
Brief Summary of Chapter 1

微观粒子波动性--运动粒

子在空间出现的几率分布

呈现波的特征--几率波！

简单体系 : i维势箱

1) Ĥ = E

2) 边界条件

量子力学的统计学本质

量子力学体系的状态函数

--波函数(r,t)

A. 能量量子化

B. 测不准原理：xp or Et  ħ 

1. 几率密度分布函数 ||2

2. 正交归一性： i*jd = ij

3. 本征函数/方程： Â = a

4. Schrödinger方程：iħ/t = Ĥ

(定态) Ĥ(r) = E(r)

5. 态叠加原理: = cii , Âi = Aii

求平均值: <A> = *Âd /*d

= ci
2Ai/ ci
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Chapter 2 Atomic  structure



• The basic building block of all matters. 

• The smallest particle of an element that has the 

same properties as the element. 

Atom

• Composed of a central nucleus and an “electron 

cloud ”. 

• Electron cloud：not really a cloud of electrons, but 

an informal description of the probability wave of 

electrons in constant motion!



Evolution of Atomic Models

i.e., negatively charged electrons 

embedded in a uniformly distributed 

positive charge.

• 1803, “Atomic Theory” by John Dalton.

Crookes tube

• 1904, “Plum pudding” model proposed by J.J. Thomson after 

his discovery of electron (1897) in cathode rays. 



History of Atomic Models

Geiger and Marsden with E. 

Rutherford performed a 

scattering experiment with 

alpha particles (He2+) shot on 

a thin gold foil.

10-3500

(predicted by Thomson model)

10-4

(observed by Rutherford et al.)

• 1911, disproval of  Thomson’s model!

Deflection angle  90



History of Atomic Models

 1912: Rutherford proposed the 

“Planetary Model ” of the atom, 

i.e., positively charged core 

surrounded by electrons.

Rutherford estimated the diameter of nucleus to be only about 10-15

m. The diameter of an atom, however, was known to be 10-10 m, 

about 100 000 times larger. Thus most of an atom is empty space.

(1908 Nobel prize

chemistry of radioactive substances) 



1)  According to Maxwell theory of 

electromagnetism, as the electron 

orbits around the nucleus, it 

accelerates and hence radiates 

energy.

2) The typical time for the electron 

to collapses into the nucleus 

would be about 10-8 s.

3) The spectrum of radiation 

would be continuous.

+e proton

-e electron

The planetary model failed in explaining why collapses of 

electrons into nucleus do not occur!



 1913: Niels Bohr proposed his Bohr model of the atom with 

incorporation of the idea of “quanta” (by Plank & Einstein). 

circular orbits with fixed energy 

and angular momentum. 



Bohr atom
Merits:

i) Explains why atoms are stable

ii) Predicts energy is quantized

iii) Explains H atom spectra 

Demerits:

iv) Fails to predict fine spectral structure of H

v)  Fails for many-electron atoms

e- is classical particle

e- in ‘orbit’ at fixed r corresponding to a quantum 

number.

v

F

-e

r

+Ze



Schrödinger atom (1926)

1) Electron confined in an atom 

should also behave like a wave. 

2) No fixed orbits but electron 

density distribution 

3) For 3-D, we need three 

quantum numbers n, l, ml

Bohr atom
e- is a classical particle

e- in ‘orbit’ at fixed r 

Schrödinger equation！



History of 

Atomic Models

•Understanding atomic 

structure is the first step to 

understand the Structures of 

Matters.

•The so-called electron density 

is actually the probability 

density of electron wave!

Quantum mechanics



2.1 The Schrödinger equation and its 
solution for one-electron atoms

2.1.1 The Schrödinger equation

• The Hamiltonian of a one-electron atom/cation,

H atom, He+ and Li2+
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• The Hamiltonian for a many-electron atom? 

• For a many-electron atom, the kinetic-energy 

operator should sum up the contribution from every 

electron. The potential energy function should 

include all those from n-e and e-e interactions.

nucleus electron
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Note that the nucleus is much heavier than the electron and the 

electron moves much quickly around the atomic nucleus! The 

Hamiltonian can be simplified as
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Separation of variables (x,y,z) hindered by r ?!    

 EH ˆThe Schrödinger equation

One-electron Hamiltonian



Spherical polar coordinates

222 zyxr 

(x,y,z)  (r,q,f);      (x,y,z)  (r, q, f)

r : distance from origin (nucleus).

q : angle drop from the z-axis.

f : angle from the x-axis (on the x-y plane)
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0  q  

0  f  2

Is it possible to make (r, q, f)  R(r)(q)F(f)   ?



Using spherical polar coordinates, we have 
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Thus it is reasonable to suppose (r, q, f)  R(r)(q)F(f) . 



2.1.2 The solution --- separation of variables

Substitute (r, q, f)  R(r)(q)F(f) into the equation
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independent!















 2

0

2

2

2
2

4

81
   r

r

ze
E

h

m

r

rR
r

rrR
let e )()

)(
(

)(

Angular part

 Radial part

R eq.


f

f

qfq

q
q

qqq




F

F










 2

2

2

)(

sin)(

1
)

)(
(sin

sin)(

1

2

2
2 )(

)(

1
sin)

)(
(sin

)(

sin

f

f

f
q

q

q
q

qq

q



F

F












22 m









q

q

q
q

qq

q
sin)

)(
(sin

)(

sin

2

2

2 )(

)(

1
m



F

F f

f

f

  eq.

 F eq.

Yet unsolvable!

Unsolvable yet!

solvable now!

2m

Let

Now multiply with sin2q and … 



a. F(f) equation
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Its solution in complex form: 

 F = Aei|m|f ;  

Now normalize F:  

m?

（Boundary condition!）

Let m = |m|,  F = Aeimf
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The solutions of F(f) equation
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b. (q) equation

The process to solve this equation is too complicated. However, 

the solution always has the real form, 

l : angular momentum quantum number (角动量量子数)

necessary condition: l  |m|           (m= 0, 1，…)   
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Examples of (q):
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c. Solution of R equation
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a0 ~ Bohr radius, and also the atomic unit (au) of length.
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R is called Rydberg constant with the value of 13.6 eV.

n=1, l=0

Examples of R(r):

n=2, l=0
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Finally, the Rydberg equation is obtained to define the energy,   



n.l,m(r, q, f)  R(r)(q)F(f)

Table  

n=1,l=0,m=0

n=2,l=0,m=0

n=2,l=1,m=0

n=2,l=1,m=1

Transformed from the complex form of F(f) ！



2.1 The Schrödinger equation and 
its solution for one-electron atoms

2.1.1 The Schrödinger equation

The Hamiltonian Operator of one-electron atoms

H atom, He+ and Li2+
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Consider that the electron approximately surrounds the atomic 

nucleus, the Hamilton operator can be simplified as
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 EH ˆThe Schrödinger equation



r

Ze

m
VTH e

e

ene

0

2
2

2

4
ˆ

2
ˆˆˆ


 



