
Chapter 3

Molecular symmetry and symmetry point group

Part  A



§3.1 Symmetry elements and symmetry operations

 Symmetry exists all around us and many people see it  as 
being a thing of beauty, e.g., the snow flakes.  

 A symmetrical object contains within itself some parts 
which are equivalent to one another. 

What are the key symmetry elements 

pertaining to these objects?



 The molecular configuration can be expressed more simply 

and distinctly.

 The determination of molecular configuration is greatly 

simplified.

 It assists giving a better understanding of the properties of 

molecules.

 To direct chemical syntheses; the compatibility in symmetry 

is a factor to be considered in the formation and 

reconstruction of chemical bonds.

Why do we study the symmetry concept?



Symmetry operation

An action that leaves an object the same after it has 

been carried out is called symmetry operation.

Example:

1. Symmetry elements and symmetry operations

Rotation



Symmetry operations are carried out with respect to 

points, lines, or planes called symmetry elements.

Symmetry elements

(b) an H2O molecule has a 
twofold (C2) axis. 

(a) An NH3 molecule has a 
threefold (C3) axis 



Symmetry operations are:

The corresponding symmetry elements are:



I

F

Cl
Br

• Operation by the identity operator leaves the 

molecule unchanged.

• All objects can be operated upon by the identity 

operation.

1) The identity (E)



Matrix representation of an operator
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 Matrix representation of E
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2) Inversion and the inversion center (i)

• A molecule has a center of 

symmetry, symbolized by i, 

if the operation of inverting

all its nuclei through the 

center gives a configuration 

indistinguishable from the 

original one.



These do not have a center of inversion.

These objects have a center of inversion i.

For example
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 Its matrix representation

 Inverts all atoms through the centre of the object.

（-x,- y,-z）

（x,y,z）
z

y

x

(x,y,z)  (-x, -y, -z)
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Example:  Rotation of BF3 around its C3 axis.

Allowed rotations:  C3
1(=2/3), C3

2(=4/3), C3
3 = E

C3
2

A body has an n-fold axis of symmetry (also called n-fold proper 

axis or n-fold rotation axis) if rotation about this axis by 360/n

degrees gives a configuration indistinguishable from the original one. 

3) Rotation and the n-fold rotation axis (Cn)

• There also exist three C2 axes each along a B-F bond!

• The principal rotation axis is the axis of the highest fold.

C3
1 C3

1



C5

The principal rotation axis is the axis of the highest fold.

C6



The matrix representations of rotations around a Cn axis:

Cn

Conditions:

 Principal axis is aligned with the z-axis

A Cn axis gives rise to n unique rotational 

operations labeled as Cn
m (m = 1, 2,…, n).
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The matrix representation of rotational operations: e.g., Cn
m
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 If reflection of an object through a plane produces an 

indistinguishable configuration, that plane is a plane of symmetry 

(mirror plane, s).

4)  Reflection and the Mirror plane (s)
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Likewise, we have 



















100

010

001

yzs


































































z

y

x

z

y

x

z

y

x

yz

100

010

001

s



 For molecular systems, there are three types of mirror 

planes:

 If the plane is perpendicular to the vertical principal 

axis, it is labeled sh.   (h-horizontal)

 If the plane contains the principal axis, it is labeled 

sv.   (v-vertical)

 If a sv plane contains the principal axis and more 

specifically bisects the angle between two adjacent 2-

fold axes, it is labeled sd.   (d-diagonal)



Does BF3 have sh , sv and/or sd planes ?

• The BF3 plane is a sh plane.

• Each plane that contains a B-F bond and the C3 axis is a sv

and, meanwhile, a sd plane.



If the plane contains the principal axis then it is labeled sv.

• Example:  H2O

– Has a C2 principal axis.

– Has two planes that contain the principal axis, sv and sv’.

H HO

sv

sv



Example: H2C=C=CH2

C2
C2

sd

sd

If a sv plane contains the principal axis and bisects the angle 

between two adjacent 2-fold axes, then it is a sd.(Dihedral

mirror planes )

• Each HCH plane is a sv/sd  plane!



