Chapter 3

Molecular symmetry and symmetry point group




§ 3.1 Symmetry elements and symmetry operations
» Symmetry exists all around us and many people see it as
being a thing of beauty, e.qg., the snow flakes.

» A symmetrical object contains within itself some parts
which are equivalent to one another.

What are the key symmetry elements
pertaining to these objects?



Why do we study the symmetry concept?

» The molecular configuration can be expressed more simply
and distinctly.

» The determination of molecular configuration is greatly
simplified.

» It assists giving a better understanding of the properties of
molecules.

» To direct chemical syntheses; the compatibility in symmetry
is a factor to be considered in the formation and
reconstruction of chemical bonds.
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1. Symmetry elements and symmetry operations

Symmetry operation

An action that leaves an object the same after it has
been carried out is called symmetry operation.

Example: .

Rotation




Symmetry elements

Symmetry operations are carried out with respect to
points, lines, or planes called symmetry elements.

(a) An NH; molecule hasa (b) an H,O molecule has a
threefold (C;) axis twofold (C,) axis.



Symmetry Operation

Symmetry operations are:

The corresponding symmetry elements are:



1) The identity (E)

« Operation by the identity operator leaves the
molecule unchanged.

* All objects can be operated upon by the identity
operation.




»Matrix representation of an operator
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2) Inversion and the inversion center (i)
COOH

* A molecule has a center of
symmetry, symbolized by i,

. .. HO
if the operation of inverting

all 1ts nuclei through the

center gives a configuration _Centre_ of
S inversion
indistinguishable from the

original one.

HOOC
~ Meso-tartaric acid



For example

F
0=C=0 FI""‘-L“‘“F
1 I\F

F

These objects have a center of inversion i.

H

S |
H/ \H H/Sl\'"”H
H

These do not have a center of inversion.



» Inverts all atoms through the centre of the object.

z A
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3) Rotation and the n-fold rotation axis (C,)
A body has an n-fold axis of symmetry (also called n-fold proper

axis or n-fold rotation axis) if rotation about this axis by 360/n

degrees gives a configuration indistinguishable from the original one.

Example: Rotation of BF; around its C; axis.
Allowed rotations: C;'(a=2n/3), C;%(a=4n/3), C;° = E

|I: 120" rotation F 120° rotation F
; = = ]
7 N C;' g7 & C,! N

F F
~ —

* There also exist three C, axes each along a B-F bond!

» The principal rotation axis 1s the axis of the highest fold. e




The principal rotation axis is the axis of the highest fold.




The matrix representations of rotations around a C, axis:

Conditions:

> Principal axis is aligned with the zaxis

A C, axis gives rise to n unique rotational
operations labeled as C,™ (m =1, 2,..., n).

Matrix of allowed rotations

(cosa
C"=|sina
.0

—sina 0
cosa. ()
0 | )

Angle of allowed

rotations:

2mr




The matrix representation of rotational operations: e.g., C ™

C,llz Allowed rotations: o =2mmwh (m =1,2,...,n)
X, =-rcosB=rcos(a+A)
B=r—(A+a) =rcos Acosa —rsin Asinx

=XxXcosa— ysina
(xXpyy)

=rsinB = xsina + ycos o _
4 Y =2

o x\ (cosa -sina 0) x
Y |=C"ly|=|sinaa cosa O]y
% z) ) Z ) 0 0 1\ z
| ¥ (x,)
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§x=rcosA L Cl'=|sinaa cosa O

§y=rsinA 0 0 1



4) Reflection and the Mirror plane ()

» If reflection of an object through a plane produces an
indistinguishable configuration, that plane 1s a plane of symmetry

(mirror plane, O).
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» For molecular systems, there are three types of mirror
planes:

= [f the plane 1s perpendicular to the vertical principal
axis, it 1s labeled o;,. (h-horizontal)

* [f the plane contains the principal axis, 1t 1s labeled

o, (v-vertical)

= [f a g,plane contains the principal axis and more
specifically bisects the angle between two adjacent 2-
fold axes, 1t 1s labeled oy. (d-diagonal)



Does BF; have o, , o, and/or o, planes ?

* The BF; plane 1s a g, plane.