22 2
2

2 2 2 2 2 2

0

81 1 1
( ) (sin ) ( ) 0

sin sin 4

em Ze
r E

r r r r r h r

  
q 

q q q q f 

    
    

    

2

2

21
lm

d

d


F

F


f
























r

Ze
E

h

m
r

dr

dR
r

dr

d

R

e

0

2

2

2
22

4

81

Separation of variables!( ) ( ) ( ) ( )fqfq F rRr ,,

Quantum numbers---- n，l,  ml

Spherical polar coordinates

2...)1,0,(    
2

1
)( F l

im

m me l

l

f


f

)()(, 1 ll
lml q ，

)(, rR ln

22 m









q

q

q
q

qq

q
sin)

)(
(sin

)(

sin



R= 13.6 eV  --- Rydberg constant

• For H and H-like ions,  their one-electron wavefunction 

(atomic orbital) can be expressed as, 
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These are the eigenfunctions of Hamiltonian, following the 

eigenequation,

with the eigenvalue depending solely on the principal 

quantum number n, i.e.,
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2.2 The physical meaning of 

quantum numbers

(n, l, ml)

Principal 

Quantum Number 

Angular Momentum 

Quantum Number 

Magnetic

Quantum Number 



Quantum Numbers 

n 

l
(0 l n-1)

ml
(-l  ml l)

1                  2                      3                           4             …

0             0         1         0     1       2        0      1        2        3

0            0    -1  0  +1  0 -1 0 +1            0 -1 0 +1

-2 -1 0 +1 +2        -2 -1 0 +1 +2

-3 -2 -1 0 +1 +2 +3

2.2.1 The allowed values of  quantum numbers

• The number of atomic orbitals of a given l subshell is 2l+1.  
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(n  l+1)

(l  |m|)

• The total number of atomic orbitals for a given value of n is n2.



2.2.2 The principal quantum number, n

• Positive integer values of n =  1 , 2 , 3 , etc.

• Also called the “energy”  quantum number, indicating the 

approximate distance from the nucleus.

• Denotes the electron energy shells around the atom, and is 

derived directly from the Schrödinger equation.

• Higher “n”  higher orbital energy.

atom/ions) like-(H   
2

2

n

Z
REn 

• For H-like atom/ion, the orbitals with the same n, but differing in l

and ml, are degenerate (equal in energy!).  Accordingly, the degeneracy 

of an energy level is n2 (spin-free)  or 2n2 (including spin).



n = principal

n = 1, 2, 3 …

n = 1 : ground state

n = 2 : first excited states

n = 3 : second excited states

En n
 









13 6

1
2.  

E1 = -13.6 eV

E2 = -3.40 eV

E3 = -1.51 eV

E4 = -0.85 eV

E5 = -0.54 eV

•

•

E = 0 eV

Example: Energy states of a H atom.

2

2n

Z
E R

n
 

R = 13.6 eV

1s

2s,2p

3s,3p,3d



2

2n

Z
E R

n
  R = 13.6 eV

Example: Energy states of a Li+ ion.

E1s= - 9R

E2s,sp= - (9/4)R

E3s= - R

1s

2s 2p

3p 3d3s

For this two-electron cation, electron-electron interaction should be 

taken into account. However, we may estimate the energy levels of 

its atomic orbitals by using the formula derived for one-electron 

atom/cation, i.e.,    

• If the e-e interaction is taken into 

account, the sublevels with the same n

value should differ in energy. Why?  



a. Classical Mechanics of one-particle angular momentum.

The vector r from the origin to the instantaneous position of a 

particle is given by 

2.2.3 the azimuthal quantum number, l

22222

zyx LLLLLLL 

zyxr kji 

zyx ppp

zyxL

kji



xyz

zxy

yzx

ypxpL

xpzpL

zpypL







The angular momentum L is 

perpendicular to the plane defined 

by the particle’s position vector r

and its velocity v or momentum p.

pr
L

The particle’s angular 

momentum L with respect to the 

coordinate origin is defined as
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The motion of an electron within an atomic 

orbital (through-space) results in orbital angular 

momentum M (as the analog of the classical 

mechanical quantity angular momentum L), the 

operator of which fulfills

2222 ˆˆˆˆ
zyx MMMM 

Its components

b. One-particle orbital-angular-momentum in Quantum Mechanics.   
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M
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In spherical polar coordinates

p

M

r

These operators are simply related to the azimuthal variables!
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eigenequations

Similarity

The one-electron wavefunctions

(AO’s) of H-like atom/ion are 

eigenfunctions of  M2 ! ^
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• Indicates the shape of the orbitals around the nucleus.

• Denotes the different sublevels within the same main level “n”.

9, 11, 13 …7531degeneracy

type

l

s

0

p

1

d

2

f

3

g,  h,  i …

4,  5,  6 …

l = 0, 1, 2 …n –1 degeneracy = 2 l + 1

l denotes the orbital angular momentum.

Spatial quantization 

of electron motion.



（Electromagnetic induction）When there exists an angular 

momentum of electron motion, there is a magnetic (dipole) moment.

Mμ
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 32  ,6  ,2  ,0 

• When l increases, the magnetic moment increases, and the influence 

of external magnetic field on the electron motion is enhanced.

• Zeeman effect:  splitting of atomic spectral lines (of the same n) 

caused by an external magnetic field.
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Bohr magneton (B)

Such a magnetic moment is defined as



i) Define the z-component (Mz) of the orbital angular momentum.

ii) Determine the component (z) of the magnetic moment  in the

direction of an external magnetic field.
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2.2.4 Magnetic Quantum Number, ml
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Space quantization!!

l = 2

Cone traced out by L

（l=2）

L L

L

L
L

6L



Space quantization of 

orbital angular 

momentum. 

Here the orbital quantum 

number is l=2 and there 

are accordingly 2l+1=5

possible values of the 

magnetic quantum number

ml, with each value 

corresponding to a 

different orientation of 

orbital angular momentum 

L relative to the z axis.

2l

lz mL 

6

)1(  llL
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(2,1)

(2,0) = 90
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LLml l
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Example:  Please derive the angle between the orbital angular 

momentum of the AO p+1 and the z-axis.
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ml = 0, ±1, ±2 …±l

Number of orbitals 

in a subshell 

= 2 l + 1

l ml Atomic orbital

complex real

0 0 s s

1 0 p0 pz

+1 p+1
px &  py

-1 p-1

2 0 d0 d2z2-x2 -y2 = dz2

+1 d+1
dxz & dyz

-1 d-1

+2 d+2
dx2 –y2  & dxy

-2 d-2

Magnetic Quantum Number ,  ml

• Denotes the direction or 

orientation of an atomic 

orbital.
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Magnitude of orbital 

angular momentum

Note: Angular momentum L

is a vector!

