
Chapter 3

Molecular symmetry and symmetry point group

Part B

(ref.  Chemical Application of Group Theory, 3rd ed., F.A. 

Cotton, by John Wiley & Sons, 1990.)



For a point group, 

 Each element is a unique symmetry operation (operator). 

 Each operation can be represented by a square matrix.

 These matrices constitute a matrix group, i.e., a matrix 

representation of this point group. 

3.5.1 Representations of a point group: 

reducible vs. irreducible

§3.5 Group representation Theory and irreducible 

representation of point groups

Example:  Ci = {E, i}
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~ a general point (x,y,z) in space.
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a matrix group



Q1:How many representations can be found for a particular group? 

A large number, limited on our ingenuity in devising ways to 

generate them.  

Q2: If we were to assign three small unit vectors directed along the x, 

y and z axes to each of the atoms in H2O and write down the matrices 

representing the changes and interchanges of these upon the 

operations, what would be obtained?   

Example:  Ci one unit vector x

      xxxi  1  ˆ      xxxE  1  ˆ

    1-1，The corresponding matrix representation of Ci is

A matrix representation consisting of four 9x9 matrices would be 

obtained upon operating on a column matrix (xO, yO, zO, xH1, yH1, zH1, 

xH2, yH2, zH2). 



Example:  C2v three unit vectors (x,y,z)  or a general point

{E, C2,  xz, yz}                Principal axis: z-axis. 
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a matrix representation of C2v



Example: C2v

Bases, representations and their dimensions

Basis ~ a general point or three unit vectors.

Simple basis: a translational vector as x, y, or z, or a rotor Rz

• Different basis  Different representation.

1-D Reps.

• Dimension of a representation = The order of matrices.







































































100

010

001

    

100

010

001

    

100

010

001

    

100

010

001

                                    C                      E      yzxz2 

A 3-D rep.



Reducing of representations

• Suppose that we have a set of n-dimensional matrices,  A, B, 

C, … , which form a representation of a group. These n-D 

matrices themselves constitute a matrix group  = {A，B,…}.

• If we make the same similarity transformation on each 

matrix, we obtain a new set of matrices，namely,

 ... ,   ''' CBA ，，

•  is also a representation of the group! 

that forms a new matrix group:
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in which A1,A2,A3… are n1,n2,n3…-order submatrices with n = 

n1 + n2 + n3 + ….

• It is provable that if any of the matrix (e.g., A ) in  is a 

block-factored matrix, then all other matrices (e.g., B,C ,…) 

in  are also blocked-factored. 

A= A1A2  A3  …,    B= B1B2  B3  …,

C= C1C2  C3  …, ……

• These n-order matrices can be simply expressed as

(Direct sum of submatrices！）



• It is also provable that the various sets of  submatrices, 

T1={A1,B1,C1…}, T2={A2,B2,C2…}, T3={A3,B3,C3…}, …, 

are in themselves representations of the group. 

• We then call the set of matrices ={A,B,C, …} a reducible 

representation of the group, which breaks up into a direct 

sum of the representations, i.e.,  = T1  T2  T3  …

• If it is not possible to find a similarity transformation to 

reduce a representation in the above manner, the 

representation is said to be irreducible.

• The irreducible representations of a point group are mostly 

countable and of fundamental importance!  



Example:  C2v Is this 3-D Rep. reducible?

xyz

xyz =x y z

Yes. These matrices are block-factored!

The 3-D rep. is reduced to 3 1-D rep. 



Point group  R R={RA，RB，RC，…}

A matrix group,  =  {A，B，C，…}   

(a matrix rep. of group R, dimension = order of the matrix) 

Exerted on any set of bases 

（e.g., AOs, MOs, vectors, rotations etc.)

Similarity transformations (reducing of a representation!) 

Direct sum of irreducible representations!

(symm. ops.) 