* Each plane that contains a B-F bond and the C; axis is a o,
and, meanwhile, a g; plane. e
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If the plane contains the principal axis then it is labeled o...
« Example: H,O
— Has a C, principal axis.

— Has two planes that contain the principal axis, o, and o, ”




If a o, plane contains the principal axis and bisects the angle
between two adjacent 2-fold axes, then it 1s a o,.(Dihedral

mirror planes )

Example: H,C=C=CH, !

* Each HCH plane 1s a o,/o; plane! i



5) The improper rotation axis

a. n-fold rotation-reflection axis of symmetry,
or rotary-reflection axis (S,)

A body has an S, axis if rotation by 3609/n about the axis,
followed by reflection in a plane perpendicular to the axis,
produces a configuration indistinguishable from the original one.

Axis bisects the

H-C-H bond
angle S 41 — O'h -C 41 Reflect
through a
plane that is

perpendicular

I:otatei to the original
. g);gl : rotation axis
e G :

Indistinguishable!

» b,

Distinguishable!

S4 S41= O-h.C41 S43=S41’S41’S41=O-h’C43 S44= E
S =818 =(0,C)(0,C}H) = (,)°C?=C; - T



Special Cases: S, and S,

(@)

(2) Reflect

Sy

(1) Rotate

¥

S,=0,C, =0

(b)

(1) Rotate

(2) Reflect

N
S, =0,C, =i

Neither S, nor S, axis is necessary!



Stereographic Projections

Reflection Inversion

We will use stereographic projections to plot the perpendicular

to a general face and its symmetry equivalences, to display
crystal morphology

@ o for upper hemisphere; x for lower



1 1 5 2 3

{ S32 _ C32

- S, is not an independent symmetry element! (no need!) I,

S34 _ C31

S’ =E

F =G5

9, =0 +o0,




Example: H;C-CH,

staggered form

Sl=o¢0,Cl=(@GC3)Cl=iC; S2=C,
8¢ =0y Cg =1 S =C;

> S, = C;+i * S, is not independent at all! , T,



* §,1s an independent sym. element! AV

S: =C;+0, Not independent at all!

Possible operations pertaining to a S axis:
1 1 a2 2 o 3 3 o4 4 o5

S =oC; ;8. =C;";8; =0C. ;S =C, ;S =0;
6 T 2 o 8 3 o 9 4 ~ 10

S =C: ;8 =0C: 5, =C; 8, =0C; ;5: =E

« It demands the coexistence of a C; and a g;,, which readily i
produce all symmetry operations arising from . C



Generally, the following remarks are provable,
1) A S, improper axis with n = odd demands the coexistence
of C, and g, i.e.,§, (n =0dd) = C,+ o, .
11) AS,, improper axis with n = odd demands the coexistence
of C,and i, i.e., S,, (n=0dd) = C_+1i.

(plz prove them after class!)

- Neither S, nor §,, with n = odd is independent and
necessary!

In conclusion,

Only S, and S (8,,,) are independent symmetry elements. J
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b. n-fold rotation + inversion: Rotary-inversion axis (/,)

Rotation around a C, axis followed by inversion through the center
of the axis.

1,=iC, | h .
h=iG=i C

I =i
ol e _
~L,=iC,=0, L=0, | '=ic;' 1]’=¢;

3

L' =iC, I'=C] L =i
L'=C, I)=iC; I’=E

Neither I, (=C; + i) nor I, (=C; + ;) 1s independent!

o 3= q +17 Not independent!

Only I, and I are independent symmetry elements! 1




Summary

Element Name

C, n-fold rotation

o Mirror plane

i Center of
inversion

S, (n=4,8) Improper rotation
axis

E identity

Operation

Rotation by 360°/n

Reflection through a
plane

Inversion through the
center

Rotation as C  followed
by reflection in
perpendicular mirror
plane

Doing nothing

12



2. Combination rules of symmetry elements

A. Combination of two axes of symmetry

The combination of two C, axes intersecting at an angle of
27/2n, will create a C,, axis at the point of intersection which is
perpendicular to both the C, axes and there are n C,-axes in
the plane perpendicular to the C,, axis.

C,+C,(L) »>nC, (1)




B. Combination of two planes of symmetry.

 |If two mirrors planes intersect at an angle of 27/2n, there will
be a C,, axis on the line of intersection.