Key points:  For H-like atom/ions, the wavefunctions to describe 

their atomic orbitals (AOs) that are derived from their Schrödinger 

equations can be characterized using three quantum numbers, i.e., 

n, l, m, and symbolized as nlm.

They are eigenfunctions of those Hermitian operators  Ĥ, L2 (M2) 

and Lz (Mz), by the following eigenequations,   

)()(),(),()( ,,,, fqfqfq mmlmlmllnnlm YYrR F   with

^ ^

^ ^



2.3 The wavefunction 

and electron cloud



2.3.1 The wave-functions of hydrogen-like ions
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Fig. (left)  The -r and 2-r diagrams of the 1s state of the 

hydrogen atom; (right) The -r of the 2s state .
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A Radial Probability 

Distribution 

of Apples



2.3.2 The radial distribution function

• Probability distribution function ||2 with
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Normalized spherical harmonics
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• The probability of electron in a thin spherical shell rr+dr: 

),()()()()( ,,,, fqfq mllnmmlln YrRrR F

• The probability of finding electron in the region of space r r+dr, 

θ θ+dθ, f f+df :  

)()(),( ,, fqfq mmlmlYDefine F  Normalized spherical harmonics



 = AO wave function

||2 = probability density

r2R2 = radial probability

function

r2R2

r2

( )
0

dr

rdD

Calculating the most 

probable radius
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Example: please derive the radial probability distribution function of 

the H 1s orbital and the radium of its maximum.
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Its radial probability distribution function is

To derive the radium of its maximum, we have 



|2| |2|

|2|2s|2|1s |2|3s

D(r)

The point/surface with e = 0 is called a node/nodal surface.



• D(r) has (n-l) maxima and (n-l-1) 

nodal surfaces.

• Orbital penetration: Penetration 

describes the proximity to which an 

electron can approach to the nucleus. 

In a multi-electron system, electron 

penetration is defined by an electron's 

relative electron density (probability 

density) near the nucleus. 

i) Within the same shell value (n), the 

penetrating power of an electron 

follows this trend in subshells(l):

s>p>d>f.   

Fig. The radial distributionD(r)

ii) Penetrating power of an electron follows this trend: 1s>2s>2p> 

3s>3p>4s>3d>4p>5s>4d>5p>6s>4f.



2.3.3 The angular function ( Ylm(q, f) )
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It indicates the angular distribution of an atomic orbital and is 

the eigenfunction of M2 and Mz operators.
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Angular function ( Ylm(q,f) )

s-orbital (l=0, 2l+1=1)
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p-orbital px py

Y22

d-orbital (l=2, 2l+1=5)     

Y21Y20
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Question： Are these two angular functions the eigenfunctions of 

operators Mx and My, respectively? ^ ^

Note: These are not eigenfunctions of M2 and Mz.

Eigenfunctions of M2 and Mz.
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d-Orbital
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l ml Orbital (Real)

0 0 s

1 0 pz

±1 px

±1 py

2 0 d2z2-x2 -y2 = dz2

±1 dxz

±1 dyz

±2 dx2 –y2

±2 dxy

Angular functions

Complex form vs. Real form

When m0, the angular 

functions Ylm adopt complex 

forms, linear combination of 

which with the same |m| gives 

rise to the real forms of 

angular functions.  



Nodes:   

• For a given orbital,  the number of angular nodes is l. 

• Accordingly, the total number of nodes equals to n-1, 

including l angular nodes and n-l-1 radial nodes.



Energy of electron in H-like atom/ion(s): 

Average potential energy & kinetic energy:
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2.4 The structure of 

many-electron atoms

(multi-electron atoms)



2.4.1 Schrödinger equation for many-electron atoms
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If e-e interactions were neglected, the 1/rij terms became omitted. 
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Single-particle eigenequation

Separation of variables 

becomes impractical 

due to the complicated 

term of e-e interactions. 

Wavefunction of ith e.   321
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The electrons are thus independent!  Thus Let 
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Many-electron atoms
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e.g., He, Z = 2

Predict: E1 = -54.4 eV

Actual: E1 = -24.6 eV

• When it comes to a many-electron atom, something is 

wrong with the simple Bohr Model!

• The e-e interactions are too large to be negligible!

How to realistically solve the many-electron problem?

Orbital energy derived 

from Bohr’s model 



Central field approximation (中心力场近似)

)()()(),,( nn n  21321 with 21

)}()(ˆ{ iih iiii  


i

iE   &

),...,,(),...,,(ˆ),...,,(),...,,(ˆ nEnhnnH
n

i

i 21212121
1

 


Single-particle equations! 

)(ˆ iVh iii  2

2

1
 with

 
 


n

i

n

ij iji

n

i

i
rr

Z
nH

11

2 1

2

1
321 ][)(),..,,,(ˆ

)( iV
rr

Z
i

n

ij iji





1

Also known as independent electron approximation: Suppose 

that in a n-electron atom, each electron move in an average 

(central) field V(i) exerted by the nucleus and the other electrons.

i.e., central field exerted on ith e.
Now Let

The coordinates 

of ith e.



Central field approximation (中心力场近似)

• Note that Vi(i) is not spherical in most cases. Only the Vi(i) 

exerted by a closed-shell configuration is spherical.  
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• Accordingly, the equation can be solved by means of the 

Hartree-Fock self-consistent field (HF-SCF) method.

• Suppose Vi(i) is spherically symmetric around the nucleus. 

Then i(i) can adopt the form ),()()( , iimlii ii
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Self-consistent Field method
First proposed by Hartree in 1928, then improved by Fock.
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Initial guess 

for a N-elec. 

atom: N AOs 

of H-like ion.
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1st iteration

2nd iteration

mth iteration

Note:  In the kth 

interation,Vi
k-1 is the 

potential energy of 

electron i in the 

electric field exerted 

by the nucleus and 

other electrons 

derived by {j
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(ji)! 
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Example:  initial guess for Li atom (1s22s1)

Note that the AO’s of H-like atom/ions are in the forms,
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Now supposed the valence AO’s of Li atom have similar forms
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in which the coefficients b1, b2 etc evolve upon the proceeding of the 

HF-SCF procedure. 

The converged values for the coefficients b1, b2 etc are definitely 

smaller than the Z value of Li atom.  

Why?  Plz figure out the physical meaning of these coefficient!



Slater’s approximate method for central field

:  Screen constant

Z*: Effective nuclear charge ZZ*

i

i

i

i

i

i
r

Z

rr

Z
V

 
ˆ

The presence of other electrons 

around a nucleus “screens” an 

electron from the full charge of the 

nucleus.

n*: Effective principal quantum number
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n* = n   (when n  3)

n* = 3.7 (when n = 4)

n* = 4.0 (when n = 5)

Practical method before the computer-era:

 Modified Rydberg equation:



Lithium , Z = 3

 = Z - Z* = 1.74

+ -

-

-

Bohr’s atomic model:

Predicted: E2s = -30.6 eV

Actual:      E2s = -5.4 eV
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A. Screen (shielding) constant
Slater’s rules for the prediction of  for an electron:

1.  First group electronic configuration as follows:

(1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p) etc.