A block-factored matrix group,  = {A，B，C，…}   

(A = A1 A2 …, B = B1 B2 …, C = C1

C2 … ,…)  and 1 ={A1,B1,C1,…} , 2 ={A2,B2,C2,…} … 

&  = 1  2  …



The irreducible representations of a point group are 

mostly countable and of fundamental importance!!!  

The character table of a point group lists up all 

essential information of its irreducible 

representations. 



3.5.2.  Character Tables of Point Groups

Frequently used basis, 

e.g., translation, 

rotation, and so on 

Symmetry species of irreducible representations.

CharactersTop line:  point group

symmetry operations

order of group, h = number of symmetry operations



Characters & reducing representation! 
• Character of a matrix A:

(E) =3 (C2) = -1 (xz) = 1 (yz) = 1

xyz

xyz =A1  B1  B2

C2v

3-D Rep.

E       C2 xz yz

3          -1            1           1

B1

B2

A1

xyz


i

ii Aa )()( A

(sum of its diagonal elements!)


i

ΓΓ (R)χ(R)χΓΓΓΓ
i

    If 321 ...,

i---I.R.s











Symmetry species:  Mulliken symbols

• All 1-D irreducible reps. are labeled by either A or B, 2-D

irreducible rep. by E, 3-D irreducible rep. by T and so on.

• A:  symmetric with respect to Cn rotation, i.e., (Cn)=1.

• B: asymmetric with respect to Cn rotation, i.e., (Cn)=-1.

• Subscriptions 1 or 2 designates those symmetric or 

asymmetric with respect to a C2 or  a v .

• Subscripts g or u for universal parity or disparity.

• Superscripts  or  designates those symmetric or 

asymmetric with respect to h



3.5.3     The “Great Orthogonality Theorem” and Its 

Consequences
Some notations:  

h – the order of a group; R – operations (elements) of a point group. 

li – the dimension of ith representation (i.e., the order of its matrices)

i(R)mn – the element in the mth row and nth column of the matrix 

corresponding to the operation R in the ith representation. 

'''' *])(][)([ nnmmij

jiR

nmjmni
ll

h
RR 

It means that in the set of matrices constituting any one 

irreducible representation, any set of corresponding matrix 

elements, one from each matrix, behaves as the components of a 

vector in a h-dimensional space such that all these vectors are 

mutually orthogonal and each is normalized so that the square of 

its length is h/li.

广义正交定理
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Five important rules
regarding irreducible representations and their characters:

hl
i

i  2

Rule 2 – the sum of the square of the characters in any 

irreducible representation of a group equals h, 

e.g., for C3v, 

hl
i

i  6211 2222

ii lE )(

hR
R

i  2
)]([ 

613121   222

32  )(,.,. vCforAge

Rule 1 – the sum of the squares of the dimensions of the 

irreducible representations of a group is equal to the order of a 

group. 



Five important rules

Rule 3 – the vectors whose components are the characters of 

two irreducible  representations are orthogonal, 

Rule 4 – In a given representation, the characters of all 

matrices belonging to operations in the same class are identical.

0
R

ji RR )]()][([ 

Rule 5 – the number of irreducible representations of a group 

is equal to the number of classes (of operations) in the group.

0013112211  ))(())(()(

e.g., The A2 and E I.R. of C3v are orthogonal.



Illustration of the Five important rules

Example – Direct construction of the character table of C2v

• Four classes of elements/operations: {E, C2, , } & h =4

• Rule 5  Four I.R. 

• Rule 1  li
2 =h=4  l1-4 = 1   4 1-D I.R.

• There is always an all-symmetric representation, 

• Other 1-D I.R., i(E) =1 

1 & 4  1

2

11   )()]([ RhR
R



C2v E   C2  

1

2

3

4

1     1     1    1

1     

1     

1    

1   2  )()]([ RhR i

R

i 

• Each of them is orthogonal to 1 (rule3)  0 1  
R

i RR )()( 

Two i(R) =1,  two i(R) = 1!