A body has an Sn axis if rotation by 360/n about the axis, 

followed by reflection in a plane perpendicular to the axis, 

produces a configuration indistinguishable from the original one. 

a. n-fold rotation-reflection axis of symmetry, 
or rotary-reflection axis (Sn)

5)  The improper rotation axis

S4

C4
1 sh

S4
1 =  shC4

1

S4
2 = S4

1 S4
1

S4
3 = S4

1 S4
1 S4
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3 S4

4 =  E

S4
1 =  shC4

1

= (shC4
1)(shC4

1) = (sh )
2C4

2 =C2
1

Distinguishable! Indistinguishable!



Special Cases: S1 and S2

ss  11 CS h iCS h  22 s

• Neither S1 nor S2 axis is necessary! 



Stereographic Projections

o

x

We will use stereographic projections to plot the perpendicular 

to a general face and its symmetry equivalences, to display 

crystal morphology

o for upper hemisphere;  x for lower 

o

Reflection Inversion

x



1

3

1

3 CS hs

S3

hCS s 33

 S3 is not an independent symmetry element! (no need!)
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staggered form
S6

Example: H3C-CH3

S6

S6
1

S6
1

S6
2 =C3

1

 S6 =  C3 + i * S6 is not independent at all!

S6
1 =  sh C6

1 = (iC6
3)C6

1 = iC3
2

S6
2 =  C3

1
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3 = sh C6

3 = i S6
4 = C3

2
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1 S6

6 = E
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• S4 is an independent sym. element!

Not independent at all!

Possible operations pertaining to a S5 axis: 

hC s 5

• It demands the coexistence of a C5 and a sh, which readily 

produce all symmetry operations arising from S5.   



Generally, the following remarks are provable,   

i)  A Sn improper axis with n = odd demands the coexistence 

of Cn and sh, i.e., Sn (n =odd)  =  Cn + sh .

ii)  A S2n improper axis with n = odd demands the coexistence 

of Cn and i, i.e.,  S2n (n =odd)  =  Cn + i .

Only S4 and S8 (S4n) are independent symmetry elements.

In conclusion, 

 Neither Sn nor S2n with n = odd is independent and 

necessary! 

(plz prove them after class!)
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b. n-fold rotation + inversion:   Rotary-inversion axis (In)

Rotation around a Cn axis followed by inversion through the center 

of the axis.

Only I4 and I8 are independent symmetry elements! 
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Not independent!

Neither I5 (=C5 + i) nor I6 (=C3 + sh) is independent! 



Summary

Element Name Operation

Cn n-fold rotation Rotation by 360/n

s Mirror plane Reflection through a 

plane

i Center of 

inversion

Inversion through the 

center

Sn (n=4,8) Improper rotation 

axis

Rotation as Cn followed 

by reflection in 

perpendicular mirror 

plane

E identity Doing nothing



2.  Combination rules of symmetry elements

A.  Combination of two axes of symmetry

The combination of two C2 axes intersecting at an angle of

2/2n, will create a Cn axis at the point of intersection which is

perpendicular to both the C2 axes and there are n C2-axes in

the plane perpendicular to the Cn axis.

Cn + C2 (⊥)   nC2 (⊥)



B. Combination of two planes of symmetry.

• If two mirrors planes intersect at an angle of 2/2n, there will 

be a Cn axis on the line of intersection. 

• Similarly, the combination of an axis Cn with a mirror plane 

parallel to and passing through the axis will produce n mirror 

planes intersecting at angles of 2/2n.

Cn + sv  n sv 
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E.g.,   H2O, NH3

C2



C.  Combination of an even-order rotation axis with a 

mirror plane perpendicular to it.

• Combination of an even-order rotation axis with a mirror 

plane perpendicular to it will generate a center of 

symmetry at the point intersection. (C2n + sh  i )

• In other words, each of the three operations sh, C2n and i is 

the product of the other two operations.
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1. Definition:   A mathematical group consists of a set of 

elements G = {G1,G2,…,Gi,...} . 

(a) Closure. The product of any two elements Gi and 

Gj in the group G = {G1,,Gi}, is another element 

in the group, i.e.,

GiGj = Gk, Gm
2 = Gn, …

(b) Identity operation. The set includes the identity 

operation E such that AE = EA = A for all the 

operations in the set.

§3.2 Groups and group multiplications



(c) Associative rule. If A, B, C are any three elements 

in the group, then (AB)C = A(BC).  

(d) Inversion. For every element A in G, there is a 

unique element X in G, such that XA = AX = E. 