2. An electron is not shielded by electrons in the right shells (in 

higher subshells and shells).

3. For ns or np electrons:

a) each other electron in the same group contributes 0.35

(but 0.30 for 1s)

b) each electron in an n-1 group(s) contributes 0.85

c) each electron in an n-2 or lower group contributes 1.00.

4. For nd or nf electrons:

a) each other electron in the same group contributes 0.35.

b) each electron in a lower group contributes 1.00.



s and p orbitals have better “penetration” to the nucleus than d

(or f) orbitals for any given value of n .

i.e. there is a greater probability of s and p electrons being 

near the nucleus.

This means:

1. ns and np orbitals completely shield nd orbitals.

2. (n-1)s/p orbitals don’t completely shield ns and np orbitals.

The basis of Slater’s rules for 



Z* = Z - Example : O, Z = 8 

Electron configuration: 1s2 2s2 2p4

a) (1s2) (2s2 2p4)

c) For a 1s electron: 

 = 1 * 0.3;    Z*(1s) =  8 - 0.3  = 7.7 !

b)  For a 2s/2p electron:  = (2 * 0.85) + (5 * 0.35) = 3.45

1s                   2s,2p

 Z* = Z -  = 8 – 3.45 = 4.55  

for six electrons in 2s/2p orbitals.

i.e., any of the 2s/2p electrons is actually held by about 57% 

of the force that one would expect for a +8 nucleus.



Z* = Z - 

Example: Ni, Z = 28 

Electron configuration: 1s2 2s2 2p6 3s2 3p6 3d8 4s2

Z* = Z -  Z*(3d) = 28 – 20.45 = 7.55

Then (1s2) (2s2 2p6) (3s2 3p6) (3d8) (4s2)

For a 3d electron:

 = (18 * 1.00) + (7 * 0.35) = 20.45
1s,2s,2p,3s,3p             3d

For a 4s electron:

 = (10 * 1.00) + (16 * 0.85) + (1 * 0.35) = 23.95
1s,2s,2p               3s,3p,3d                 4s

Z* = Z -  Z*(4s) = 28 – 23.95 = 4.05



B. Approximation of the atomic orbital energy
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2.4.2  The ionization energy (IE) 

and the electron affinity (EA) 



The minimum energy required to remove an electron from one 

of the atomic orbitals (in the gas phase) to the vaccum.

egAgA   )()(
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2
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The first ionization energy

The second ionization energy

I. Ionization energy:





Periodic Trends in Ionization Potentials



II. Estimation of ionization energy

Example: CC+, 1s22s22p2  1s22s22p1

I1 = E = E(C+) － E(C)     i.e., depletion of a 2p electron.

• Both C+ and C have the same value of 1s, i.e. E1s(C+) = E1s(C)

• For their 2s/2p electrons, we have 
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a)  Fe+ for lacking of a K-shell electron, Z = 26 

Electron configuration: 1s1 2s2 2p6 3s2 3p6 4s2 3d6 

(1s1) (2s2 2p6) (3s2 3p6) (3d6) (4s2)

1s:      26 – 0*0.30  = 26.00

2s,2p: 26 – 7*0.35 – 1*0.85 = 22.70

3s,3p: 26 – 7*0.35 – 8*0.85 – 1*1.0 = 15.75

3d:      26 – 5*0.35  – 17*1.0 = 7.25

4s:      26 – 1*0.35 – 14*0.85 – 9*1.0 = 4.75 

Z* = Z - 

J. C. Slater, Phys. Rev. 36(1930)57

Estimation of ionization energy
Example: Fe  Fe+, depletion of a 1s electron.

2

*

*

)(
n

Z
REn 



Z* = Z - 

Example: Fe, Z = 26 

Electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d6 

(1s2) (2s2 2p6) (3s2 3p6) (3d6) (4s2)

1s:      26 – 0.30  = 25.70

2s,2p: 26 – 7*0.35 – 2*0.85 = 21.85

3s,3p: 26 – 7*0.35 – 8*0.85 – 2*1.0 = 14.75

3d:      26 – 5*0.35  – 18*1.0 = 6.25

4s:      26 – 1*0.35 – 14*0.85 – 10*1.0 = 3.75 

J. C. Slater, Phys. Rev. 36(1930)57



Estimation of ionization energy
Example: Fe  Fe+, depletion of a 1s electron.
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Fe (Z*) Fe+(Z*)

(1s)2-1 25.70 26.00

(2s,2p)8 21.85 22.70

(3s,3p)8 14.75 15.75

(3d)6 6.25 7.25

(4s)2 3.75 4.75

E(Fe)=-2(25.70/1)2-8(21.85/2)2

-8(14.75/3)2-6(6.25/3)2

-2(3.75/3.7)2=-2497.3

E(Fe+)=-1(26.00/1)2-8(22.70/2)2

-8(15.75/3)2-6(7.25/3)2

-2(4.75/3.7)2=-1965.4

J. C. Slater, Phys. Rev. 36(1930)57

I1K = E = E(Fe+) - E(Fe)

= -1965.4 + 2497.3 = 531.9 (524.0 expt.)



III.  Electron Affinity

• The electron affinity (EA) is the energy change that 

occurs when an electron is added to a gaseous atom.

B(g) + e－ B－(g)  + A

• Electron affinity usually increases as the radii of atoms 

decrease.

• Electron affinity decreases from the top to the bottom of 

the periodic table.

1. EA of an atom can be empirically predicted using the Slater’s rules.

2. In practice, EA of an atom can be measured by measuring the first 

ionization potential of its monoanion in gas phase!



IV.  The Electronegativity

• Electronegativity was proposed by Pauling to evaluate the 

relative capability of atoms to attract bonding electrons.

It can be concluded that:

1. The electronegativities of metals are small while those of 

non-metal are large.

2. Generally, the electronegativity increases from left to right 

across the periodic table, but decreases from top to bottom 

within a group.

3. Elements with great difference in electronegativities tend to 

form ionic bonds.



2.4.3  The building-up principle 

and the electronic configurations



a.   Pauli exclusion principle.

Every orbital may contain up to two electrons of opposite spins.

b.   The principle of minimum energy. (Aufbau principle)

Whilst being compatible with the Pauli principle, electrons 

occupy the orbital with the lowest energy first.

Problem:   

For a many-electron atom, its energy levels are not faithfully 

aligned in the order of principal quantum numbers, e.g., for 

transition-metal atoms!

