overall: 0 +2

This the reducible representation of the set of 2 orbitals.




Reducible representations

This set of characters does not appear in the character table

- but it can always be expressed as a sum of lines

C, o/x2o,(yz2) h=4 Mustbean Aand aB
to make the second
number =0

Must then be A, + B, to
make final number =2

+1 +1

-1

00
A, is the symmetric combination B, is the asymmetric combination

A, + B, is the irreducible representation of the two orbitals