-1   -1    1

-1    1   -1

1   -1   -1

A1

A2

B1

B2

• If necessary, define the symmetry species (Mulliken symbols ).    



Illustration of the Five important rules

Example – Direct construction of the character table of C3v

hR
R

 2

2 )]([ 

• Three classes of elements/operations: {E, 2C3, 3v} & h =6

• Another 1-D I.R. 2 should follow rules 2 &3.

)A(    1 111311  )()()( vCE 

• Rule 5   Three I.R.s

• Rule 1  l1
2 + l2

2 + l3
2 = 6  l1 = l2 = 1, l3 =2

• & 1(E)=2(E)=1, 3(E)=2

• There is always an all-symmetric 1-D I.R. 

1      1       11

2

3

1
1
2

012 
R

RR )()(  2(C3)=1, 2(v)=-1

1      -1

-1      0

• Similarly for the 2-D I.R. 3 ,  3(C3)=-1,  3(v)=0

• If necessary, define the symmetry species (Mulliken symbols ).    

A1

A2

E
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An important practical relationship

Between any reducible representation and the I.R.s,

)()( RaR j

j

j 

Character of a matrix 

corresponding to operation R in 

a red. REP.  

Character of a matrix 

corresponding to operation R

in the jth I.R..  

  
R

j

j

ji

R

i RaRRR )()()()( 


R

ii RR
h

a )()( 
1

The number of times that the jth I.R. 

occurs in a red. REP.

This relationship thus provides an easy way for reducing a 

representation of a group.

Rule 3 Rule 1



3.5.3  Symmetry of molecular properties & 

Application of the representation theory of group 

• Translations and rotations can be assigned to symmetry 

species (of irreducible representations). 

• So can other molecular properties, including molecular 

vibrations, hybrid orbitals, molecular orbitals and so on. 

• The theory of molecular symmetry & point group 

facilitates the construction of hybrid orbitals, symmetry 

adapted MO’s, and analyses of molecular vibrations etc.   



1. Vibrational spectroscopy

*  H2O has (3N-6)=3 normal modes of vibration!

IR active IR active IR active

H
O

H H
O

H H
O

H

The Number of active modes tells us about symmetry!

A1 A1B1

The normal vibrations (or normal modes of vibrations) of a 

molecule are the bases of I.R.s of the point group it belongs to.  

* CO2 has 3 normal modes of vibration

O=C=O O=C=O O=C=O

Infra-red inactive! 

no dipole change！ IR active IR active

正则振动



IR – active:  

The vibrations that induce a change in dipole moment.

• A IR-active vibration and a component of molecular 

dipole moment (i.e., vectors x, y, z）belong to the 

same symmetry species.   

Raman – active:  

The vibrations that induce a change in polarizability.

• A Raman-active vibration and a component of 

molecular polarizability (i.e., x2, y2, z2, xy, yz, xz and 

x2-y2 etc.）belong to the same symmetry species.   



Molecular vibrations - number of modes

Each atom can move independently in x, y, z directions.

x

y
z

x

y
z

x

y
z

x

y
z

3N degrees of freedom for a N-atom molecule.

If atoms fixed, there are: 3 translational degrees

3 rotational degrees

and the rest (3N-6) are vibrational modes



No. of modes of each symmetry species

Example - SiH2Cl2 Point group C2v

Character table

C2v E C2 v(xz) v(yz) h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 -1 -1 Rz xy

B1 +1 -1 +1 -1 x, Ry xz

B2 +1 -1 -1 +1 y, Rx yz

Si

Cl2

H1

Cl1

H2

z

x

y

• Draw x, y and z vectors on all atoms.

• Count +1, -1, 0 if vector transforms to itself, minus itself, 

or moves.

• Perform symmetry operations.