I. The building-up principle (for ground states of atoms)

Fe:  1s2 2s2 2p6 3s2 3p6 4s2 3d6 

Mg:  1s2 2s2 2p6 3s2



For multi-electron atoms:

Due to electron-electron repulsions, atomic orbitals with the same 

n but different l are no longer degenerate in energy. For this case, 

both the penetration effects and the average radii of AOs are decisive.

1) Average radii of AO: In general, the AO with higher n value has a 

larger average radii, thus is higher in energy due to smaller electron-

nucleus interactions.  

2) Penetration effects:  the radial distribution of a 

AO (n,l) has n-l maxima.  Thus for AOs with the 

same n, the one with a lower l has more local 

maxima near the nucleus and thus has a higher 

probability for electron to appear near the nucleus. 

i.e., being lower in energy (less screened by inner-

shell electrons!)       



For multi-electron atoms:

The energy level can be estimated by n+0.7l. (proposed by G.X. Xu .)

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

1.0 2.0 2.7 3.0 3.7 4.4 4.0 4.7 5.4 6.1

5s 5p 5d 5f 6s 6p 6d 6f

5.0 5.7 6.4 7.1 6.0 6.7 7.4 8.1

Therefore, the sequence of the atomic orbitals is: 1s, 2s, 2p, 3s, 3p, 

4s, 3d, 4p, 5s, 5p, 6s, 4f, 5d, 6p, …



Relative Energies for Shells and Orbitals

•The orbitals have 

different energies and for 

the d and f orbitals, their  

energies overlap s-orbital 

energies in the next 

principal level.

1
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s p d f

Relative 

Energies 

of the 

orbitals

1s,2s,2p,3s,3p,4s,

3d,4p,5s,4d,5p,6s

,4f,5d,6p,7s,…
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n l=0 l=1 l=2

The principle of minimum energy.



I. The building up principle (for ground state)

a.   Pauli exclusion principle.

Every orbital may contain up to two electrons of opposite 

spins.

b.   The principle of minimum energy (Aufbau principle)

Whilst being compatible with the Pauli principle, electrons 

occupy the orbital with the lowest energy first.

c. Hund’s rule.

In degenerate energy states, electrons tend to occupy as 

many degenerate orbitals as possible. ( The number of 

unpaired electrons is a maximum.)

Note: The electronic configuration for the ground state of a 

molecule also follows these rules!  



2s
• H  = 1s1

• He = 1s2

• Li  = 1s2 2s1

• Be = 1s2 2s2

• B  = 1s2 2s2 2p1

• C  = 1s2 2s2 2p2

• N  = 1s2 2s2 2p3

• O  = 1s2 2s2 2p4

• F   = 1s2 2s2 2p5

• Ne = 1s2 2s2 2p6

1s

II. The ground-state electronic configurations of atoms

2p

+ +
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Ne
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Electron Configuration using the Periodic Table



 = [Rn(r)Y,m (q,f)](s)

n (principal quantum number) 

l (orbital quantum number)

m(ml) (magnetic quantum number)

ms (spin magnetic quantum number)
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The wavefunction to describe the motion of 

a electron in an AO of a many-electron atom 

(derived from the central-field approx.):

For electron & proton, spin quantum number s  ½ 

(i.e., defining the magnitude of spin angular momentum)!

2.5 Atomic spectra and spectral term

Seemingly similar to that for the one-electron H-like atom/ion.

Spin part:

 or 

orbital part



i) The electronic orbitals within a given shell (n) are divided into 

energy-sublevels differing in l.  (ns<np< nd …)

• For a 1-electron atom/ion, AOs of the same shell (n) are degenerate. 

Difference: 

For a many-electron atom, the e-e interactions result in:

),...,,(),...,(ˆ NENH 2121 

^

ii) The electrostatic potential exerted on each electron is not spherical, 

and, consequently, the angular momentum of any individual electron 

is not as conserved as that of the electron within a 1-e atom/ion. In 

other words, the individual orbital-angular-momentum operators Li of 

the electrons do not commute with the atomic Hamiltonian, but their 

sum does.  

0       0 2  ]ˆ,ˆ[;]ˆ,ˆ[ ii LHLH



• The electronic wave function of an atom in a given quantum 

state satisfies

 22 121 )(),...,,(ˆ LLNL

 Lz MNL ),...,,(ˆ 21

),...,,(),...,(ˆ NENH 2121 
Atomic Hamiltonian

L: total electronic orbital 

angular momentum 

Lz: z-component of  L

Total orbital-angular-

momentum quantum number L

• Therefore, we can characterize an atomic state by the quantum 

numbers L and ML (as well as the spin quantum numbers S and Ms) .   

 Spectral term!


i

zz iLNL )(ˆ),...,,(ˆ 21
i

iLNL )(ˆ),...,,(ˆ 22 21

0210212  )],...,,(ˆ,ˆ[&)],...,,(ˆ,ˆ[ NLHNLH z



• A total of 15 (i.e., C6
2)  microstates  differing in the orbitals and 

spin states of the two electrons, e.g.,   

Example:  C  1s22s22p2

• Spectral term!

np2

1        0      - 1ml

(l=1)

• These microstates differing subtly in e-e electron interactions are 

not in the same energy. More importantly, the wave functions to 

describe each of these microstates may not be the eigenfunction of 

atomic Hamiltonian.  How to discern them?



2.5.1 Total Electronic Orbital and Spin Angular Momenta

a.   Addition of two angular momenta:

The addition of two angular momenta characterized by quantum

number j1 and j2 results in a total angular momentum whose quantum

number J has the possible values:

J = j1+j2,  j1+j2-1, …,  |j1-j2|;     or       |j1-j2|  J  j1+j2
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Example: Find the possible values of the total-angular-momentum 

quantum number resulting from  the addition of two angular momenta 

with quantum number j1 = 2 and j2 = 3 .

Solution:  Jmax = j1+j2  = 2+3 = 5

Jmin = |j1-j2| = |2-3| = 1

 The possible J values are: 5, 4, 3, 2, 1



Angular momenta are vectors!d1p1

(Note: for an electron in a given AO,  its orbital angular momentum 

is jointly defined by l (magnitude) and ml (direction)!)  



2 1 0 -1 -2

1 3 2 1 0 -1

0 2 1 0 -1 -2

-1 1 0 -1 -2 -3

l1=2   (with 5 possible directions differing in ml.)

l 2= 1

ml1

ml2

ML:  L, L-1, …, -L+1, -L

e.g., d1p1

ML

)(im
i

l

L=3L=2L=1




12L


6L


2L22
1 )(  LLL

 15 possible total angular momenta differing in L (magnitude) and 

ML (direction):  L = 3, 2, 1 (For each L, ML ranges from –L to L.)



B. The total electronic orbital angular momentum

The total electronic orbital angular momentum of an n-electron 

atom is defined as the vector sum of the angular momenta of the 

individual electrons:


i

l imL )(


The total-electronic-orbital-angular-momentum quantum number 

L of an atom is indicated by a code letter:

L 0 1 2 3 4 5 6 7

Letter S P D F G H I K

For a given L value, the quantum number ML (MLħ---the z

component of the total electronic orbital angular momentum) takes 

on 2L+1 values ranging from –L to L. 