« Similarly, the combination of an axis C,, with a mirror plane
parallel to and passing through the axis will produce n mirror
planes intersecting at angles of 27/2n.

C,to,—>no,

C,+o0, = 20,
C,+o0, = 30,

E.g., H,O, NH,



C. Combination of an even-order rotation axis with a
mirror plane perpendicular to it.

« Combination of an even-order rotation axis with a mirror
plane perpendicular to it will generate a center of
symmetry at the point intersection. (C,, + o, =2 1)

* In other words, each of the three operations o, C,,and i is
the product of the other two operations.

" [ _ \ \
'.'CZH(Z)ZCé(Z): 1 0 O 1 0 0
0 -1 0| o,=[0 1 0
L0 0 1, o @

(—1 0 0)
Lo, Ci(z)=| 0 -1 0 |=i

Similarly, i-C;, =0, & o, -i=C,
Czn+i90-h & O-h+i9C2n



§ 3.2 Groups and group multiplications

1. Definition: A mathematical group consists of a set of
elements G = {G,,G,,...,G;,...} .

(a) Closure. The product of any two elements G; and
G; in the group G = {G,,--,G;-}, is another element
In the group, I.e.,
GIGj = Gk’ sz — Gn,

(b) Identity operation. The set includes the identity
operation E such that AE = EA = A for all the
operations in the set.



(c) Associative rule. If A, B, C are any three elements
in the group, then (A-B)-C = A-(B-C).

(d) Inversion. For every element A in G, there is a
unique element X in G, such that XA=A-X=E.

The element X is referred as the inverse of

element A and is denoted A-'.

The order of a group:
The number of elements in a group!



Example: A C;-symmetric molecule Jl\
®) 0, Q)
T \6
o Symmetry elements: (E’), Cl 3 | i > Nlﬁj/ o
e Symmetry operations: {E, C; ’ C_Zj} C, /
tris(oxazoline)

C, C;=C,=E C,-C,=C; C;-C;=C, Closure.

E Identity operation.
1 9, 1 1 2 1

(C3 ‘C3 ) ‘ C3 — C3 (Cs 'Cs) Associative rule.
] 2

C, -C:=E

Inversion.

* All unique symmetry operations of this molecule constitute a

group, namely C;. (group order = 3)



2. Multiplication of Symmetry Operations
(Group multiplication)

¢,

Example: H,O

i

X

)

Oxz yz
It has symmetry elements: E, C,, oy,, 0,

Unique symmetry operations: {£, C,%, o,,, 0,,}

VvV 9



Example: H,0
All unique symmetry operations:
{E/ Cz 1/ Oxz/s O-yz}

Multiplication table (of C,,)

CZV E CZI Oyz Gyz
L E CZ ! Oxz c5yz
G, C,! E Gy, c,,
C,, c,, Gy, E C,!
Gyz c5yz ze CZ ! E

1 1 1 _ 1
C,-C,=E O'XZ-CZ—O'yZ O'yZ°C2 =0,

Note: The position of the O atom 1s unchanged upon any of the

symmetry operations!




Multiplication table C,, E C,) |on, Oy
of C,,
E E C,! c,, Oy,
C,! C,!] E G,, o,,
GXZ GXZ Gyz E C21
Characteristics of a
Multiplication table °» o, Oy G' E

(1). In each row or each column, each operation appears
once and only once. (A group of symmetry operations!)

(2) We can identify smaller groups within the larger one.

For example, {E,C,} is a group, a subgroup of C,, group.

{E, o} is another subgroup.

(3) The total number of group elements = group order.

lr
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Example: NH,
e Symmetry elements:

(E),C;,30 (0,0",0'")
e Symmetry operations
{E,C;,Cg,a,a',o“'}
Multiplication table of C;,
C;, E C;! C;’ o G,
E
C;!
C;’
y




Group Multiplication

C3v. E C,! C;? o, o, o,
E E (:31 (:‘32 Oy GV' GV”
c;; C' C2 E

C? C2 E C,?

