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Chapter 2 Atomic structure




Atom

The basic building block of all matters.

The smallest particle of an element that has the
same properties as the element.

Composed of a central nucleus and an “electron
cloud ” .

Electron cloud: not really a cloud of electrons, but
an informal description of the probability wave of
electrons in constant motion!




Evolution of Atomic Models
- 1803, “Atomic Theory” by John Dalton.

- 1904, “Plum pudding” model proposed by J.J. Thomson after

his discovery of electron (1897) in cathode rays.

l.e., negatively charged electrons
embedded in a uniformly distributed
positive charge.




History of Atomic Models

- 1911, disproval of Thomson’s model!

Beam of

Radicactive @lPha particles Deflected Scattered

Geiger and Marsden with E. e R HnimGe
Rutherford performed a / |
scattering experiment with .
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History of Atomic Models

2 1912: Rutherford proposed the
“Planetary Model ”’ of the atom,
l.e., positively charged core
surrounded by electrons.

(1908 Nobel prize
chemistry of radioactive substances)

Rutherford estimated the diameter of nucleus to be only about 10-1°

m. The diameter of an atom, however, was known to be 1010 m,

about 100 000 times larger. Thus most of an atom Is empty space.




The planetary model failed in explaining why collapses of
electrons into nucleus do not occur!

v 1) According to Maxwell theory of
“ electromagnetism, as the electron
orbits around the nucleus, it
accelerates and hence radiates
energy.

2) The typical time for the electron
to collapses into the nucleus
would be about 108 s.

3) The spectrum of radiation
would be continuous.




2 1913: Niels Bohr proposed his Bohr model of the atom with
incorporation of the idea of “quanta” (by Plank & Einstein).

The Bohr Model Explanation of the

Three Series of Spectral Lines

n=3

n=
Visible (@
series X
Infrared

™~
o .
7 series

Ultraviolet series

circular orbits with fixed energy

» ; 2

Visible

Energy x 10%° (J/atom)

._._,_,_‘“___ - ———

and angular momentum.

Wavelength (nm)



Bohr atom
Merits:
1) Explains why atoms are stable
11) Predicts energy is quantized
111) Explains H atom spectra

Demerits:
Iv) Falls to predict fine spectral structure of H
v) Fails for many-electron atoms

e Is classical particle
e in ‘orbit’ at fixed r corresponding to a quantum
number.




Bohr atom

e Is a classical particle
e in ‘orbit’ at fixed r

Schrodinger atom (1926)

1) Electron confined in an atom
should also behave like a wave.

Schrodinger equation!

2) No fixed orbits but electron
density distribution

3) For 3-D, we need three
quantum numbers n, I, m,




Dalton (1803)

History of -
. F T @ Thomson (1904)
Atomic Models IRt

Ruthe u(1_) 11)
(the n L_| us)

-Understanding atomic
structure Is the first step to
understand the Structures of
Matters.

Bohr (1913)
(energy levels)

*The so-called electron density
Is actually the probability
density of electron wave!

Quantum mechanics

Schr 1rer1Q2F
(electron cloud model)




2.1 The Schrédinger equation and its
solution for one-electron atoms

2.1.1 The Schr&dinger equation H atom, He* and Li#*
 The Hamiltonian of a one-electron atom/cation,

NN

nucleus electron

« The Hamiltonian for a many-electron atom?

» For a many-electron atom, the kinetic-energy
operator should sum up the contribution from every
electron. The potential energy function should
Include all those from n-e and e-e interactions.




Note that the nucleus Is much heavier than the electron and the
electron moves much quickly around the atomic nucleus! The
Hamiltonian can be simplified as

The Schrddinger equation |—A| W = E W

Separation of variables (X,y,z) hindered by r ?!




Spherical polar coordinates

X = rsinbcosd
y = rsinfsind
z = rcosf

S r:\/x2+y2+22
V4

X

r . distance from origin (nucleus). cosf = —
0 : angle drop from the z-axis. \/X Ty +<2
¢ : angle from the x-axis (on the x-y plane) tg¢ =y/X

(x,y.z) 2 (r.6,9); Pxy.z)="1, 6, ¢)
Is it possible to make ¥, 6, ¢) =R )OO)D(P) ?




Using spherical polar coordinates, we have

1 0 0 1 0’
—(sin @

T )+ .20 A2
or’ r°sin@ o6 00"  r*sin®0 o¢

{_ v {1%% L2 gng2y.

8z°m_ | r*or  or’ r’sin@ oo 00" r’sin?0 o4 |

+ —(sm@aw) _12 -+
or’ r?sin@ o6 00" r’sin®@ o¢

Thus it is reasonable to suppose y(f, 6, ¢) =R )OB)D(P) . m




2.1.2 The solution --- separation of variables
Substitute ¥(r, 6, ¢) =R )O(6)D(¢) into the equation

1 0w 8z°m Ze’
2 i QZ+ — (E+ Jy =0
rsin“ @ o¢ h Are ¥

1 0 (r? 8R(r))+ 1_ 0 siné’@@(g))
R(r) or or ®(0)sin 6 06 06

, , , Now both sides
L 00() 8z'm, o 7€ 32 ollare variable-

T = 2 2 2
D(P)sin“6 0¢ h 4 independent!
87°m, ze°

L0 2Ry 8zM, | 26 40
R(r) or or h Arrgr

= . . 0 (sin 98®—@)+ 1_ : 52(1)(2¢)
O(8)sin 6 06 00 D(P)sin“ 60 O¢

]




» Radial part
»R eq.
Yet unsolvable!
o ,. ~00(0) N 1

2
(sin @ ——= : 0" 0(9) =43 » Angular part
®(6)sin 0 06 00 ~ ®(P)sin®E 0¢°

Now multiply with sin“@and ...

sin@ o (sin 8 ( )
O(0) 06

sin@d o

(sin95®(9))+,83in29= m’

A(0) o6 00 '
Unsolvable yet!
1 0°D(g) - solvable now!