The element X is referred as the inverse of 

element A and is denoted A-1. 

The order of a group:  

The number of elements in a group!



 2

3

1

3 CCE, ,

ECCC  3

3

2

3

1

3

2

3

1

3

1

3 CCC  1

3

2

3

2

3 CCC 

)()( 1

3

2

3

1

3

1

3

2

3

1

3 CCCCCC 

ECC  2

3

1

3

• Symmetry operations:

Closure.

Identity operation.

Associative rule.

Inversion.

E

Example: A C3-symmetric molecule

• All unique symmetry operations of this molecule constitute a 

group, namely C3.  (group order = 3)

• Symmetry elements: 3C(E),

C3

tris(oxazoline) 



vC2

Example:   H2O

2. Multiplication of Symmetry Operations
(Group multiplication) 

x
y

z

sxz syz

It has symmetry elements: E, C2 , sxz , syz

C2

Unique symmetry operations: {E, C2
1, sxz , syz}



Example:   H2O

Multiplication table (of C2v)

C2v E C2
1 sxz syz

E

C2
1

sxz

syz sxz syz

C2

E C2
1 sxz syz

C2
1

sxz

syz

E syz sxz

E

E

syz

sxz

C2
1

C2
1

Note: The position of the O atom is unchanged upon any of the 

symmetry operations!

1

2Cxz s xzyz C ss  1

2 1

2  Cxzyz ssyzsECC  1

2

1

2

All unique symmetry operations:

{E, C2
1, sxz , syz}



(1). In each row or each column, each operation appears 

once and only once.  (A group of symmetry operations!) 

(2) We can identify smaller groups within the larger one.

For example, {E,C2} is a group, a subgroup of C2v group.

{E,s} is another subgroup.

Multiplication table 
of C2v

C2v E C2
1 sxz syz

E

C2
1

sxz

syz

E C2
1 sxz syz

C2
1

sxz

syz

E syz sxz

E

E

syz

sxz

C2
1

C2
1

(3) The total number of group elements = group order.

Characteristics of a 
Multiplication table



C3v E C3
1 C3

2 sv sv sv

E

C3
1

C3
2

sv

sv

sv

Multiplication table of C3v

Example:   NH3

 '',',,, sss2

3

1

3 CCE, 

• Symmetry operations:

• Symmetry elements:

)'',',(, ssssv3C(E), 3



C3
2

C3v E C3
1 C3

2 sv sv sv

E E C3
1 C3

2 sv sv sv

C3
1 C3

1 C3
2 E

C3
2 C3

2 E C3
2

sv sv

sv sv

sv sv

Group Multiplication

2

3

1

3

1

3 CCC  ECCC  3

3

2

3

1

3

1

3

2

3

2

3 CCC 

C3
1

C3
1

*1

3 )C(



C3v E C3
1 C3

2 sv sv sv

E E C3
1 C3

2 sv sv sv

C3
1 C3

1 C3
2 E sv sv sv

C3
2 C3

2 E C3
2 sv sv sv

sv sv sv sv

sv sv sv sv

sv sv sv sv

Group Multiplication

C3
2

C3
2sv = sv

″



Group Multiplication

C3v E C3
1 C3

2 sv sv sv

E E C3
1 C3

2 sv sv sv

C3
1 C3

1 C3
2 E sv sv sv

C3
2 C3

2 E C3
2 sv sv sv

sv sv sv sv E C3
1 C3

2

sv sv sv sv C3
2 E C3

1

sv sv sv sv C3
1 C3

2 E

C

B

A

sv sv ＝C3
1 

sv′

sv′

C3
1 



C3v E C3
1 C3

2 sv sv sv

E E C3
1 C3

2 sv sv sv

C3
1 C3

1 C3
2 E sv sv sv

C3
2 C3

2 E C3
2 sv sv sv

sv sv sv sv E C3
1 C3

2

sv sv sv sv C3
2 E C3

1

sv sv sv sv C3
1 C3

2 E

Multiplication table of C3v

C3 subgroup:  {E, C3
1,C3

2}  

CS subgroup:  {E, s}  

C1 subgroup:  {E}  



§3.3 Point Groups, the symmetry 

classification of molecules

• The set of all the symmetry operations of a molecule

forms a mathematical group.

• These symmetry operations have at least one common

point unchanged (e.g., the O atom in H2O).