GV cSV

’ ’

A\ A\

GV” GV”

f

G, </ \ P 7\ =3 <

A
I AT AN\ A\

C,-C,=C; C;-C;=C; Cy-C:=C;=E




Group Multiplication

C3v E C,! C;? o, c,’ c,”
E E C,! C,;? o, c,’ c,”
C,! C;! C;? E o, o, c,’
C;? C;? E C;? c,’ c,” o,
A% GV cSV' cYV”
G,/ G,/ G, o
V” GV” cSV cSV'
< (
A<\ A<\ & /_\//_\. /\7\ AN
T \\"\S ' A\ NC B\N“‘ A\'.NB B\/\\\A
GV



Group Multiplication

C3v




Multiplication table of C
3v

C, subgroup: {E, C;1,C;?}

Cg subgroup: {E, o}
C, subgroup: {E}

C3v E C,! C,’
E E C,! 3
1 3 C;?

C, C,! C,? E
C,’ C,’ E C,’
GV' cSV cSV’ cSV”

o c,’ c,’ c
o, o, V
v GV cSV’



§ 3.3 Point Groups, the symmetry
classification of molecules

 The set of all the symmetry operations of a molecule
forms a mathematical group.

 These symmetry operations have at least one common
point unchanged (e.g., the O atom in H,0).

 Such a group of symmetry operations is thus called
point group.

* Accordingly, it is quite convenient to represent the
symmetry of a molecule by the very point group!

lr
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The symmetry of an object(molecule) can be conveniently
represented by a point group that contains all possible
unique symmetry operations arising from its available

symmetry elements.

1L
Objects/ If they have a common
Molecules set of symmetry elements
[\ V4
They belong to They must have a common set of

the same type of
point group.

symmetry operations with at-
least one point unchanged!




Four categories of symmetry point groups

* Groups withno C, axis: C; C, C;

S

* Groups with a single C, axis: C, C,, C

nv?

Son
* Groups with one C, axis and n C, axes :

D, D, D, (Dihedral groups)
* Groups with more than one C, (n >2) axis:

T, T T, (Tetrahedral groups);

0O, O (Octahedral groups);,

I, I (Icohsahedral groups); (K, —spherical symm. ) ;



1. The groups: C,, C,, and C,
The group C,

* A molecule belongs to the group C; 1if it has no element
of symmetry other than the identity.

C;={E}

1-order group!




The group C;={E, i}

* An object belongs to C; 1f 1t has the 1dentity and

inversion alone. |C; = {E,i}.
— Examples: meso-tartaric acid, HC1BrC-CHCIBr

Centre of
inversion

H e — oH

HOOC




The group C,

* An object belongs to C, group 1f 1t has the identity £ and
a mirror plane o alone.

C, group is 2-order, containing two symmetry operations {E, G}.

]f
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2. The mono-axis groups C,, C,,, C,, and §,

ny’

The groupC, = {E,CJ}L ..., C 1}

* A molecule belongs to the group C, if 1t has only an n-
fold axis.

« Example: H,0,
4C-
’

* Group order of a C_ groupis ? .










The group C,,,

If 1n addition to a C,, axis an object has n vertical mirror

(o,) planes, 1t belongs to the C,, point group.

C,+o 2 no,

4o
A N
k- b
(a) % b) CO
C3V CZV Coov

Group elements: <{E,C,™ (m=1,...,n-1), n o}

Group order: 2n



phenanthrene



HCCl, H,C,Cl,




The group C,,,
Objects having a C, axis and a horizontal mirror plane g,

belong to C,,,,

Symmetry elements derived from C_ + o;,:
a)C +o0,2 S, ( (o )"(CHy"=8", m=odd)

b) When n=even, a C, 1s alsoa C, , and a C,.

C.ot0,28,, ( (o)™ ( Cn/zl)m =S,,", m =odd)

C,+0,> i (0,C=i) T
C
C. f

trans-CHCI=CHCI o






?

® O N,
S

/.\.

| ]

O INGTS

| :

e | |

o\ /;.
./ v @

l



A C,, point group 1s 2n-order, consisting of symmetry
operations C," (m=1,...,n), g;, and ¢;,C,™ (m=1,..., n-1)!

Note: /

i) When n = odd, {m = odd,0,C, =5,

m=even,o,C"' =oc,C'"™" =8§""

i1) When n = even, {m = o0dd,0,C," =5,

_ m __ m/2 _ com/2
m=even,o,C"=0,C"7 =8,

: n/2 1.
with ¢,C" " =0,C, =1

N~

operations arising froma S_,!