D(¢) 0’




a. d(¢) equation

Its solution in complex form:

> @=Aedim¢ .  Letm=AHm|, &=Ae™ms

Now normalize ©:
= A=(~27)"

"D do=[ A Me™dg= 20 =1
D (9)=0 (g+27) (Boundary condition!)

0

m (m,): magnetic quantum number




Complex function CDm — Aei'm¢ (m:(),i]_,iz’...)

LEERINE O, = Ae™™ = A(cosmg+isinmg)

How to transform these complex functions into real ones for
practical use? Use the superposition principle.

Let ¢ =0 +D_ =2Acosmg=Bcosmg

0,=®_ —>®__=2iAsinmg=B'sinmg

Now normalize ¢, and ¢,:

2w

¢1¢1d¢:jozn(|3cosm¢)2d¢ — (plz\/mCosm¢

0

=Br=1 = B=+1Ur @, =1/ sinmg




The solutions of @&(¢) equation

complex form real form




b. ®(0) equation Sinﬁi Sineﬁ@)(é’)
O(0) 00 06

)+ f3sin’

The process to solve this equation is too complicated. However,

the solution always has the real form, ()= NP (cos6)

Im|

_|:(2|_|_1)(|—‘m‘)!:|1/2 m‘( ) (1 7 )2 dl+\m‘

(z°-1)

2 (1+m)! 2 g

Demanding g = I(l1+1) with | =0,1,2,3,... to make @&(6) a well-
behaved function.

| : angular momentum quantum number (F3/EE %)
necessary condition: | > |m| (m=0, £1, ...)
hence, [=0,1, 2, 3,...(s,p,d.f,g,h...)

m =0, (-1,0,1), (-2,-1,0,1,2), ......




Examples of ®(0): Examples of ®(0):
| m O(0) | m O(6)
J10

-0 4

+1 Esin dcos 0

(3cos” 6 -1)




c. Solution of R equation
1 0 2dR(r) 87°m

m&( )+ hze(E+ 7zgor)r =f

SUIM R(r)=N-e /22" p)

g oy N gy LN+
L (p)= Z;( AN T S T e TR Y

(CEW)

a, ~ Bohr radius, and also the atomic unit (au) of length.

necessary condition: n > +1 (=01, 2, ...... )

hence, n=1,2,3,...... n: Principal
guantum number




Examples of R(r):

R is called Rydberg constant with the value of 13.6 eV.




Prim( 6, ) =R({1)OO)D(9)

Real Hydrogenlike Wave Functions

: (é)%/z -Zrja
7l 12\ a, (

n=1,=0,m=0

n=2,1=0,m=0

n=2,1=1,m=0

n=2,1=1,m=#1

2p.

2p,

A
2p,

Transformed from the complex form of @(g@) !

4(2a)'>
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> -Zrf2a
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Summary

2.1 The Schrodinger equation and
ITs solution for one-electron atoms

2.1.1 The Schralinger equation

The Hamiltonian Operator of one-electron atoms
H atom, He* and Li?*




Consider that the electron approximately surrounds the atomic
nucleus, the Hamilton operator can be simplified as

The Schr&linger equation ¥ w=Ey

Separation of variables ?




sind o 8@(9) NP -
0(9) 2080 g VA 0= Bl O, (0), S=1(1+1)

1d (R
R dr dr

Quantum numbers---- n, |, m,




« For H and H-like ions, their one-electron wavefunction
(atomic orbital) can be expressed as,

Ynlm (r,9,¢): Ra (r) ®I,m, (H)'cpm, (¢)

These are the eigenfunctions of Hamiltonian, following the
elgenequation,

HAl//n,l,m, (r,3,¢)= Ean,I,m| (r’0’¢)

with the eigenvalue depending solely on the principal
guantum number n, I.e.,

Z°h?

T Q.2 2.2 \q 2 _2
8z m.n“a; 8z'ma; n
R=13.6 eV --- Rydberg constant




2.2 The physical meaning of
guantum numbers

n, I, m)

Principal Angular Momentum Magnetic

Quantum Number Quantum Number Quantum Number



2.2.1 The allowed values of quantum numbers
Quantum Numbers

o | /\ /|\ /N

| 0 0 1 2 3
I /A / A N
(I =|mj) I /
M 0 10 +1 0-10+1 0-10+1
(1< m;sl) 70\ N7/ AN

-2-10+1 +2 -2-10+1 +2
-3-2-10+1+2+




2.2.2 The principal guantum number, n

 Positive integer valuesofn= 1, 2, 3, etc.

* Also called the “energy” quantum number, indicating the
approximate distance from the nucleus.

* Denotes the electron energy shells around the atom, and is
derived directly from the Schrodinger equation.

({3}

* Higher “n” - higher orbital energy.

2
E,= —RZ—2 (H - like atom/ions)
n

 For H-like atom/ion, the orbitals with the same n, but differing in |
and m,, are degenerate (equal in energy!). Accordingly, the degeneracy
of an energy level is n? (spin-free) or 2n? (including spin).




Example: Energy states of a H atom.

» = principal
=12, 3...0
~=1:ground state R=13.6eV

n = 2 : first excited states
7= 3 :second excited states

E,=-13.6 eV
E,=-3.40eV
E,=-151eV
E,=-0.85¢eV
E. =-0.54 eV

E._=0eV




Example: Energy states of a Li* ion.