Character table

C2v E C2 v(xz) v(yz) h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 -1 -1 Rz xy

B1 +1 -1 +1 -1 x, Ry xz

B2 +1 -1 -1 +1 y, Rx yz

Si

Cl2

H1

Cl1

H2

z

x

y

Operation E

Si atom x transforms into Si x count +1

y transforms into Si y count +1

z transforms into Si z count +1

total +3

Same for other 4 atoms grand total +15



Character table

C2v E C2 v(xz) v(yz) h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 -1 -1 Rz xy

B1 +1 -1 +1 -1 x, Ry xz

B2 +1 -1 -1 +1 y, Rx yz

Si

Cl2

H1

Cl1

H2

z

x

y

Operation C2 Si atom x transforms into Si -x count -1

y transforms into Si -y count -1

z transforms into Si z count +1

total -1

H1 and H2 move - swap places count 0

Cl1 and Cl2 swap places count 0

grand total -1



Character table

C2v E C2 v(xz) v(yz) h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 -1 -1 Rz xy

B1 +1 -1 +1 -1 x, Ry xz

B2 +1 -1 -1 +1 y, Rx yz

Si

Cl2

H1

Cl1

H2

z

x

y

Operation v(xz) Si atom x transforms into Si x count +1

y transforms into Si -y count -1

z transforms into Si z count +1

total +1

H1 and H2 also lie in xz plane, and behave as Si count +1 each

Cl1 and Cl2 swap places count 0

grand total +3



Character table

C2v E C2 v(xz) v(yz) h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 -1 -1 Rz xy

B1 +1 -1 +1 -1 x, Ry xz

B2 +1 -1 -1 +1 y, Rx yz

Si

Cl2

H1

Cl1

H2

z

x

y

Operation v(yz) Si atom x transforms into Si -x count -1

y transforms into Si y count +1

z transforms into Si z count +1

total +1

H1 and H2 swap places count 0

Cl1 and Cl2 also lie in yz plane, and behave as Si count +1 each

grand total +3



No. of modes of each symmetry species

Example - SiH2Cl2 Point group C2v

Overall we have:

E C2 v(xz) v(yz)

+15 -1 +3 +3

This is the reducible representation of the point 

group on the basis of the set of 3N (=15) atomic 

displacement vectors.

We reduce it to the irreducible representations, 

using a formula



)(.)(. RRg
h

a
R

Ri 
1

Character table

C2v 1E 1C2 1v(xz) 1v(yz) h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 -1 -1 Rz xy

B1 +1 -1 +1 -1 x, Ry xz

B2 +1 -1 -1 +1 y, Rx yz

Formula is

Red. Rep.  15 -1 3 3

No. of A1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5

Reduce the reducible representation



Character table

C2v 1E 1C2 1v(xz) 1v(yz) h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 -1 -1 Rz xy

B1 +1 -1 +1 -1 x, Ry xz

B2 +1 -1 -1 +1 y, Rx yz

)(.)(. ccg
h

a
c

ci 
1

No. of A1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5

No. of A2 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2

Red. Rep.  15 -1 3 3



Character table

C2v 1E 1C2 1v(xz) 1v(yz) h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 -1 -1 Rz xy

B1 +1 -1 +1 -1 x, Ry xz

B2 +1 -1 -1 +1 y, Rx yz

)(.)( RR
h

a
R

i 
1

No. of A1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5

No. of A2 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2

No. of B1 motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.1 + 1.3.(-1)] = 4

No. of B2 motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.(-1) + 1.3.1] = 4

Red. Rep.  15 -1 3 3

)(.)(. ccg
h

a
c

ci 
1



Symmetry species of all motions are:-

5A1  2A2  4B1  4B2 - the irreducible representation

Translations, rotations, vibrations

• 3 of these are translations of the whole 

molecule

• 3 are rotations 

• Symmetry species of translations are given 

by vectors (x, y, z) in the character table.

• Symmetry species of rotations are given by 

Rx, Ry and Rz in the character table.