The group S,

* Objects having a §,
Improper rotation
axis belong to S,
(n=2m, m >2)

S, =G, :> C,

Srnt1 = Coninyt On 2 Conrppn CH H
3

* S, .1 does not exist! CH,



Some remarks on §, axis and §, group

1. Objects having an odd-fold S, . axis should also have a

o, mirror plane and a C,_,, axis (n=1,2,...), thus actually

belonging to C,41yn-

G2l _ (C2n+l)(0h)2n+l -0,

2n+l 2n+1

S, ,=C

2n+1 2n+l1

2. Objects with an S, axis have such normal symmetry

elements as C,, . (S4,4,°¥=C,,+1**) and i ! (n>0)

2n+] 2n+] 20+l _
Sime = (Cpu)0))™ =1

Saniz = Copy 1

Namely, objects having exclusively a C,, ., (n>0) axis and i
also have an improper axis S,,,, belongingto §,,,, group
(sometimes denoted C,; group (m=2n+1), e.g.,8,= Cj3;). I,



3. Only S,, axes are independent symmetry elements!

Objects having an S, axis also have a C,, axis. (n=1,2,...)

\| - a Y ‘34

S2n’- vv ‘ ’ /————
e o A"S:,

6

In short,

* There exist.§, groups only when n =2m (m >1)!

* AS, ( n=even) point group 1s n-order with the
elements {E, §,/, ..., S,"1}.




Mono-axis groups

Such point groups as C,,, C

ny>

C,., S, etc.
having only one rotary (or improper) axis are called

mono-axis groups.



(pyramid)

-



3. The ¢

thedral groups: D,,D,,, D, ,

Dnl An object t

hat has an n-fold principal axis (C,) and

n C, axes perpendicular to C, belongs to D,..

= \
D ={E C] ... C™, nC,.

(Ethane in a non-equilibrium state) D, is 2Zn-order. s







The group D,,
A molecule having a mirror plane (c,) perpendicular to a

C, axis, and n two-fold axes (C,) in the plane, belongs

to the group D_,,

C,to, =2 S,or/andS,, | =~

C,1LC, 2 G =D _, is 4n-order.

nC,cc,2no, _ o, =S" (n=odd)
n=odd, D, ={E,C!, ...,C ! nC,,nc,S ! ..5S . . S

_ _ i 1 1
n=even, D, = {E,C 1,...,.C ™! nC, ,Gh,l S LS ,!,.,S ™S 0

(n/2)o, , (n/2)c,} — ! j ;

i=S""?(n=even) (n-1)S, -type operations!

o 1 5










[Ni(CN)4]2' [IM,(COOR),X,] Re,Clq

- -2
Cotls o Cr(C,H)),

2R

Bis(benzene)chromium
D ooh O:C:O . ,f 3




The group D4
* A molecule that has a C, (n >2) principle axis and n C, axes

perpendicular to C, belongs to D, , if 1t also possesses n diagonal
mirror planes (G,).

* A set of operations of c,-C, (LC ) type are equivalent to S,", thus
making the C_ being an §,, axis. For D,,, C,+2C,(1) + 20,
ZC)'1C,)" =2n/2n = 1t/2

{ o4y =2n/2n = 1/2

The order of group D, =4n

C,/a=b',o,b'=Db, S,la=Db
|:>cd S,! (//C,)

M 0,C,' =S, (@a—>c¢ 2c¢);
: |c2=s42; E=S,4

".The C, axis is also a S,!

C3H4 Dzd :{E, 3C2, 2Gd, S41, S43} < r‘ 7 T 3




Dnd Upon introducing o4, the C,
axis becomes a §,, axis!

e.g., Ethane — D,
C;+3C,(L) + 30y,

~ /£C,/C,'/C," = 2n/2n = n/3

_ Logloylof" =2n/2n=7/3

:> CZHJ_Gd’, GdJ_CZ', Gd”J_CZ
=) 6,C2'= i orc,/C2" =i
= C,+i=S§,

[ Dy, = {E, C,,C;2,3C,, 36, i, S¢', S}




« It1is provable that an object of D_, (n=0dd) group also

has such symmetry elements i & S, .
C,+t nC, (1) + no,, (n=o0dd)

cgl(n+1)/2]