For this two-electron cation, electron-electron interaction should be
taken into account. However, we may estimate the energy levels of
Its atomic orbitals by using the formula derived for one-electron

atom/cation, 1.e.,

R=13.6eV

e |f the e-e interaction Is taken into
account, the sublevels with the same n
value should differ in energy. Why?




2.2.3 the azimuthal quantum number, |

a. Classical Mechanics of one-particle angular momentum.
The vector r from the origin to the instantaneous position of a

particle is given by  FiE=n )'gs jy +kz

The angular momentum L is The particle’s angular
perpendicular to the plane defined

by the particle’s position vector r _ o _
and its velocity v or momentum p. | coordinate origin is defined as

momentum L with respect to the

=L =L-L=+L12+L7




b. One-particle orbital-angular-momentum in Quantum Mechanics.

orbital (through-space) results in orbital angular
momentum M (as the analog of the classical
mechanical quantity angular momentum L), the
operator of which fulfills

. . . . A |
The motion of an electron within an atomic mﬁ;’wyf

Its components




Angular
momentum
W 2 W 2
M?=M;+M?+M; | /ﬁ

In spherical polar coordinates

= ih(sin¢ﬁ+cot6'cos¢i)
00 o

1 &°

——(sind— —
el S|n6’ 86( ) sin @ 0¢°

These operators are simply related to the azimuthal variables! m



A 1 0O
M*® =1’ (Sin —)
sin @ 06 sin‘ @ 0¢°

1 0 , . 8@(6’)) 1 O°D(P) 5 Angular eq.

@(e)sineae(s'n 00 ~ ®(P)sin?0 o4 B=1(1+1)

8@(6’)) @(6?) 6ZCD(¢)]

M 0(O)0(9) = 1T DL (si

né oo sin“@  0¢°
o ,. 00(0) 1 82®(¢)

[ (sin 8 )+
@(6?)3|n 6 00 00 D(P)sin® @ 0¢°

00 [ = ROOOD0) W
2=1(1+)r*, 1= \/|(| +1)» |l €igenequations
The one-electron wavefunctions
M‘_ I(I +1)n (AO’s) of H-like atRm/ion are
eigenfunctions of M?!




| denotes the orbital angular momentum.
» Indicates the shape of the orbitals around the nucleus.

* Denotes the different sublevels within the same main level “n”.

/=0,1,2....-1 degeneracy =2/¢+1
l 012 |34, 5, 6...

type s |p|d|f|g, h,i...
degeneracy|1l |3 |5 |7]9,11,13 ...

Spatial quantization

of electron motion.

©
E
=
=
=
=]
0
i




(Electromagnetic induction.) When there exists an angular
momentum of electron motion, there is a magnetic (dipole) moment.

Such a magnetic moment is defined as T Q ml__
with its magnitude being 2m,

« When | increases, the magnetic moment increases, and the influence
of external magnetic field on the electron motion is enhanced.

« Zeeman effect: splitting of atomic spectral lines (of the same n)
caused by an external magnetic field. m




2.2.4 Magnetic Quantum Number, m,

1) Define the z-component (M,) of the orbital angular momentum.
11) Determine the component () of the magnetic moment x in the
direction of an external magnetic field.

N _ih%( Ae™ ) - mlh( Ae'™ )= rnIhq)m.




L,

% Cone traced out by L

1=2) <:>

Space quantization!!



Space quantization of (h)  «(2,2) =acos(2//6)
orbital angular a(2,1) = acos(1//6)
momentum.

Here the orbital quantum
number is I=2 and there
are accordingly 2I+1=5
possible values of the
magnetic quantum number
m,, with each value
corresponding to a
different orientation of
orbital angular momentum
L relative to the z axis.

[

L =m#7 a(l,m;) =acos(L, /|L|) = acos(

)

m,
\/|(|+1)



Example: Please derive the angle between the orbital angular

momentum of the AO p,, and the z-axis.

m,

I(I +1)

.+ a(l,m,;) =acos(L, /|L|) = acos(

)

-.a(1,1) =acos(— ) wl4

7




Magnetic Quantum Number , m,

* Denotes the direction or
orientation of an atomic
orbital.

m =0, 1, +2 ...+

Number of orbitals
In a subshell

=21+1

{ |m, Atomic orbital
complex |real
0 S S
1 0 pO pz
+1 P+1
1 p_l px & py
2 0 dO d222-x2 _yz — dzz
+1 d+1
_1 d . dXZ & dyz
+2 d+2
> d, dye 2 & d,,




Key points: For H-like atom/ions, the wavefunctions to describe
their atomic orbitals (AQ’s) that are derived from their Schr&linger
eguations can be characterized using three quantum numbers, I.e.,
n, I, m, and symbolized as y,,.

Woim = Rnl(r)YIm(9!¢)Wlth Yl,m(9!¢) — ®Im(9)q)m(¢)

They are eigenfunctions of those Hermitian operators IEAI,I\L2 (/I\\/IZ)
VAN
and /I_\Z (M,), by the following eigenequations,

H v, =Ew = E =-RZ%/n’ Magnitude of orbital
I:Zl//nlm = I(I +l)h2Wnlm &

angular momentum

(Y, =1(1+1)A%,  with L2 =1(1+ 1) =| L |= JI(1 +1)7

I:ZW”'”‘ = M7 Yoy & I:zYl,m SHUVASI \|te- Angular momentum L
i ' l




2.3 The wavefunction
and electron cloud




2.3.1 The wave-functions of hydrogen-like ions

Waim = Rn,l(r)' ®Im(6)q)m(¢\

Fig. (left) The y-r and y?-r diagrams of the 1s state of the
hydrogen atom; (right) The w-r of the 2s state .