• Such a group of symmetry operations is thus called

point group.

• Accordingly, it is quite convenient to represent the

symmetry of a molecule by the very point group！



Objects/

Molecules

If they have a common 

set of symmetry elements

They must have a common set of 

symmetry operations with at-

least one point unchanged!

They belong to 

the same type of  

point group.

The symmetry of an object(molecule) can be conveniently 

represented by a point group that contains all possible 

unique symmetry operations arising from its available 

symmetry elements. 



Four categories of symmetry point groups

• Groups with no Cn axis:    C1 Cs Ci

• Groups with a single Cn axis:   Cn Cnh Cnv , S2n

• Groups with one Cn axis and n C2 axes :      

Dn Dnd Dnh      (Dihedral groups)

• Groups with more than one Cn (n >2) axis: 

Td T  Th (Tetrahedral groups); 

Oh O (Octahedral groups); 

Ih I (Icohsahedral groups); (Kh –spherical symm.）



The group C1

• A molecule belongs to the group C1 if it has no element 

of symmetry other than the identity.

1. The groups:   C1, Ci, and Cs

C1 = {E}

1-order group!



The group Ci = {E, i}

• An object belongs to Ci if it has the identity and 

inversion alone.

– Examples:  meso-tartaric acid, HClBrC-CHClBr

Ci = {E, i}.



The group Cs

• An object belongs to Cs group if it has the identity E and 

a mirror plane s alone. 

Cs group is 2-order, containing two symmetry operations {E, s}.



The group Cn

• A molecule belongs to the group Cn if it has only an n-

fold axis.  

• Example:  H2O2

2. The mono-axis groups Cn, Cnv, Cnh and Sn

• Group order of a Cn group is ?   .

=  { E, Cn
1, …,  Cn

n-1}



C2H2Cl2

C2



C2H3Cl3

C3



The group Cnv

• If in addition to a Cn axis an object has n vertical mirror 

(sv) planes, it belongs to the Cnv point group.  

• Cn + sv 

C3v
C2v Cv

CO

2n

• Group elements:  

• Group order:

n sv}

n sv

{E, Cn
m (m =1,…,n-1)，



C2v

cis-N2H4phenanthrene



C3v C4v

HCCl3 H4C4Cl4



The group Cnh

a) Cn + sh  Sn

trans-CHCl=CHCl

Objects having a Cn axis and a horizontal mirror plane sh

belong to Cnh. 

C2h

b) When n=even, a Cn is also a Cn/2 and a C2. 

( (sh)m(Cn
1)m = Sn

m , m=odd)

Cn/2 + sh  Sn/2 ( (sh)m(Cn/2
1)m = Sn/2

m, m =odd)

C2 + sh  i (sh C2
1 = i )

Symmetry elements derived from Cn + sh: 



C2H2Cl2 I7
-

C10H6Cl2

C2h



C3h C4h

B

O

OO

H

H

H

B(OH)3













 mn

n

mn

nh

m

nh

m

n

m

nh

SCCevenm

SCoddm

ss

s

,

,

A Cnh point group is 2n-order, consisting of symmetry 

operations Cn
m (m=1,…,n), sh, and shCn

m (m=1,…, n-1)!   

Note:  

i) When n =  odd, 

iCCith

SCCevenm

SCoddm

h

n

nh

m

n

m

nh

m

nh

m

n

m

nh













1

2

2

2

2

2

2

   w

 

ss

ss

s

/

/

/

/

/,

,

operations arising from a Sn/2!

ii) When n = even,  



The group Sn

• Objects having a Sn

improper rotation 

axis belong to Sn. 

(n=2m, m 2)

S4

S1 = sh Cs

S2 = i Ci

S3 = C3 + sh C3h

S2n+1 = C(2n+1) + sh  C(2n+1)h

sp3-N 

• S2n+1 does not exist!

Group S4



S6 h

n

h

n

n

n

n CS ss  







1212

12

12

12 ))((

2.  Objects with an  S4n+2 axis have such normal symmetry 

elements as C2n+1 (S4n+2
2k=C2n+1

2k) and i ! (n>0)

S8

1. Objects having an odd-fold S2n+1 axis should also have a 

sh mirror plane and a C2n+1 axis (n=1,2,…), thus actually 

belonging to C(2n+1)h. 

iCS n

h

n

n

n

n  







1212

24

12

24 ))(( s

Namely, objects having exclusively a C2n+1 (n>0) axis and i

also have an improper axis S4n+2 , belonging to S4n+2 group 

(sometimes denoted Cmi group  (m=2n+1), e.g., S6 = C3i).