T

ZC()/C(j+1) =2 = £C,(1)/ C,)(

n

n+1

T

Loj)o,(j+)=—= Z(7611(1)/(701(

n

+1

e | 7 C,[(n+1)/2]
2 n \\ o4(1)
_n—lﬂ _

ZC,(j)o,()) —ln

+1

ZzC@L%(

> )T n Cz(1)
C,[(n+3)/2]

n+1 n+1
) &C (J+—)l0d(1)

%(’”’7)02(1) =i

C +i=3

(n =o0dd)




nC ¥ (k=1,...,n) nS, 21 (k=1,...,n)

\ \
l \ l \

— 1 -1. . . 1 2k+1 2n-1 —
Dnd_{E, Cn ,ooo,Cnn ) nCZ, nGd, Szn 900 Szn ,ooo,SZn n } Order_4n

Note:

i) Key symmetry elements:
C,+nC,+no,, &S,, (derived from ¢4+ C,)

ii) Equivalent symmetry operations: S, ?=C_k (k= 1,..., n);

iii) When n =odd, S, " =i;

83, =S (n=2m+1)

2m+l  r2m+l P -
=(0,)"(Cin) =0,Cy =i

o, Cy(L)=i




=

Cyclooctatetraene

(Boat-shaped CgHy)




Dihedral Groups

plane or bipyramid)




4. High-order point groups
(Polyhedral point groups)
* The aforementioned point groups have one axis

or one n-fold axis plus n 2-fold axes.

* Molecules having three or more high-order
symmetry elements (several n-fold axes, n>2)

may belong to one of the following:

T: 4C;,3C, (T,:+3c,) (T4 +3S)) >
O: 4C;,3C, (O t36,)=> Cubic group
[. 6C,,10C; (I, +1i)



Polyhedral groups derived from Platonic Polyhedra

O, — Species with

T4~ Species with octahedral symmetry (many
tetrahedral symmetry
metal complexes)

AN 8
g

tetrahedral symmetry group

{

)

7

octahedral symmetry group

I, — Icosahedral
symmetry
(Buckminster-
fullerene, C,) T

Icosahedral symmetry group



Td 4C;+3C, + 60, ") Upon introducing six ¢4 mirror
planes, the three orthogonal C, axes

become three S, axes.

G,

T,= {E, 4C,!, 4C;*,3C,, 6c6,, 3S,!, 3S,3}
Order =24 |
Note: S,2=C, .



* The perfectly tetrahedron-
shaped object belongs to 7,

point group.

e The windmill-like
structures reduces the
symmetry from 7, to T by
eliminating the c,, planes .

T:4C,+3C, (T4 +3S,0r+60,)
T={E, 4C,!, 4C;?2, 3C,}  order=12

T is a pure rotation group!

Objects of T-symmetry are chiral!
Luk Y-Y et al, Chirality, 2008, 20, 878-884.

.



Example: T Molecules of T-group symmetry are chiral!

crystallization

Wang XC et al. Nature Comm., 2016, 7, 12469 ’



C, Cubic groups
C; &S,
Th
TM4C;, 3C,) + 306, (LC,)

c, 1C, =

4C,+ i 4S,(//C,)

{E, 4C3 ’ 4C3 ’ 3C2’ 3Gh’ 2 4S6 ’ 4S65}

Order = 24
Note: S2=C,l; SiA=C% S3=1i i



T
>

+ 3C,

4C,

(No C,!)

i
or
G
oL

>Th

Ir Td
(//Cy or
Gy

G4



Qc

T

C0,(CO),,
Chem. Rev. 2005, 105, 3643.

TigC,, (T4is more stablethanT,) . I,

6



1C4(C2) O Cubic groups
e
’ / G * No mirror plane is

#b q allowed due to the

presence of windmill-like

fragments at the apices of

the octahedron!

> 6C,’
C,LC, > 4C, (LCy)

O=1{LE, 4C319 4C329 3C41 : 3C43 : 3C2 : 6C2’}

Order =24 Pure rotation group!
Molecules of O-symmetry are chiral! 1



oh Cubic groups

) C,+o,> i+S,
i) i+Cy>> S,

(454, 45)
0, = {E, 6C,, 3C,, 8C;, 6Cy’, i, 8, 6S,, 36, 65}
)N |

(3C,1,3C,%) BCAH)4C 14C%)  (3S,1.,35,°)
Group order= 48 .