A Radial Probability
Distribution
of Apples

w
2
Q.
Q.
©
~§—
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£
o
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Distance from trunk




2.3.2 The radial distribution function
« Probability distribution function |y|?> with

W = Rn,l(r)'®|,m(‘9)'q)m(¢): Rn,l(r)°YI,m(91¢)

Define Y, .(6,¢) =0, ,(6)D, (¢) DEuElE e RE IS

« The probability of finding electron in the region of space r = r+dr,

0> 0+d0, ¢ > ¢+dg: FESECIUPEIETAY.
2 2 2 2 -
\l//\ dT:[Rn,|(r)] ‘Y.,m(9,¢)‘ r-sinédrdéd ¢
« The probability of electron in a thin spherical shell r=>r+dr:

drIOZE j:\z//\zrz sinéd&d ¢

- Rﬁ’,(r)rzdrﬁﬁ jo”\v,,m(@,m\z sinadédg = r?R?,(r)dr

| Normalized spherical harmonics
22 P
D(r)=r"R7,(r) e




%= A0 wave function
| Y° = probability density
r’R? = radial probability

function

Calculating the most
probable radius

dD(r)
dr

Expectation value of r
=jw*rde
_I j IZ”rRZ 2drS|n6?d9d¢ j R?,

=0




Example: please derive the radial probability distribution function of
the H 1s orbital and the radium of its maximum.




== = > s >
28,38 i:[|"° 3: 5
3 83 @ € G T
. Sa 28 28
n. — [
Orbitals=-| \ v, &= £ [¥2lss
0 2 4 0 2 4 6 8 10 12 14
r(107"%m) r(107"%m)
r v
r
. W
2 §
& n=1 'g
5 I=0 L
§' g n=2
- o I=0
g= g oy
D(r) 23 s& 8 5| n=3
_n'.‘o' .Sj-' .gt:f 1=0
g T 2T
%g 8 - e
L -— O - 00
® ®03
2 mﬁgo 2 4 6.8 10 12 14
0 2 4_6 8 g
?(16-1%'m) F(107 m) r(107%m)

The point/surface with p, = 0 Is called a node/nodal surface. : f



D(r) Fig. The radial distribution

AN

* D(r) has (n-I) maxima and (n-1-1)
nodal surfaces.

 Orbital penetration: Penetration
describes the proximity to which an
electron can approach to the nucleus.
In a multi-electron system, electron
penetration is defined by an electron's
relative electron density (probability
density) near the nucleus.

penetrating power of an electron
follows this trend in subshells(l):

s>p>d>f.
I1) Penetrating power of an electron follows this trend: 1s>2s>2p>
35>3p>4s>3d>4p>5s5>4d>5p>6s>4f.




2.3.3 The angular function (Y,,(6, @) )

Y(r,0,9) = ROD=RY (6, 9)

» Angular part

Ylm(91¢) — ®Im(9)q)m(¢)

It indicates the angular distribution of an atomic orbital and is
the eigenfunction of M? and M, operators

A 2
|\/|2=—h2[——(5|n 6’—)+ 12 6—2
sin 6 06 SIn“ @ 0¢

M?Y,.(6,8)=1(1+1)7%Y,(6,¢)
M.Y,,(6,¢)=mhY, (6,4)




Angular function (Y,,(6,9) )
s-orbital (I=0, 21+1=1)

Y
” Yo =1/Var Y of s-orbital

p-orbital (I=1, 21+1=3)

1
Y11 + Y1-1 ) =

75

sing(e" +e™

7
N

Wr

1
Y11 _Y1-1 ) =—l—

_iﬁ(




p-orbital

Y(px):%sinecow

Y(py):\/%sinesingé

Question: Are these two angular functions the eigenfunctions of
operators M and M , respectively?

d-orbital (I=2, 21+1=5) Eigenfunctio/nvs of M? and M,,
Y/ZO Y2il

/ 1 /15 .
1 |5 , Y(dxz)=—15sm26?cos¢ Y(d. .)="= \| = sin”@cos 2¢
Y(dzz)zz —(3cos“0-1) 4\ 7
T

Y(d,)=>.|2sin20sing
4\
—>

Note: These are not eigenfunctions of M2 and M.

Y21‘2




d-Orbital

= E\/Esin2 0.cos 2¢
A4\ 7

Y(dyz)zi\/gsinzesingé

Y(dxy):%\/gsinzesin&b N



Angular functions

Complex form vs. Real form

When m=0, the angular
functions Y, adopt complex
forms, linear combination of
which with the same |m| gives
rise to the real forms of
angular functions.

Orbital (Real)

S

Pz

H+

Px

H+

Py

d,2.2 2:d22

2Z°-X< -y

H+

) V4

I+

Rl Rr|Oo| || O] O

YZ

H-
N

dxz Y

H-

N

Xy




Nodes:

« For agiven orbital, the number of angular nodes is |.

d,, (I=2) f (I=3) (I=4)

« Accordingly, the total number of nodes equals to n-1,
Including | angular nodes and n-1-1 radial nodes.




Energy of electron in H-like atom/ion(s):

Average potential energy & kinetic energy:

Ze*
Arce,r

V)= [vnN Wl =[[ [V r*sinddrded
 2RZ?

V=-




2.4 The structure of
many-electron atoms
(multi-electron atoms)




2.4.1 Schrdlinger equation for many-electron atoms
For hydrogen - like atom/ions

] ] h?

¥ —EW, H=- _

Arrgr

H :—%Vz—é (in atomic units)
r

For He atom (2 - electron)
1

H :_%(Vf+v22)—(5+5)+—
I

1 r2 r12

'12:\/(Xl_xz)2+(Y1_Y2)2+(Zl_zz)2




For many — electron atoms: Separation of variables

becomes impractical
due to the complicated
term of e-e interactions.