Some remarks on Sn axis and Sn group

hnn CS s  1212

iCS nn   1224



In short, 

• There exist Sn groups only when n =2m (m >1)! 

• A Sn ( n = even) point group is n-order with the 

elements {E, Sn
1, …, Sn

n-1}. 

S4 S6
S8

3.   Only S4n axes are independent symmetry elements! 

Objects having an S4n axis also have a C2n axis.  (n=1,2,…)

S8



Mono-axis groups

Such point groups as Cn, Cnv, Cnh, Sn etc. 

having only one rotary (or improper) axis are called 

mono-axis groups.





3. The dihedral groups:   Dn, Dnh, Dnd

Dn: An object that has an n-fold principal axis (Cn) and 

n C2 axes perpendicular to Cn belongs to Dn.

Dn is  2n-order.(Ethane in a non-equilibrium state)

Dn = {E, Cn
1, …, Cn

n-1, nC2}.

Note: Cn + C2()   nC2 ()



D2 D3 D4 D5 D6

？



odd)(n   S  n

nhs

A molecule having a mirror plane (sh) perpendicular to a 

Cn axis, and n two-fold axes (C2) in the plane, belongs 

to the group Dnh. 

The group  Dnh

Dnh is 4n-order.

n= odd, Dnh = {E, Cn
1, …, Cn

n-1, nC2 , nsv, Sn
1, …,Sn

n…, Sn
2n-1}.

n= even, Dnh = {E,Cn
1,…,Cn

n-1, nC2 ,sh, i, Sn
1,Sn/2

1,..,Sn
n-1,Sn/2

n-1, 

(n/2)sv , (n/2)sd}

Cn + sh  Sn or/and Sn/2

Cn  C2  n C2

nC2  sh  n sv

（n-1) Sn-type operations! even)n 2  (
/n

nSi



Dnh

D3h

Cl

Cl Cl
Au

Cl

C4

C2

C2

C'2

C2

sh

D4h

C

C

H H

H H

C4

C2

C2

sh

D2h

C2



C2H4 C10H10 
SiF4Py2

BF3 PCl5
Tc6Cl6

D2h

D3h



[Ni(CN)4]
2- [M2(COOR)4X2] Re2Cl8

Cr(C6H5)2
C6H6

O=C=O

D4h

D6h

Dh

Bis(benzene)chromium



The group Dnd
• A molecule that has a Cn (n 2) principle axis and n C2 axes 

perpendicular to Cn belongs to Dnd if it also possesses n diagonal 

mirror planes (sd). 

• A set of operations of sdC2 (Cn) type  are equivalent to S2n
m, thus 

making the Cn being an S2n axis. 

D2d ={E, 3C2, 2sd, S4
1, S4

3}C3H4

For D2d,  C2 + 2C2() + 2sd/v

sdC2 = S4
3 (a  c c); 

C2 = S4
2 ;  E = S4

4

The C2 axis is also a S4!  

C2/C2 = 2/2n = /2 

sd/sd = 2/2n = /2

The order of group Dnd = 4n





C2

C2

sda

b
b

c
c C2a = b, sdb = b,  S4

1a = b

sdC2= S4
1 (//C2)



Dnd

D3d = {E, C3
1,C3

2,3C2, 3sd, i, S6
1, S6

5}

e.g., Ethane – D3d.

Upon introducing sd, the Cn

axis becomes a S2n axis!

sdC2= i or sdC2 = i

C2/C2/C2 = 2/2n = /3 

sd/sd/ sd = 2/2n = /3

C3 + i = S6

C3+ 3C2() + 3sd/v

C2sd, sdC2, sdC2



• It is provable that an object of Dnd (n=odd) group also 

has such symmetry elements i & S2n.