The orbital angular momentum of ith e 

defined by two quantum numbers l

(magnitude) and ml (direction).



l 0 1 2 3 4 5 6 7

Letter s p d f g h i k

Orbital symbol nlmnlm llM  22 1 )(ˆ  nlmlnlmz mM  ˆ

L 0 1 2 3 4 5 7

Letter S P D F G H ……

Term symbol

 22 1 )(L̂ LL  Lz ML̂

ML = -L, -L+1, …, L (2L + 1)

• For single particle (single electron)

• For two or more electrons

Eigenequations

 All-electron 

wavefunction 

of atom in a 

given energy 

state.



Solution:  Simply consider 2p13d1.

L = 3, 2, 1

s       l=0        p1 l=1 d1 l=2

Addition of angular momenta rule

Example: Find the possible values of the quantum number L for 

states of carbon atom that arise from the electron configuration 

1s22s22p13d1.

The total-orbital-angular-momentum quantum number 

ranges from 1+ 2 = 3 to |1-2| = 1

Note:  For any fully occupied sublevel (e.g, ns2,  np6 , nd10 etc),  

the total electronic orbital angular momentum is, 
0)( 

i

l im




C. The total electronic spin angular momentum

a. Electron spin:  Uhlenbeck and Goudsmit proposed in 1925 that 

the electron has an intrinsic “spin” angular momentum in 

addition to its orbital angular momentum, like the Earth revolving 

about both the Sun and its own axis. 

However, electron “spin” is not a classical effect, and the picture 

of an electron rotating about an axis has no physical reality.


i

s imS )(


For a fixed S value, the quantum number MS takes on 2S+1 values

ranging from –S to S (to reflect the different directions of the total 

spin angular momentum)  

b.   The total electronic spin angular momentum S of an N-

electron atom is defined as the vector sum of the spins of the 

individual electrons:
Total spin quantum number S. 

 22 1 )(ˆ SSS  Sz MŜ



Example: Find the possible values of the quantum number S for 

states of carbon atom that arise from the electron configuration 

1s22s22p13d1.

Solution:

S =1,  0

S = s1 + s2, …, |s1-s2|

1s electrons: Ms = + ½ - ½ =0   Pauli exclusion principle

2s electrons: Ms = + ½ - ½ =0  Pauli exclusion principle

2p electron: s1 = ½ (ms = 1/2 or -1/2)   3d electron: s2 = ½ 

MS 1  0  -1 0

Addition of two angular momenta rule



D. The total angular momentum

Total angular momentum quantum number

J =  (L + S), (L+ S) –1,… L- S 

Spin – orbit coupling

SLJ




JMJ J 

For a given J, there are (2J+1) 

values of MJ ranging from J to 

–J. 

e.g.,  J = 3/2,   

MJ = 3/2, 1/2, -1/2, -3/2   



2.5.2 Atomic term and term symbol

A set of equal-energy atomic states that arise from the same 

electronic configuration and that have the same L value and the 

same S value constitute an atomic term.

Term symbol:    2S+1L

Each term consists of (2L+1)(2S+1) microstates. (In case 

spin-orbit interaction can be neglected!)

• The quantity 2S + 1 is called the electron-spin multiplicity, 

reflecting that a given total spin angular momentum quantum 

number S has 2S+1 possible MS values (different directions of 

total spin angular momentum.



2.5.3 Derivation of Atomic Term

a. Configurations of completely filled subshells (ns2, np6, nd10 etc.):

We need not worry about any restrictions imposed by the 

Exclusion Principle!

l1=1,   l2=1              L =  2, 1, 0

s1 = ½, s2 = ½         S = 1, 0

3D, 1D, 3P, 1P, 3S, 1S

terms

b. Nonequivalent electrons in open subshells.

(2p)1(3p)1   Total number of microstates =  (3x2) x (3x2) = 36.  

0     0     0    0   LimMSimM
i

lL

i

sS )()( ；  only 1S

p6s2 One microstate

ms1 = 1/2 , ms2 = -1/2 , MS = 0 

ml1 = 0 , ml2 = 0, ML = 0 d10



c. Equivalent electrons.   E.g., np2

Equivalent electrons (x) having common n and l values

should avoid to have the same four quantum numbers (i.e.,

differing in ml or ms)! -- Pauli exclusion principle

The number of allowed microstates:

The number of microstates: C6
2 = 15  C6

1  C6
1

ml 1        0      - 1

l1=1,   l2=1              L =  2, 1, 0

ms1 = ½, ms2 = ½   S = 1, 0

3D, 1D, 3P, 1P, 3S, 1S

terms

1D, 3P, 1SInstead,  np2 Only three terms, why?

A simple deduction for two equivalent electrons: L + S = even! 

x

lC )( 122 



No 
ml 

i

lL imM )(  
i

sS imM )(  Term 
1 0 -1 

1    2 0  

2    1 1  

3    1 0 
 

4    1 0 

5    1 -1  

6    0 0  

7    0 0 
 

8    0 0 

9    0 1  

10    0 -1  

11    -1 0 
 

12    -1 0 

13    -1 1  

14    -1 -1  

15    -2 0  

 

c. Equivalent electrons.   E.g., np2

The number of microstates: C2
6 = 15

1D, 3P, 1S

5 + 9 + 1  -> 15

ML

MS

* (ML)max=2 accompanied by Ms = 0             L = 2, S = 0;  (5)

* (Ms)max = 1 accompanied by ML =1, and = 0 & -1  S=1, L=1;  (9)

* ML =0, Ms = 0,                                                          L=0,S=0;   (1)

ml 1        0      - 1

1S

1D

1D

1D

1D

1D

3P

3P

3P
3P

3P
3P

3P

3P

3P

Enumeration 

method!



Lx

Ly

e1:  l =1, ml =0;   e2:  l =1, ml =0

L1

0 

Case 1:  L =2, ML =0

Case 2:  L= 1, ML =0 

Case 3:  L= 0, ML =0 

As mentioned above,  the microstate with both electrons in the AO 

(l=1,ml=0) contributes to three different energy-states (i.e. spectral 

terms 1D, 3P, 1S).  How to understand this?   

L2(1)

• This microstate contains three

different patterns of e-e interactions 

and is not an eigenfunction of atomic 

Hamiltonian! 

• Two other microstates contain similar 

patterns of e-e interactions. 

• Linear combinations of all three 

microstates can be the eigenfunctions

of atomic Hamiltonian. 

(may belong 

to S = 1 or 0)
ML = 0，but L can be 2, 1, or 0.

L2(2)

L2(3)

MS = 0  



Alternative process to determine the spectral terms of np2

Pauli exclusion: Equivalent electrons

have the same value of n and the same

value of l. Two electrons should avoid to

have the same four quantum numbers!