The electrons are thus independent! Thus Let
N - .
(1,23, .N) =y, v, wswy = [ [w Wavefunction of ith e.
i=1

= HY = [ 01Ty, =¥ [(hw ) w1 =[5 1¥ =EY

with ﬁit//i:a‘iwi & E:Zgi

Single-particle eigenequation NN =Telsl - 10eToa [y leTo[-1 AN . f



Many-electron atoms Orbital energy derived
_ from Bohr’s model
e.g.,, He, Z2=2

Predict: E; =-54.4 eV

Actual: E; =-24.6 eV

« When it comes to a many-electron atom, something is
wrong with the simple Bohr Model!
« The e-e interactions are too large to be negligible!

How to realistically solve the many-electron problem?m



Central field approximation (#7750 1)

Also known as independent electron approximation: Suppose
that in a n-electron atom, each electron move in an average
(central) field V(i) exerted by the nucleus and the other electrons.

Vi)+ Z [__ T Z ] The coordinates

j-‘#l "

of ith e.

Now Let
_? + Z &l | - central field exerted on ith e.

I J#i Ij

= H(1,2,...,n)¥(12,...n)= Zn:ﬁi\P(l,Z,...,n)z E¥(1,2,...,n)

Slngle particle equations!




Central field approximation (44 7758 #)

2
with ‘P<1,2,3---n)=<o1<1><oz(2>---con(n)

* Note that V(i) is not spherical in most cases. Only the V(i)
exerted by a closed-shell configuration is spherical.

» Suppose V(i) is spherically symmetric around the nucleus.
Then ¢(i) can adopt the form YERERAQ )YIi m (6,¢)

« Accordingly, the equation can be solved by means of the
Hartree-Fock self-consistent field (HF-SCF) method. m



Self-consistent Field method
First proposed by Hartree in 1928, then |mproved by Fock.

- {[ \ }go(l) @ | Note: In the kth

() V _|_V(0) =g
2 (1) 4 Jlnteratlon Vk1is the
potential energy of

@,

1st iteration

Initial guess ’\ electron i in the
for a N-elec. electric field exerted

atom: N AQO's
of H-like ion. | @ @ @ |bythe nucleus and
i TV ¢i =& ¢
other electrons

derived by {p"'}
(jA)!

2nd I1teration

mth iteration




Example: initial guess for Li atom (1s%2s?)

Note that the AQ’s of H- Ilke atom/ions are in the forms,

)3’2(2—£T)exp(—2ir

0 aO
Now supposed the valence AO’s of Li atom have similar forms

0

0 0 3’2(2—5935r)exp(—it~)2ir)

1
€023 _ 4 /_272_ ( ao ) ao 23.0

In which the coefficients b,, b, etc evolve upon the proceeding of the
HF-SCF procedure.

= =) exp(—
@13 \/; (ao ) p(

The converged values for the coefficients by, b, etc are definitely
smaller than the Z value of Li atom.

Why? PIlz figure out the physical meaning of these coefficient!

A




Practical method before the computer-era:

Slater’s approximate method for central field

The presence of other electrons
around a nucleus “screens” an
electron from the full charge of the
nucleus.

c. Screen constant
L =L—0O Z*. Effective nuclear charge

= Modified Rydberg equation:

n*: Effective principal quantum number

nN*=n (whenn<3)
n*=3.7 (when n =4)
n*=4.0 (when n =5)




Lithium ,Z=3

Bohr’s atomic model:

2 2
E = —R(Zj = E,, = —13.6@)
n 2

Predicted: E,, =-30.6 eV

Actual: E,.=-54¢eV

Empirical determination of Z*
and o:

- E, =—R(Z* In¥

— Z*=n/(-E. / R)

—o0o=/L-7L7

For 2s of Li

Z:. =nyJ(-E,. / R)
=25.4/13.6 =1.26

c=/2-/=1.74




A. Screen (shielding) constant

Slater’s rules for the prediction of o for an electron:
1. First group electronic configuration as follows:

2.

(1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p) etc.

An electron is not shielded by electrons in the right shells (in
higher subshells and shells).

For ns or np electrons:

a) each other electron in the same group contributes 0.35
(but 0.30 for 1s)

b) each electron in an n-1 group(s) contributes 0.85

c) each electron in an «-2 or lower group contributes 1.00.

For nd or af electrons:
a) each other electron in the same group contributes 0.35.
b) each electron in a lower group contributes 1.00.




The basis of Slater’s rules for &

s and p orbitals have better “penetration” to the nucleus than d
(or f) orbitals for any given value of « .

l.e. there Is a greater probability of s and p electrons being
near the nucleus. - ;

This means:

1. 5 and #~p orbitals completely shield »d orbitals.

2. (1)s/p orbitals don’'t completely shield s and np orbitals.




Example: O,Z=8

Electron configuration: 1s? 2s2 2p*#

a) (1s?) (2s?2p*)

Z2*=Z-c

b) For a 2s/2p electron: ¢ =(2 *0.85) + (5 * 0.35) = 3.45

1s

> /*=/7-06=8-3.45=455

for six electrons in 2s/2p orbitals.

2s,2p

l.e., any of the 2s/2p electrons is actually held by about 57%
of the force that one would expect for a +8 nucleus.

c) For a 1s electron:
c=1*0.3;

Z*(1s) = 8-0.3 = 7.7 !




Z2*=Z-c

Example: Ni, Z =28
Electron configuration: 1s2 2s? 2p°® 3s2 3p® 3d® 4s?