Cn+ nC2() + nsd/v (n=odd)
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Dnd

Dnd={E, Cn
1,…,Cn

n-1; nC2; nsd; S2n
1,… S2n

2k+1,…,S2n
2n-1}    order=4n

Note: 

i) Key symmetry elements:  

Cn + nC2 + nsd/v & S2n (derived from sd + C2)

ii) Equivalent symmetry operations: S2n
2k = Cn

k (k= 1,…, n);  

iii) When n =odd,  S2n
n = i;

iCC

SS

h

m

m

m

h

m

m

n

n















1

2

12

24

12

12

242

)()(

1)2m(n   

ss

nCn
k (k=1,…,n) nS2n

2k-1 (k=1,…,n)

iCd  )(2s



TiCl6
2- TaF8

3-

S8

D3d

D4d

D5d

D2d

Cyclooctatetraene

(Boat-shaped C8H8)

D4d

Ferrocene



Dihedral Groups



4. High-order point groups

(Polyhedral point groups)

• The aforementioned point groups have one axis 

or one n-fold axis plus n 2-fold axes.  

• Molecules having three or more high-order 

symmetry elements (several n-fold axes, n>2) 

may belong to one of the following:

T:    4 C3, 3 C2    (Th: +3sh)   (Td: +3S4) 

O:    4 C3, 3 C4 (Oh:  +3sh) 

I:    6 C5, 10 C3     (Ih:  + i) 

Cubic group



tetrahedral symmetry group

Icosahedral  symmetry group

Ih – Icosahedral  

symmetry 

(Buckminster-

fullerene, C60)

Td – Species with 

tetrahedral symmetry

octahedral symmetry group

Oh – Species with 

octahedral symmetry (many 

metal complexes)

Polyhedral groups derived from Platonic Polyhedra



Td

Td =｛E，4C3
1，4C3

2

C3

C3

C3

C2S4//

sd,v

4C3

C3

C2

C2

Upon introducing six sd mirror 

planes, the three orthogonal C2 axes 

become three S4 axes. 

3S4
1， 3S4

3｝

Order =24

Note:  S4
2 = C2

+ 6sd (v)+ 3C2

, 3C2
,  6σd，



C3

C2

T: 4 C3 + 3 C2

• The perfectly tetrahedron-

shaped object belongs to Td

point group.

• The windmill-like 

structures reduces the 

symmetry from Td to T by 

eliminating the sd/v planes . 

T =｛E，4C3
1，4C3

2，3C2｝

T  is a pure rotation group!

Objects of T-symmetry are chiral! 

(Td: + 3S4 or + 6sd)

order =12

Luk Y-Y et al, Chirality, 2008, 20, 878-884.



Example:  T Molecules of T-group symmetry are chiral! 

C2

C2

C2

C3

C3
C3

C3

crystallization

Wang XC et al. Nature Comm., 2016, 7, 12469



Cubic groups

Th

Th =｛E，4C3
1，4C3

2，3C2，3sh

T(4C3, 3C2) + 3sh (C2)

sh C2  i

4 C3 +  i  4 S6 (//C3)

Note:  S6
2 = C3

1; S6
4 = C3

2;   S6
3 =  i 

C3&S6

C2

sh

Order = 24 

, i，4S6
1，4S6

5｝



4C3 + 3C2 T

(No C4!)

Th

shC2 or i

Td

sv (//C3) or 

sd (C2)



CH4 X(CH3)4 (X=C,Si)

dT ThTd

Td

Co4(CO)12

P4O6

Ti8C12 (Td is more stable than Th)
Chem. Rev. 2005, 105, 3643.

Td

P8C12



Cubic groups

• No mirror plane is 

allowed due to the 

presence of windmill-like 

fragments at the apices of 

the octahedron! 

O

O: 4C3,  3C4

C3

C4

O= { E, 4C3
1, 4C3

2, 3C4
1

, 3C4
3

, 3C2 , 6C2}

Order =24

C2

Pure rotation group!

Molecules of O-symmetry are chiral! 

6C2
C4C2  4C2 (C4)

C4

C2

(C2)

(C2)



Oh
sd/v

C4

S6

C2

C2

Oh = {E, 6C4, 3C2, 8C3, 6C2, i, 8S6, 6S4, 3sh, 6sv}

(3C4
1,3C4

3) (3C4
2)(4C3

1,4C3
2) (3S4

1,3S4
3)

(4S6
1, 4S6

5)

Group order= 48

S4

C3

sh

i) C4 + sh  i + S4

ii) i + C3  S6

O(3C4,4C3)  

Cubic groups

+ 3sh(C4)



SF6                                                         C8H8

Oh

Rh13



• O = lacks i, S4, S6, sh and sd and is called the pure 

rotation subgroup of Oh.