Symmetry species of all motions are:-

5A1 + 2A2    + 4B1 + 4B2

Character table

C2v 1E 1C2 1v(xz) 1v(yz) h = 4

A1 +1 +1 +1 +1 z x2, y2, z2

A2 +1 +1 -1 -1 Rz xy

B1 +1 -1 +1 -1 x, Ry xz

B2 +1 -1 -1 +1 y, Rx yz

Translations are:- A1 + B1 + B2

Rotations are:- A2 + B1 + B2

- so vibrations are:- 4A1 +  A2    + 2B1 + 2B2

Translations, rotations, vibrations



Symmetry species of vibrations 

are:- 4A1 + A2 + 2B1 + 2B2

Vibrational modes of SiH2Cl2

What does each of these modes look like?

Two rules

(i) there is 1 stretching vibration per bond

(ii) must treat symmetry-related atoms together



Vibrational modes of SiH2Cl2

Two rules

(i) there is 1 stretching vibration per bond

(ii) we must treat symmetry-related atoms together

We therefore have:-

two stretching modes of the SiCl2 group

two of the SiH2 group

The remaining five modes must be deformations 

(angle bending vibrations)



Vibrational modes of SiH2Cl2
We therefore have:-

two stretching modes of the SiCl2 group

We can stretch the two Si-Cl bonds

together in phase

or together out of phase

Why?

hint:  1) use the two  Si-Cl bond stretching as basis 

set:  

2SiH 2    0     0   2 Si

Cl2

H1

Cl1

H2

R1 R2

E   C2 xz yz

 2SiH = A1 + B2

2) Use the projection operator to work on R1:

1 stretching =  (R1 + R2)/2       symmetric stretching

B2 stretching =  (R1 - R2)/2  anti-symmetric stretching



Is vibration symmetrical with 

respect to each symmetry 

operation?

- if yes +1, if no -1

From the character table, 

this belongs to the symmetry 

species A1

We call the mode of vibration

sym SiCl2

E C2 xz yz

+1 +1 +1 +1

x

z

y



Is vibration symmetrical 

with respect to each 

symmetry operation?

- if yes +1, if no -1

E C2 xz yz

From the character table, 

this belongs to the 

symmetry species B2

We call the mode of 

vibration asym SiCl2

+1 -1 -1 +1

x

z

y



Vibrational modes of SiH2Cl2

We therefore have:-

two stretching modes of the SiCl2 group

We can stretch the two Si-H bonds

together in phase

or together out of phase

and two stretching modes of the SiH2 group



x

z

y

From the character table, this 

belongs to the symmetry 

species A1

We call the mode of vibration

sym SiH2

E C2 xz yz

+1 +1 +1 +1



From the character table, this 

belongs to the symmetry 

species B1

We call the mode of vibration

asym SiH2

E C2 xz yz

+1 -1 +1 -1

x

z

y



Vibrational modes of SiH2Cl2

We now have:-

two stretching modes of the SiCl2 group

two of the SiH2 group

The remaining five modes must be deformations 

(angle bending vibrations)

As with stretches, we must treat symmetry-

related atoms together



From the character table, this 

belongs to the symmetry 

species A1

We call the mode of vibration

sym SiCl2 (or SiCl2 scissors) 

E C2 xz yz

+1 +1 +1 +1

x

z

y



From the character table, this 

belongs to the symmetry 

species A1

We call the mode of vibration

sym SiH2 (or SiH2 scissors)

+1 +1 +1 +1

E C2 xz yz

x

z

y



From the character table, this 

belongs to the symmetry 

species B1

We call the mode of vibration 

SiH2 (or SiH2 wag)

E C2 xz yz

+1 -1 +1 -1

x

z

y



From the character table, this 

belongs to the symmetry 

species B2

We call the mode of vibration 

SiH2 (or SiH2 rock)

+1 -1 -1 +1

E C2 xz yz

x

z

y



y

x

From the character table, this 

belongs to the symmetry 

species A2

We call the mode of vibration 

SiH2 (or SiH2 twist)

E C2 xz yz

+1 +1 -1 -1



Vibrational modes of SiH2Cl2

Overall, we now have:-

two stretching modes of the SiCl2 group

A1 + B2

two of the SiH2 group

A1 + B1

five deformation modes

2A1 + A2 + B1 + B2

Together, these account for all the modes we 

expect:

4A1 + A2 + 2B1 + 2B2





• Dipoles are vectors, with same symmetry properties as x, y, 

and z. In this case, z has A1 symmetry.