Then (1s?) (252 2p°) (352 3p®) (3d8) (4s?)

For a 3d electron:
c = (18 *1.00) + (7 * 0.35) = 20.45
1s,2s,2p,3s,3p 3d

7*=7-c  Z*3d) =28 —20.45 = 7.55

For a 4s electron:
c=(10*1.00) + (16 *0.85) + (1 * 0.35) = 23.95
1s,2s,2p 3s,3p,3d 4s

Z*=Z7-c  Z*(4s)=28-23.95=4.05




B. Approximation of the atomic orbital energy

(12-0.3)°

7 —_-136.89R = —R T =-136.89R

B _ 2 2
L RU2-085x2-0357) _ o785 o,
, 2 4

] 0

E, = -0.9025R




2.4.2 The 1onization energy (IE)
and the electron affinity (EA)




|. lonization energy:

The minimum energy required to remove an electron from one
of the atomic orbitals (in the gas phase) to the vaccum.

A(g) - A" (g) +e

|1 — E(A+) s =1¢a) | The first ionization energy

EN IS0 W] | The second ionization energy




TABLE 7.2 %uccessive Yalues of lonization Energies, [ forthe Element:
Sodiurn Through Argon (k] moal)

Element f-l !E f3 !4 !5 fﬁ f?
Na 46 dtalall [Inmner-shell electnons)
Ilﬂ;*-.lg Tan 14h0 [ 7730
A 1820 2750 11,400
| Tk 1hE80 3230 4560 (16,100
I 1012 1900 2910 4440 a7 | 22,200
5 1000 2R00 3360 dhAl 010 shin | 27,100
Cl 1:2hR1 00 3820 BlAl b [ Ylall 11,000
AY 15:1 JAf0 3430 BYYO 720 aral 12,000




Periodic Trends in lonization Potentials
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Il. Estimation of ionization energy
Example: C—>C*, 1522s22p? — 1s522s22p1

|, =AE = E(C*) — E(C) I.e., depletion of a 2p electron.
- Both C* and C have the same value of 6, 1.6. Ejgciy = Eiq

* For their 2s/2p electrons, we have

for o for C

/—0=6—(2%x0.35+2%x0.85)=3.60@Z —0c =3.25

|, =2xE +3x E —2><E15(C)—4>< EZSZp(C)

1s (c+ 2s2p(CH)

:—[3><(—) —4><(3 25) ]-R=11.44¢V

... =11.22 eV

expt.



Estimation of ionization energy
Example: Fe — Fe*, depletion of a 1s electron.

a) Fe* for lacking of a K-shell electron, Z = 26
Electron configuration: 1s?! 2s2 2p® 3s? 3p®4s2 3d°
(1s?) (2s2 2p®) (3s2 3p°) (3d°) (4s2)
1s: 26— 0*0.30 = 26.00

*=/-0

2S,2p: 26 — 770.35 - 1*0.85 = 22.70
3s,3p: 26 — 7*0.35 — 8*0.85 - 1*1.0 = 15.75
3d: 26-5*0.35 —17*1.0=7.25

4s: 26-1*0.35—- *0.85-9*1.0=4.75

J. C. Slater, Phys. Rev. 36(1930)57 m



Example: Fe, Z = 26

Electron configuration: 1s2 2s2 2p® 3s? 3p®4s2 3d°

(1s2) (252 2p°) (352 3p®) (3d°) (4s?)

/*=/-0

1s: 26-0.30 =25.70

2S,2p: 26 — 7*0.35 — 2*0.85 = 21.85

3s,3p: 26 — 7*0.35 - 8%0.85 - 2*1.0 = 14.75
3d: 26-5*0.35 —18*1.0 = 6.25

4s: 26 -1*0.35-14*0.85-10*1.0 = 3.75

J. C. Slater, Phys. Rev. 36(1930)57




Estimation of ionization energy

Example: Fe —» Fe™*, depletion of a 1s electron.

Fe (Z*) | Fe*(Z*)
(1s)21  |25.70 |26.00
(25,2p)8 |21.85 |22.70
(3s5,3p)8 |14.75 |15.75
(3d)6  |6.25 |7.25
(452  |3.75 |4.75

|« = AE = E(Fe*) - E(Fe)

= -1965.4 + 2497.3 = 531.9 (524.0 expt.)

E(Fe)=-2(25.70/1)%8(21.85/2)?
-8(14.75/3)%-6(6.25/3)?
2(3.75/3.7)2=-2497.3

E(Fe*)=-1(26.00/1)2-8(22.70/2)2
-8(15.75/3)2-6(7.25/3)2
-2(4.75/3.7)2=-1965.4

J. C. Slater, Phys. Rev. 36(1930)57




[11. Electron Affinity

 The electron affinity (EA) Is the energy change that
occurs when an electron Is added to a gaseous atom.

B(g)+e~ 2>B7(g) +A

1. EA of an atom can be empirically predicted using the Slater’s rules.

2. In practice, EA of an atom can be measured by measuring the first

lonization potential of its monoanion in gas phase!

 Electron affinity usually increases as the radii of atoms
decrease.

 Electron affinity decreases from the top to the bottom of
the periodic table. m




V. The Electronegativity

 Electronegativity was proposed by Pauling to evaluate the
relative capability of atoms to attract bonding electrons.

It can be concluded that:

1. The electronegativities of metals are small while those of
non-metal are large.

2. Generally, the electronegativity increases from left to right
across the periodic table, but decreases from top to bottom
within a group.

3. Elements with great difference in electronegativities tend to

form 1onic bonds.