Typical subgroups of O,

O =lacks i, S, S¢, 0, and o4 and 1s called the pure
rotation subgroup of O;,.

T, = lacks C,, 1 and &, and 1s the group of tetrahedral
molecules, e.g., CH,.

T, = this uncommon group 1s derived from 7, by

removing S, and o4 elements.

T = the pure rotation subgroup of T, contains only C;
and C, axes.



I and I, groups I: 6C,, 10C3, 15C, ,: +1)

I={E, 12C, 12CZ, 20C,, 15C,}

\ Order =60 Pure rotation group!

No i, o, S, -- chiral!

Cs

€.g., some virus!

L: (I+1)

C,+i = S,

C,+i =
icosahedron 271 On

(E, 12C,, 12C 2, 20C,, 15C,, i,
A=N, . = 12, F=N,, =20,

128,,, 128, 3, 20S,, 150}
E=Nedge= 30 9 T 3

order = 120



I, group: two long-known examples

a. B;,H,,*" (icosahedral borane dianion)

b. C,,H,, (dodecahedrane)
B,,H,,%>~ (hydrogen omitted

 First synthesized by Paquette in
1982, three years before the discovery

of Cy,.

e [t is indeed the first fullerene
derivative synthesized by mankind.

Chem. Rev. 2005, 105, 3643 and references therein.



I,= {E, 12C., 12C.2, 20C,, 15C,,
I i, 12S,,, 12S,,3, 20S,, 150,}
Order =120

Ceoo bird-views from the S-fold axis and 3-fold axis.

12 pentagons and 20 hexagons;



<molecul(> Pathways for determination of
Y ]

N molecular symmetry.
Linear?
% Two or more Cnﬂ N
i? (n>2) ) c?
Y
N y Y C,? N g
C.? O ,i ﬂ
5 | . Y N
3C4 ? n n CZ v Cn.
Y Y
D 2
cch I 0O T O, 4 N GOy
C,, | /- N\ | N
Y Y Y Y N LCw N
I, |_0h T, T, D, || D C,.




§ 3.4 Simple Applications of symmetry

3.4.1 Chirality i )H\
Br” \ 'k 4 Br

(R) (S)
A chiral molecule is a molecule that can not be superimposed
on its mirror image

These molecules are:

» not superimposed on its mirror image.

» a pair of enantiomers (left- and right-handed isomers)

» able to rotate the plane of polarized light (Optical activity )

» does not possess an axis of improper rotation, S_ (i, o)

lr
9 3



Optical activity is the ability of a chiral molecule to rotate
the plane of plane-polarized light.

';\Q: /\ /\ sample /\ ;) ®

polarizer , detector
' N
® O D
Plane- dextrorotatory levorotatory optically
unpolarized plane- (d) or (+) (Dor(-)  inactive
polarized - J

1n 1sotropic '
medium optically active

T
9 3



Optical activity

Optically inactive: achiral molecule
or racemic mixture of chiral molecules
- 50/50 mixture of two enantiomers

Optically pure: 100% of one enantiomer

Optical purity (enantiomeric excess)
= percent of one enantiomer — percent of the other

e.g., 80% one enantiomer and 20% of the other
= 60% e.e. or optical purity



> A chiral molecule does not possess S_ (i, c)!

- C, and D, may be
chiral (no S,
Improper axis).

Molecules of T-, O-,
or [-symmetry are
chiral!




* In summary, the groups that may be chiral are
as follows: C,, C_, and D,.

 However, not all molecules 1n these groups will

necessarily be chiral, they are merely permitted
to be.

* For example, hydrogen peroxide belongs to the

group C,, but 1t 1s not chiral, as free rotation
about the O-O bond 1s possible.



2. Polarity, Dipole Moments and molecular symmetry

A polar molecule is one with a permanent electric dipole
moment.