• Those A1 vibrations involve dipole changes along the z axis 

and so all A1 modes must be infra-red active.



• Similarly B1 and B2 modes involve dipole changeds along x and 

y axes, and so must be infra-red active.

• A2 modes cannot involve dipole changes, and are infra-red 

inactive.

• For any point group, no more than 3 IR-active symmetry species. 



Observing vibrations
Infra-red spectroscopy

Example  1:  SiH2Cl2

vib = 4A1 + A2 + 2B1 + 2B2

4             + 2     + 2  active modes

8 absorption bands in IR spectrum

Example  2:  XeOF4

3                      + 3  active modes

6 absorption bands in IR spectrum

vib = 3A1 + 2B1 + B2+ 3E







2.  Molecular orbitals (wavefunctions) as the bases of 

irreducible representations of molecular point group. 

Symmetry of wavefunctions of a molecule

Symmetry Operation R on Schrödinger Eq.

Ĥyi = Eiyi RĤyi = REiyi

R

RĤR-1Ryi = Ei RyiĤRyi = EiRyi

Ryi is also an eigenfunction of Ĥ, with the same eigenvalue 

Ei as yi corresponds to. 



• If eigenvalue Ei is not degenerate, as yi is normalized,  it  

requires 

Symmetry of wavefunctions

Ryi = cyi = 1yi

• Hence, by applying each of the operations of the group to 

an eigenfunction yi with a nongenerate eigenvalue, we 

generate a 1-D representation of the group with each matrix, 

i(R), equal to +/-1.  

• That is, each of the nondegenerate eigenfunctions is a 

basis of a 1-D I.R. of the very group! 

in order that Ryi is also normalized. 



Symmetry of wavefunctions

If the eigenvalue Ei is k-fold degenerate with the eigen-

functions {yi1, yi2, …, yik,  

where Ryim may be a linear combination of yij (j=1,2,…,k). 

Ĥyim = Eiyim ĤRyim = EiRyim

R

That is, the set of eigenfunctions {yi1, yi2, …, yik} is a basis for 

this k-dimensional irreducible representation!
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Symmetry of wavefunctions

In LCAO approach of MO theory, each of the MOs  can be 

express as

So we need to solve the secular equation

  ),,,( nrESHc riri

n

i

i 210
1




11 11 12 12 1 1 1

21 21 22 22 2 2 2

1 1 2 2

0

n n

n n

n n n n nn nn n

H ES H ES H ES c

H ES H ES H ES c

H ES H ES H ES c

     
   

  
    
   
   

        
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i
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  :(AOs   






Symmetry of wavefunctions

1 1

2 2

n n

 y

 y

 y

   
   
   
   
   
      

AO SALC(MO)

?

We can transform the original bases of AO’s into Linear 

Combinations of AO’s which have the same properties of some 

I.R.s  (Symmetry Adapted Linear Combination), therefore the 

Secular Equation is block-diagonalized. 



Symmetry of wavefunctions

H-ES

1

2

...

...

0

0

Block Diagonalized

AO bases SALC bases

n  n

n2  n2

n1  n1



......ΓnΓnΓ  2211



Symmetry of wavefunctions

Step 2 Reduce the REP spanned by the AO basis.

Obtain the ni’s for each I.R.

Step 3 Construct  ni SALCs for each I.R..