• Td = lacks C4, i and sh and is the group of tetrahedral 

molecules, e.g., CH4.

• Th = this uncommon group is derived from Td by 

removing S4 and sd elements.

• T = the pure rotation subgroup of Td contains only C3

and C2 axes.

Typical subgroups of Oh



C5

I  and Ih groups I: 6C5, 10C3, 15C2

C3C2

I = {E, 12C5, 12C5
2, 20C3, 15C2} 

Order =60 Pure rotation group!

Ih:  (I + i )

C5 + i =  S10

C3 + i =  S6

C2 + i =  sh

{E, 12C5, 12C5
2, 20C3, 15C2，i, 

12S10, 12S10
3, 20S6, 15σh} 

order  =  120

icosahedron

A=Napex =  12,  F=Nface= 20, 

E=Nedge= 30 

No i, s, Sn -- chiral! 

(Ih: +i) 

e.g., some virus!



C20H20

B12H12
2（hydrogen omitted）

Ih group: two long-known examples

a. B12H12
2- (icosahedral borane dianion)

Chem. Rev. 2005, 105, 3643 and references therein.

b. C20H20 (dodecahedrane)

• First synthesized by Paquette in 

1982, three years before the discovery 

of C60. 

• It is indeed the first fullerene 

derivative synthesized by mankind. 



Ih

C60, bird-views from the 5-fold axis and 3-fold axis.

Ih= {E，12C5，12C5
2，20C3，15C2，

i，12S10，12S10
3，20S6，15σh} 

Order =120 

12 pentagons and 20 hexagons; 



Linear?

i ?

Dh

Cv

Two or more Cn? 

(n>2)

3C4 ?

C5 ?

I

i ?

Ih

O

sh ?

Oh

T

sd ?sh ?

Th Td

Cn?

n C2  Cn? 

sh ?

sd ?

Dnh
Dnd

Dn

D

sh ?

Cnh

sv ?

Cnv

Cn
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N
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Pathways for determination of 

molecular symmetry.



H

Br F
Cl

H

BrF
Cl

These molecules are:

 not superimposed on its  mirror image.

 a pair of enantiomers (left- and right-handed isomers)

 able to rotate the plane of polarized light (Optical activity )

 does not possess an axis of improper rotation, Sn (i, s)

A chiral molecule is a molecule that can not be superimposed 

on its mirror image

3.4.1 Chirality

§3.4 Simple Applications of symmetry

(R) (S)



sample

polarizer

plane-

polarized

dextrorotatory

(d) or (+)

levorotatory

(l) or (–)

optically

inactive

optically active

Optical activity is the ability of a chiral molecule to rotate 

the plane of plane-polarized light. 

Plane-

unpolarized

in isotropic 

medium

detector



Optical activity

Optically inactive: achiral molecule

or racemic mixture of chiral molecules

- 50/50 mixture of two enantiomers

Optically pure: 100% of one enantiomer

Optical purity (enantiomeric excess)

= percent of one enantiomer – percent of the other

e.g., 80% one enantiomer and 20% of the other

= 60% e.e. or optical purity



 A chiral molecule does not possess Sn (i, s)!

Cn and Dn may be 
chiral (no Sn

improper axis).

Molecules of T-, O-, 

or I-symmetry  are 

chiral! 



• In summary, the groups that may be chiral are

as follows: C1, Cn, and Dn.

• However, not all molecules in these groups will

necessarily be chiral, they are merely permitted

to be.

• For example, hydrogen peroxide belongs to the

group C2, but it is not chiral, as free rotation

about the O-O bond is possible.



2. Polarity, Dipole Moments and molecular symmetry

A polar molecule is one with a permanent electric dipole 

moment.

Dipole Moments

 are due to differences in atomic electronegativity

 depend on the amount of charge and distance of  separation

 in Debyes (D),  = 4.8× (electron charge) ×d (angstroms)

 
d

 For one proton and one electron separated by 

100 pm, the dipole moment would be:

D
mC

D
m 80.4

1034.3

1
)10100)(1060.1(

30

1219 

















(b) Dipole moment cannot be 

perpendicular to any mirror 

plane or Cn. 