Dipole Moments

» are due to differences 1n atomic electronegativity

* depend on the amount of charge and distance of separation

* in Debyes (D), 4= 4.8 X0 (electron charge) X d (angstroms)

* For one proton and one electron separated by 8+
100 pm, the dipole moment would be:

1D
334x107°C-m

e (1.60><1019)(100><1012m)[ ): 4.80D



Permanent Dipole Moments

(a) Only molecules belonging to the
groups C , C = and C, may have an

electric dipole moment. u=20
inversion
Meso-tartaric acid
C2A

(b) Dipole moment cannot be
perpendicular to any mirror

e N




Molecular Dipole Moments
Polar and Nonpolar Molecules

O0=C=0

Carbon dioxide (u = 0)

la
o .

c1/‘

Tetrachloromethane (u = 0)




Molecular Dipole Moments and molecular o~
symmetry
X
F B
@ NP
chy /
I Br C, Quinoline Cg  Cj, B(OH),
n=0 Pio p=0
in plane ch symmetry
Cl H
Lo Y
C
/ \CI Con
Trans CHCI=CHC(I
R p=0 p=0 p=0

along C» along C3 along C» inversion




Summary:

Groups
C,, C

1°

and C,

4 Y
C,, C, and C, may have an electric dipole moment.

C, and D,, may be chiral (no S, improper axis).




Summary of this chapter

Symmetry elements & symmetry operations

Element Name

C, n-fold rotation

o) Mirror plane

i Center of
inversion

S, Improper rotation

axis

E identity

Operation

Rotate by 360° /n

Reflection through a
plane

Inversion through the
center

Rotation as C  followed
by reflection in
perpendicular mirror
plane

Do nothing

12



summary

§ 3 Point Groups, the symmetry
classification of molecules

Point group:

« All symmetry operations pertaining to available symmetry
elements 1n any molecule/object have at least one common point

unchanged and constitute a group, thus called point group.
* Elements of a point group are symmetry operations.

« For a given point group, its order corresponds to the total number
of symmetry operations.

lr
9 3



(1) Point groups of low symmetry:

C;; Cs C,

(2) Point groups with only one n-fold rotational axis:

Cn; Cnh; C Coov

(3) The S, groups: S;; S¢; Sg

(4) Dihedral groups containing nC, axes perpendicular
to the principal axis C:

Dn; Dnh; Dnd; Dooh

X% (5) The cubic groups: T, T,,T; 0,05 L I

v



How to discern S, D,, and D_, groups?

Key points:

1.

S, group exists only when n = even; objects of S
group also have a C /, axis; a S, group 1s simply n-

order.

Objects of D, group have exclusively a C axis and n

C, axes. A D, group is 2n-order.

Objects of D_4 group have not only a C_ axis and n
C, axes, but also n 64, mirror planes & a S, axis. A

D, 4 group 1s 4n-order.



S, =a,C S, =(5,)"=(c)" (C,)"= (o))" C,”
1) Ifn=odd,

For m = odd=2k-1 (k=1,2,..., (n+1)/2), n + m = even,

S m=(c,)"C,"= o,C **1 (when m=n, S "=0c,C." =6,) &
S min = (g ymtn C mtn = C ™ (when m=n, S_>"=E)

For m = even=2k(k=1,2,..., (n-1)/2), n+m = odd,

S," = (G)"C,m = C,m, §,m = (g,)m™ C,m*n = 5,C,
Thus, a S, (n=o0dd) axis produces a set of unique operations

{E, C.™ (m=l1,...,n-1), 5, 5,C. ™ (m=1,..., n-1)}, that can be

produced by C_ + o,.
.



11) If n = even=4p,

For m =even=2k (k=1,2,...,n/2), n+m =even
Sm=(g)"Cm=Cm=C,,"? (whenm=n, S "=Cr"=E),
i.e., a C,,™? also exists!

S = (g, )mm C M =C m=§ ™ (not unique!)
For m = odd = 2k-1 (k=1,2,...,n/2), n+m = odd

when m=n/2, S "?=¢,C "> =0,C,'=1, ie., an inversion center

exists! S, = (o )"C, " =c,C"=8§"" =c,C™=S" (not unique!)

The S, (n=even #4k) 1s equivalentto C, , +1i.



> STRRIRIEFIXSFR T =
> SRR TTERA S REREE

> THRE
>RFR S BIREE. BEEER X R