The number of microstates: Nms = C2
6 = 15

l1=1,   l2=1              L =  2, 1, 0

ms1 = ½, ms2 = ½   S = 1, 0

3D, 1D, 3P, 1P, 3S, 1S

1) L = 2  (ML)max = 2 = 1(ml1) + 1(ml2) 

 (MS)max = 0  S = 0   1D    N1 = 5 

2) S =1  (MS)max = 1  (ML)max = 1(ml1) + 0(ml2) 

 L = 1  3P       N2 = 9 

3) N3 = Nms – N1 –N2 = 1    1S

However, combination of the computed L and S values is no 

longer arbitarily due to Pauli exclusion!

ml 1        0      - 1

ml 1        0      - 1

ml 1        0      - 1

Not strict!



Example: np3

Pauli exclusion: Equivalent electrons

have the same value of n and the same

value of l. The electrons should avoid to

have the same four quantum numbers!

The number of microstates: Nms = C3
6 = 20

l1=1, l2=1, l3=1   L =  2, 1, 0

ms1 = ms2 = ms3 = ½   S = 3/2, 1/2

1) L=2 (ML)max = 2 = 1(ml1) + 1(ml2) + 0 (ml3) 

 S = 1/2   2D         Nms1 = 10 

2) S = 3/2  (MS)max=3/2  (ML)max = 1(ml1) + 0(ml2) -1(ml3) 

 L = 0  4S            Nms2 = 4 

3)  Nms3 = Nms – Nms1 –Nms2 = 6   &   L = 1  

 S = 1/2    2P           

No need to consider the details of all possible 20 microstates!

ml 1        0      - 1

ml 1        0      - 1

ml 1        0      - 1

Not strict!



• The terms arising from a subshell containing N electrons are the 

same as the terms for a subshell that is N electrons short of being 

full. 

Term :    p0 ===     p6

p1 ===     p5

p2 ===     p4

p3

1S

2P

1D, 3P, 1S

2D, 4S, 2P

Terms

• For m electrons within a (n,l ) subshell,  the total number of 

allowed  microstates is C2(2l+1)
m. 

• So far, we have introduced two different ways to describe the 

microstates pertaining to a electronic configuration of a many-

electron atom!   



1.  For terms arising from the same electron configuration, the term 

with the largest value of S lies lowest!

D.  Energy level of spectral terms (microstates).

Hund’s Rule: (works very well for ground-state configuration!)

np2 :   3P      1D      1S

np3:

4S < 2D < 2P

4

Spectral lines

e-e repulsions spin-orbit external field

2. For the same S, the term with the largest L lies lowest.  

< <



The total angular momentum

J =  (L + S), (L+ S) –1,… L- S 

Spin – orbit coupling

SLJ




Term symbol:   

2S+1LJ

E. Spin-orbit Interaction & Total angular momentum

Spin-orbital angular momentum 

coupling



4

E.  Spin-Orbit interaction.

The spin-orbit interaction splits an atomic term into levels, giving 

rise to the observed fine structure in atomic spectra.

2S+1L   2S+1LJ (J = L+S, L+S-1, …, |L-S|)

np3 : 4S, 2D, 2P    

4S  4S3/2

2D  2D5/2, 
2D3/2

2P  2P3/2, 
2P1/2

e-e repulsions spin-orbit External field



Hund’s Second Rule: 

3. For the same L and S values, when the number of electrons is 

half-filled or less, the term with the smallest J lies lowest; whereas 

when the number of electrons is more than half-filled, the term with 

the largest J lies lowest.

F. Ground state of the terms    (ground-state term)

nd3

2          1       0       -1     -2

MS(max) =3/2 with  ML(max) = 3

L=1,  S=1, Jmax= 2       3P2
np4

1        0      - 1

np3
L=0,  S=3/2, Jmin=3/2   4S3/2

np2 L=1,  S=1, Jmin=0       3P0

L=3,  S=3/2, Jmin=3/2   4F3/2



By following Pauli exclusion and Hund’s Rules,  a practical way to 

derive the ground-state term for a given electronic configuration 

can be drawn: 

2. Find  (MS)max, which gives the ground-state  S value.

3. For thus-defined S, find (ML)max, as the ground-state  L value.

4. find Jmin = |L –S| in case ne  2l+1,  

or Jmax = L+S in case ne 2l+1, for the ground-state J value.  

nd8

2          1       0       -1     -2

(MS)max = 1  S = 1 

(ML)max = 3   L=3,  S=1  3F  

As ne=8  5  Jmax = 4  3F4

Likewise, the ground term is 3F2 for nd2. 

1. Equivalent vs. nonequivalent electrons; for equivalent ones, please 

follow steps 2-4 derived from Hund’s rule. 

(3x2+1)(1x2+1)= 21 microstates! 

(4x2+1)= 9 microstates! 



Example: Why does Cu K radiation ( X-ray ) consist of K1

and K2 radiations?   

1s2 2s2 2p63s2…..Ground state of Cu:

Excited state of Cu+: 1s1 2s2 2p63s2…..

1s2 2s2 2p53s2…..

X-ray K radiation

1s1          2S1/2

2p5          2P1/2,
2P3/2

K2
K1

Depletion of a K-shell electron!

1 < 2 , why? 

Question:  Why is the atomic transition from 2p 1s allowed?

Selection rule for atomic transition:  l = 1, j=0, 1; mj =0, 1, 



Electronic configurations

Interelectronic 

repulsions

Terms

Spin-orbital 

interaction

Levels

States

external field

Spectral lines

Fine spectral lines

Atomic spectra

Ultra-fine spectral splittings in 

external field – Zeeman effects



2.5 Atomic spectra and spectral 

term

Summary



Cone traced out by L

x

y

e1:  l =2, ml =0  e2:  l =1, ml =0  

L1

0 

Case 1:  ML =0 of L = 3

Case 2:  ML =0 of L= 2 

Case 3:  ML =0 of L= 1 

Suppose a microstate with  Note that the orbital angular 

momenta of an electron in a given 

AO are distributed in a cone shape!