Step 4 Transform the hamiltonian matrix into block 

diagonalized form, and solve it.

Step 1 Obtain the REP spanned by a set of AO basis 

(normally called basis set!)

Symmetry greatly facilitates the computations! 



Use Projection operator to construct SALCs

• Projection operator:

i

R

j

j

i

jj

SALC RR
h

l
P  ˆ)(ˆ 

RR
h

l
P

R

j

jj ˆ)(ˆ  

derived from the “great orthogonality theorem”.

j-th I.R. of the group

• A non-normalized SALC can be constructed from AO-basis 

set by using the formula: 

An AO from the set of AO bases.



Example 1:   

• Neglecting the O 1s orbital/electrons. 

H2O

LCAO with the following atomic orbitals

O:        2s;   2px, 2py, 2pz

2H:        1sa, 1sb

Symmetry: C2v

First classify these AOs according to symmetry!



H2O

C2v E C2        v v'

A1

A2

B1

B2

z

xy

x, xz

y, yz

1         1        1         1

1         1       -1       -1

1        -1        1       -1

1        -1       -1        1

Character Table
Symmetry of AOs 

from Oxygen 

A1 : 2s, 2pz

B1 : 2px

B2 : 2py

z

y
x



Symmetry Reduction of 2-D Basis Set {1sa, 1sb}

C2v E      C2        v v'

A1

A2

B1

B2

z 

xy

x,xz

y,yz

1         1        1         1

1         1       -1       -1

1        -1        1       -1

1        -1       -1        1

Two 1-D I.R.s

2H:        1sa, 1sb

)(.)(. RRg
h

a i

R

Ri 
1

21 BAΓ 

1421010121
1

 /)(An

1421010121
2

 /)(Bn

0&0
21 A  nnB

Ha Hb

O

z

y

x

 2 0 0 2



For this trivial problem, it is very simple. We intuitively 

determined the new basis as

 A B

1
1s  + 1s  

2

 A B

1
1s  -  1s  

2

++

+-B2: 

SALC - Symmetry Adapted Linear Combination 
of AOs

A1:

For more complicated problem, the projection operator can be 

used to construct SALC of AOs. Plz confirm the above two 

SALCs by using the projection operator.



A1 symmetry AOs or SALCs for LCAO

A1 : O2s, O2pz
1A

• Both AOs of the O atom can interact with the SALC of H 

1s AOs.

H2O

• Hybridization of the two AOs of O atom is needed!

+ +



H2O- Hybridization of Oxygen’s 2s and 2pz

+

-

2s

2pz

h

h´
Hybridization

+

+

-

-
zA psh 22

1
'

zA psh 22
1





hh´ 1A

1

*' Ah d  Small,  not effective bonding

1

*

Ah d  Large,  effective bonding

H2O- Hybridization of Oxygen’s 2s and 2pz

+ +



Weakly 

bonding/ almost 

nonbonding

H2O- Chemical Bonding in A1  REP

h

h´

Anti-bonding!

Strongly 

Bonding!

113 AAh  

11 1 AAh 

+ +

+ ++

-

- -

+

-

+ +-

+

+

-

-

+

11 2 AAh '

10  i

zA psh 22
1

'

zA psh 22
1



baA ss 11
1





H2O- Chemical Bonding in B2  REP

2py

 +

+

- +

-

 +

 +

+-

0 1 

2
2 Byp  

2B

2
2 Byp 

Bonding!

Anti-bonding!



H2O- Summary on Molecular Energy Level Sequences

+ +

2a1
3a1

-

4a1

+ -

+ -

1b2

+

+ -

2b2

1b1  

 

+

-+ +

(O 2px)



H2O- Summary on Chemical Bonding

1a

O 2HH2O

1s

2s

2p

h, h´

b1, b2 1s(a,b)2b

1a1

2a1

3a1

4a1

1b2

2b2

1b1

b2 b2

a1

The lowest energy transitions are broad at 7.61 and 9.36 eV for the 

4a1←1b1 and 4a1←3a1 transitions respectively for the gas phase and 

at 8.09 and 9.74 eV in the liquid.