Permanent Dipole Moments

(a) Only molecules belonging to the 

groups Cn, Cnv and Cs may have an 

electric dipole moment.

HO H

COOH

OH
HOOC

H

Meso-tartaric acid

  0
inversion


OH1

x

O

H H

C2

=  
OH2

x



Molecular Dipole Moments



I

F

Cl
Br

N

Quinoline

O O

H H

C2

H2O2

C

C

Cl H

H Cl

Trans CHCl=CHCl

B

O

OO

H

H

H

B(OH)3

  0   0
in plane

  0
sh symmetry

  0
along C2

  0
along C2

  0
along C3

  0
inversion

Molecular Dipole Moments and molecular 

symmetry

C1 CS C3h

C3v

C2v

C2h



Cn, Cnv and Cs may have an electric dipole moment.

Cn and Dn may be chiral (no Sn improper axis).

Summary:
Groups 

C1, Ci, 

and Cs



Summary of this chapter

Element Name Operation

Cn n-fold rotation Rotate by 360°/n

s Mirror plane Reflection through a 

plane

i Center of 

inversion

Inversion through the 

center

Sn Improper rotation 

axis

Rotation as Cn followed 

by reflection in 

perpendicular mirror 

plane

E identity Do nothing

Symmetry elements & symmetry operations



§3 Point Groups, the symmetry 

classification of molecules

Point group:

• All symmetry operations pertaining to available symmetry

elements in any molecule/object have at least one common point

unchanged and constitute a group, thus called point group.

• Elements of a point group are symmetry operations.

• For a given point group, its order corresponds to the total number

of symmetry operations.

summary



(1) Point groups of low symmetry:  

C1; Cs; Ci

(2) Point groups with only one n-fold rotational axis: 

Cn; Cnh; Cnv; Cv

(4) Dihedral groups containing nC2 axes perpendicular 

to the principal axis Cn:  

Dn; Dnh; Dnd; Dh

(3) The S2n groups:   S4; S6; S8

(5) The cubic groups: T, Th, Td; O, Oh; I, Ih



How to discern Sn, Dn, and Dnd groups?

Key points:  

1. Sn group exists only when n = even; objects of Sn

group also have a Cn/2 axis; a Sn group is simply n-

order.

2. Objects of Dn group have exclusively a Cn axis and n 

C2 axes. A Dn group is 2n-order. 

3. Objects of Dnd group have not only a Cn axis and n 

C2 axes, but also n sd/v mirror planes & a S2n axis. A 

Dnd group is 4n-order. 



Sn
1 = shCn

1 Sn
m = (Sn

1)m= (sh)m (Cn
1)m = (sh)m Cn

m 

i) If n = odd,  

For m = odd=2k-1 (k=1,2,…, (n+1)/2),  n + m = even, 

Sn
m = (sh)mCn

m = shCn
2k-1 (when m=n, Sn

n = shCn
n =sh) & 

Sn
m+n = (sh)m+n Cn

m+n = Cn
m (when m=n, Sn

2n=E)

For m = even=2k(k=1,2,…, (n-1)/2), n+m = odd, 

Sn
m = (sh)mCn

m = Cn
m, Sn

m+n = (sh)m+n Cn
m+n = shCn

m

Thus, a Sn (n=odd) axis produces a set of unique operations 

{E, Cn
m (m =1,…,n-1), sh, shCn

m (m=1,…, n-1)}, that can be 

produced by Cn + sh. 



ii)  If n = even4p,  

For m =even=2k (k=1,2,…,n/2), n+m =even

Sn
m = (sh)mCn

m = Cn
m = Cn/2

m/2 (when m=n, Sn
n = Cn

n = E),

i.e., a Cn/2
m/2 also exists! 

Sn
m+n = (sh)m+n Cn

m+n = Cn
m=Sn

m (not unique!)

For m = odd = 2k-1 (k=1,2,…,n/2), n+m = odd

when m=n/2,  Sn
n/2 = shCn

n/2 = shC2
1= i,  i.e., an inversion center 

exists! Sn
m = (sh)

mCn
m = shCn

m = Sn
n+m = shCn

m =Sn
m (not unique!)

The Sn (n=even 4k)  is equivalent to Cn/2 + i.



对称操作和对称元素

对称元素的组合及群的概念

分子的点群

对称性与偶极矩、旋光性的关系