L2

0  )( imM
i

lL

The wavefunction of this microstate 

is not an eigen-function of atomic 

Hamiltonian!!

l=2



2.5.1 Total Electronic Orbital and Spin Angular Momenta

a. Addition of two angular momenta:

The addition of two angular momenta characterized by

quantum number j1 and j2 results in a total angular momentum

whose quantum number J has the possible values:

J=j1+j2, j1+j2-1, …, |j1-j2|



Angular momenta are vectors!d1p1



B. The total electronic orbital angular momentum

The total electronic orbital angular momentum of an n-electron 

atom is defined as the vector sum of the angular momenta of the 

individual electron:


i

l imL )(


The total-electronic-orbital-angular-momentum quantum 

number L of an atom is indicated by a code letter:

L 0 1 2 3 4 5 6 7

Letter S P D F G H I K

For a fixed L value, the quantum number ML (MLħ--- the z 

component of the total electronic orbital angular momentum) 

takes on 2L+1 values ranging from –L to L. 



l 0 1 2 3 4 5 6 7

Letter s p d f g h i k

Orbital symbol ii llM  22 )1(ˆ 
iliz mM  ˆ

L 0 1 2 3 4 5 6 7

Letter S P D F G H I K

Term symbol  22 )1(ˆ LLL  Lz ML̂

ML = -L, -L+1, …, L

(2L + 1)



C. The total electronic spin angular momentum

The total electronic spin angular momentum S of an n-electron 

atom is defined as the vector sum of the spins of the individual 

electron:


i

s imS )(


For a fixed S value, the quantum number MS takes on 2S+1 

values ranging from –S to S. 



D. The total angular momentum

J =  (L + S), (L+ S) –1,… L- S 

Spin – orbit coupling

SLJ






The total angular momentum

J =  (L + S), (L+ S) –1,… L- S 

Spin – orbit coupling

SLJ




Term symbol:   

2S+1LJ

2.5.2 Atomic term and term symbol



2.5.3 Derivation of Atomic term

a. Configurations of Completely filled subshells

MS=ims(i) =0  S=0

ML=iml(i) =0  L=0

Only one term:      1S

Here we need not worry about any restrictions 

imposed by the exclusion principle.

l1=1, l2=1                 L=  2, 1, 0

ms1 = ½   ms2 = ½    S=1, 0

3D, 1D, 3P, 1P, 3S, 
1S

terms

b. Nonequivalent electrons.

(2p)1(3p)1



c.  Equivalent electrons

1s22s22p2 (two electrons in the same subshell)

ml 
No 

1 0 -1 


i

lL imM )(  
i

sS imM )(  

1    2 0 

2    1 1 

3    1 0 

4    1 0 

5    1 -1 

6    0 0 

7    0 0 

8    0 0 

9    0 1 

10    0 -1 

11    -1 0 

12    -1 0 

13    -1 1 

14    -1 -1 

15    -2 0 

 

1D, 3P, 1S

5    9    1   15

l1=1, l2=1                 L=  2, 1, 0

s1 = ½, s2 = ½          S=1, 0

Only when L+S is even, 

the Pauli exclusion 

principle is fulfilled 

3D (x)

ML=2, Ms=1 (x)

p2 p4

no
2p+1



c.  Equivalent electrons

1s22s22p2 (two electrons in the same subshell)

1D, 3P, 1S

5    9    1   15

MS

ML

ML 2, 1, 0, -1, -2

MS 0
L=2

S=0
1D

ML 1, 0, -1

MS 1, 0, -1
L=1

S=1
3P

ML 0

MS 0
L=0

S=0
1S



• The term arising from a subshell containing N electrons are 

the same as the terms for a subshell that is N electrons short 

of being full. 

Term :    p0 ===     p6

p1 ===     p5

p2 ===     p4



D.  Energy level of microstates:   (terms).

Hund’s Rule: 

1.  For terms arising from the same electron configuration the 

term with the largest value of S lies lowest.

2. For the same S, the term with the  largest L lies lowest.

E.  Spin-Orbit interaction.

The spin-orbit interaction gives the observed fine structure 

in atomic spetra.

2S+1L        2S+1LJ J = L+S, L+S-1, …, |L-S|

4S  4S3/2,    
2D  2D5/2, 

2D3/2

nd3

2          1       0       -1     -2

4F



np3  --- 4S , 2D, 2P 20 microstates in total.



nd2

2          1       0       -1     -2

L=3,  S=1      3F2

N(microstate) = C10
2 = 45

1)  Ms(overall max) = 1  S =1,   (Ms = 1, 0, -1)  & ML(Max) =3,  

 L =3  3F ,  N(microstate) = (2L+1)(2S+1) = 28

2) ML(overallmax) = 4  L = 4,  Ms (max) = 0,  S= 0  


1G ,  N(microstate) = (2L+1)(2S+1) = 9



Nobel Prizes in Chemistry (1980-present) Awarded 

to Theoretical and Computational Chemists

• 2013:   

Martin Karplus, Michael Levitt and Arieh Warshel

"for the development of multiscale models for complex chemical 

systems"

• 1998:   

Walter Kohn  "for his development of the density-functional theory”

John A. Pople "for his development of computational methods in 

quantum chemistry”

• 1981:   

Kenichi Fukui and Roald Hoffmann

"for their theories, developed independently, concerning the 

course of chemical reactions"



Example: Find the possible values of the total-angular-

momentum quantum number resulting from the addition of two 

angular momenta with quantum number j1 = 2 and j2 = 3/2 .

Solution: Jmax = j1 + j2 = 2+3/2 = 7/2

Jmin = |j1-j2| = |2-3/2| = 1/2

 The possible J values are: 7/2, 5/2, 3/2, 1/2



*    Nobel Prizes in Physics for Quantum mechanics: M. Planck 

(1918), N. Bohr (1922), Prince de Broglie (1929), W. Heisenberg 

(1932), E. Schrödinger (1933)   

Multiscales 

modelling of Multi-

copper-oxidase 

embedded in water 



n (shell)

or l, ml

or ms

Single electron

Energy 

Angular momentum

orbital 

Spin  

Many-e atom

No e-e interaction e-e interactions

Electronic configurations

or L

or S
i

s imS )(



i

l imL )(


Effects of e-e interactions in an atom: 

1) For the same n, different l different E(AO)

2) Different occupation patterns for a given number 

of electrons within the same subshell differ in 

energy.  

ml 1        0      - 1 ml 1        0      - 1

M


sm




kkji  )( zyx

e

B MMMB
m

e
E

2

The energy of the interaction between a magnetic dipole  and an 

external magnetic field B is

BMBμ 
e

B
m

e
E

2

We take the z axis along the direction of the applied field: B = Bk, 

where k is a unit vector in the z direction. We have

z
e

z

e

BMBM
m

e






2

z-component of angular momentumangular momentum

angular momentum

Magnetic induction or 

magnetic flux density

We now replace Mz by the operator Mz to give the  additional term in 

the Hamiltonian operator:   
zeB MB ˆˆ 1H  

The Schrodinger equation for the H-like atom in a magnetic field is 

Eψ)ψHH B  ˆˆ( 0



),()(ˆˆ( fqm

lB Yr)RHH 0

m

le YrRBm
n

RZ
)()( 

2

2

Field-free Hamiltonian 

m

lze

m

l YrRMBYrRH )(ˆ)(ˆ 1

0

 

• There is an additional term in the energy.

• The external magnetic field removes the m degeneracy of 

AO’s in the same  l subshell.

• For such obvious reasons, m is often called the magnetic 

quantum number.

),()()()()( ,,,, fqfq m

lmmllnmln YrRrR F