2.4.3 The building-up principle
and the electronic configurations




|. The building-up principle (for ground states of atoms)
Mg: 1s?2s22p®3s?
a. Pauli exclusion principle.
Every orbital may contain up to two electrons of opposite spins.

b. The principle of minimum energy. (Aufbau principle)

Whilst being compatible with the Pauli principle, electrons
occupy the orbital with the lowest energy first.

Problem:

For a many-electron atom, its energy levels are not faithfully
aligned in the order of principal guantum numbers, e.g., for
transition-metal atoms!

Fe: 1s22s22p®3s23p®4s23d°




For multi-electron atoms:

Due to electron-electron repulsions, atomic orbitals with the same
n but different | are no longer degenerate in energy. For this case,
both the penetration effects and the average radii of AOs are decisive.

1) Average radii of AO: In general, the AO with higher n value has a
larger average radii, thus is higher in energy due to smaller electron-
nucleus interactions.

2) Penetration effects: the radial distribution of a
AO (n,l) has n-I maxima. Thus for AOs with the
same n, the one with a lower | has more local
maxima near the nucleus and thus has a higher
probability for electron to appear near the nucleus. E
1.e., being lower in energy (less screened by inner-
shell electrons!)




For multi-electron atoms:

The energy level can be estimated by n+0.7l. (proposed by G.X. Xu .)

1s 25 2p 3s 3p 3d 4s 4p 4d Af
1.0 20 27 30 37 44 40 4.7 5.4 6.1
5 5p 5d 5&5f 6s 6p 6d of
50 57 64 71 60 6.7 74 8.1

Therefore, the sequence of the atomic orbitals is: 1s, 2s, 2p, 3s, 3p,
4s, 3d, 4p, 5s, 5p, 6s, 4f, 5d, 6p, ...




Relative Energies for S

*The orbitals have
different energies and for
the d and f orbitals, their
energies overlap s-orbital
energies in the next
principal level.
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The principle of minimum energy.
n 1=0 =1 =

¥
w29




|. The building up principle (for ground state)
a. Pauli exclusion principle.

Every orbital may contain up to two electrons of opposite
spins.

b. The principle of minimum energy (Aufbau principle)

Whilst being compatible with the Pauli principle, electrons
occupy the orbital with the lowest energy first.

c. Hund’s rule.

In degenerate energy states, electrons tend to occupy as

many degenerate orbitals as possible. ( The number of
unpaired electrons is a maximum.)

Note: The electronic configuration for the ground state of a
molecule also follows these rules!




I1. The ground-state electronic configurations of atoms

e H =1s!

¢« He=15s?
e Li =1s%2s!

e Be=1s22s?

« B =15?2s?2p!
¢ C =15?2s?2p?
¢« N =15225?2p°
« O =1s%2s%2p*
« F =1s228%2p°
e Ne=1s%25%22p"




LifBe

NafMg
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Cs|Ba

FrRa

The Periodic Table of the Elements
Electronic Structure He
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Electron Configuration using the Periodic Table
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2.5 Atomic spectra and spectral term

The wavefunction to describe the motion of
a electron in an AO of a many-electron atom
(derived from the central-field approx.):

Spin part:

»= [Rn(r)'Y/,m (6.9)] -o(s )<l B
n (principal guantum number)
I (orbital guantum number)
m(m,) (magnetic quantum number)
m (spin magnetic quantum number)

S
For electron & proton, spin quantum number s =%

(i.e., defining the magnitude of spin angular momentum)!

Seemingly similar to that for the one-electron H-like atom/ion.



Difference:
» For a 1-electron atom/ion, AQ’s of the same shell (n) are degenerate.

For a many-electron atom, the e-e interactions result in:

1) The electronic orbitals within a given shell (n) are divided into
energy-sublevels differing in . (ns<np<nd ...)

11) The electrostatic potential exerted on each electron is not spherical,
and, consequently, the angular momentum of any individual electron
IS not as conserved as that of the electron within a 1-e atom/ion. In
other words, the individual orbital-angular-momentum operators /L\i of
the electrons do not commute with the atomic Hamiltonian, but their
sum does.

H¥P(1,2,..N)=E¥(12,. N)M[H,01=0; [H,2]=0




« The electronic wave function of an atom in a given guantum

state satisfies n
H¥Y(1,2,.N)=E¥Y(12,..,N)

Atomic Hamiltonian

L: total electronic orbital 2(1,2,...,N)¥ = L(L+1)72W¥
angular momentum ‘

L_: z-component of L L,(12,....N)¥=M, ¥

. | Total orbital-angular-
N ):ZLz(') momentum quantum number L

*(1,2,...N)=> ()L 12,

[H,(12,...N)] =0&[H,[,(12,..,N)] =0

« Therefore, we can characterize an atomic state by the quantum
numbers L and M, (as well as the spin quantum numbers S and Ms) .

- Spectral term!




Example: C 15%25°2p?

v I

mI 1
« Atotal of 15 (i.e., C;?) microstates dlfferlng mthe orbitals and

A
11—

» These microstates differing subtly in e-e electron interactions are

spin states of the two electrons, e.g.,

not In the same energy. More importantly, the wave functions to
describe each of these microstates may not be the eigenfunction of

atomic Hamiltonian. How to discern them?

 Spectral term!




2.5.1 Total Electronic Orbital and Spin Angular Momenta

a. Addition of two angular momenta:

The addition of two angular momenta characterized by gquantum
number |, and j, results in a total angular momentum whose quantum
number J has the possible values:

J =1t Iitlo-d, oo li-)ol;  OF J1-)ol 3 <)1),

1z (1)
—~ J1H),




Example: Find the possible values of the total-angular-momentum

quantum number resulting from the addition of two angular momenta
with quantum number j, =2 and j,= 3.