J. Chem. Phys.,130 (2009) 084501 & 125(2006) 184501.
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Questions

• For H2O, which two MOs of its MO model can be regarded 

as equivalence of the two lone pairs of its VB model?

• H2O can form hydrated cations with metal cations in 

aqueous solution.  However, it is seldom to find the M-H2O 

bonding in the coplanar manner. Why?  

M O

H

H

M O
H

H



Example 2:    p-MOs of C3H3 (D3h)

• Step 2: By applying 

to all I.R.s, we have

 3
C3,S3

C2,

C2,

C2,

0 1 3 0 1

)(.)(. ccg
h

a
c

ci 
1

Reducible!

 = A2
"  E"

• Step 3: use projection operator to 

obtain SALCs.  (a bit tedious!)

1

2 3

)( z

i

ii

pp

c



 

p



Basis set 

{1, 2, 3}

Step 1: get 

the REP.




R

i
i RR
h

l
P i

11  ˆ)ˆ(ˆ



Now reduce p by using the formula, 

p

p =  A2  E

)(.)(. ccg
h

a i

c

ci 
1

sym. op.  count 1,-

1,0 if an AO 

transforms to itself, 

minus itself or moves.

2

1

3
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3 0 1

D3

To save time, use subgroup D3

011310213
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1
1A  })()({a

Basis set {1, 2, 3}



p 3         0       1 p =  A2  E
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Hückel  approx.

Normalization
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Basis set 

{1, 2, 3}

  ijji dppose   su
(not normalized yet!)

• Now use the projection operator

to derive the SALCs (MOs). 
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• Using orthogonality and 

normalization, we have 
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Normalization

)(.)(. ccg
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Basis set 

{1, 2, 3}

Yet not simple!
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Another way to derive the third MO:

)( 1321

1

3 2  EC

Step 1. Find an operation to covert the second wavefunction into an 

nonequivalent one (not +/- of the original one).  A C3 operation 

works well.  Then we have

Step 2. A linear combination of this new one and the original one 

gives rise to 

))(()( 32113211
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normalization
)( 32

2

3
 

For high-symmetry molecules that have degenerate MOs 

pertaining to 2- or 3-D I.R.s,  it is more convenient to make use 

of cyclic group REP! 



A general simplification 
• Further reducing the symmetry to C3 subgroup, a cyclic group.
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(* I.R.s of a cyclic group can sometimes have complex characters.) 

 = e2pi/3
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(Note that the Hückel approximation is used in the normalization of these MOs!)

  ijji d   define

A for normalization!

Now Let’s return to the D3h point group. we can prove that 1
A

belongs to A2, and {1
E , 2

E}  belongs to E. 



Example 2:  C6H6 D6h  C6

p 6    0       0      0      0      0 p = A  B  E1  E2
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Basis set {1, 2, …,6}

i = pp

C6 E C6 C3 C2 C3
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5  = exp(2pi/6)

A 1 1 1 1 1 1 z, Rz x2+y2, z2

B 1 1 1 1 1 1

E1 1   1  * (x, y) (xz,yz)

1 *  1 *  (Rx, Ry)

E2 1 *  1 *  (x2-y2, xy)

1  * 1  *
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Assignments:

Please figure out all the normal vibrations of 

NH3 and discern whether they are IR- or 

Raman-active!

 Construct the p-MOs of Naphthalene with the 

pp AOs of carbon atoms. 

The End of Chapter 3!































10

01

1

1s

1

1s

2

1

2

1

E

ss
E































01

10

1

1s

1

1s

2

1

2

2

1

2

C

ss
C



z y





























01

10

1

1s

1

1s

xz

1

2

2

1

xz




ss





























10

01

1

1s

1

1s

yz

2

1

2

1

yz




ss
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