Solution: J.., = J; ], =2+3=5
‘Jmin = |j1'j2| = |2'3| =1
- The possible J values are: 5, 4, 3, 2, 1




Angular momenta are vectors!




e.g., dlpl

|,=2 (with 5 possible directions differing in m,.)

L=1 L=2 =3
NI

— 15 possible total angular momenta differing in L (magnitude) and
M, (direction): L =3, 2,1 (For each L, M, ranges from-L toL.)
M,: L, L1, ...,-L+1, -L




B. The total electronic orbital angular momentum

The total electronic orbital angular momentum of an n-electron
atom 1s defined as the vector sum of the angular momenta of the

Inaividual efectrons: The orbital angular momentum of ith e
defined by two quantum numbers |

(magnitude) and m, (direction).

The total-electronic-orbital-angular-momentum quantum number
L of an atom is indicated by a code letter:

L 0 1 2 3 4 5 6 !
Letter S P D = G H | K

For a given L value, the quantum number M, (M h---the z
component of the total electronic orbital angular momentum) takes

on 2L+1 values ranging from —L to L. m




» For single particle (single electron) Eigenequations

Orbital symbol
I 0

Letter s

e For two or more electrons All-electron
wavefunction

¥ = L(L+1)"*¥ of atom in a

given energy

Term symbol state.
L 0 1 2
Letter S P D F G H ...

M, =-L, -L+1, ..., L (2L + 1)




Note: For any fully occupied sublevel (e.g, ns?, np®, nd° etc),
the total electronic orbital angular momentum is,

Example: Find the possible values of the quantum number L for
states of carbon atom that arise from the electron configuration
1522522pt3dl.

Solution: Simply consider 2p*3d-.

s 1=0 pt I=1 dt =2

l Addition of angular momenta rule

The total-orbital-angular-momentum quantum number
ranges from 1+ 2 =31to |1-2| =1

l

L=3,2,1




C. The total electronic spin angular momentum

a. Electron spin: Uhlenbeck and Goudsmit proposed in 1925 that
the electron has an Intrinsic “spin” angular momentum In
addition to its orbital angular momentum, like the Earth revolving
about both the Sun and its own axis.

However, electron “spin” is not a classical effect, and the picture
of an electron rotating about an axis has no physical reality.

b. The total electronic spin angular momentum S of an N-
electron atom is defined as the vector sum of the spins of the
Individual electrons:

Total spin guantum number S.

S2w = S(S + L)W

For a fixed S value, the quantum number M takes on 25+1 values
ranging from —S to S (to reflect the different directions of the total
spin angular momentum)




Example: Find the possible values of the quantum number S for
states of carbon atom that arise from the electron configuration
1522522pt3dl.

Solution:

1s electrons: M, =+ % - % =0 Pauli exclusion principle
2s electrons: M, = + % - %2 =0 Pauli exclusion principle

2p electron: s; =% (m,=1/2 or -1/2) 3d electron: s, =%

Addition of two angular momenta rule l S =81+ Sy eeus 5175
S=1, 0

A\

Mg 10-10




D. The total angular momentum

El T Total angular momentum guantum number
J=L+S J a

J=(L+S), (L+S)—1,.../L-S/
Spin — orbit coupling

For a given J, there are (2J+1)
values of M, ranging from J to

—J.

e.g., J=3/2,
M, =3/2, 1/2, -1/2, -3/2




2.5.2 Atomic term and term symbol

A set of equal-energy atomic states that arise from the same
electronic configuration and that have the same L value and the
same S value constitute an atomic term.

Term symbol:  25+1L

Each term consists of (2L+1)(2S+1) microstates. (In case
spin-orbit interaction can be neglected!)

« The quantity 2S + 1 is called the electron-spin multiplicity,
reflecting that a given total spin angular momentum gquantum
number S has 25+1 possible M values (different directions of
total spin angular momentum.




2.5.3 Derivation of Atomic Term

a. Configurations of completely filled subshells (ns?, np®, nd° etc.):
Mg=>m(i)=0=S=0; M =) m(i)=0= L=0ECHNIIVES

2 - One microstate p6 - - H-

my=12,m,=-1/2, Mg=0

=0, m =0, M, =0 R

b. Nonequivalent electrons in open subshells.

(2p)1(3p)t  Total number of microstates = (3x2) x (3x2) = 36.

We need not worry about any restrictions imposed by the
Exclusion Principle!

=1, =1 2> L=210 3D, 1D, 3P, 1P, 3S, 1S
S, =%,5,=% > S=1,0 terms m




c. Equivalent electrons. E.g., np? -

m 1 0 -1
The number of microstates: C;> = 15 # C/t xC/l

Equivalent electrons (x) having common n and | values
should avoid to have the same four quantum numbers (i.e.,
differing in m, or m)! -- Pauli exclusion principle

X
The number of allowed microstates:

=1, =1 2> L=210 | —==|3D, 1D 3p 1P 33 1S

my=%my,=% > S=1,0 terms

Instead, np? — 1D, °P, 1S

A simple deduction for two equivalent electrons: L + S = even!




c. Equivalent electrons. E.g., np? -

The number of microstates: C°,=15 m 1 0 -1

Enumeration
method!

* (M| )max=2 accompanied by M, =0 2> L=2,S=0; ©)
* (My)a = 1 accompanied by M, =1, and =0 & -1 - S=1, L=1; (9)
*M, =0, M, =0, - L=0,S=0; (1)
A ML
X
O &® O
a7 e R
O ® O
X
1D’ 3p’ 1S




As mentioned above, the microstate with both electrons in the AO
(I=1,m,=0) contributes to three different energy-states (i.e. spectral
terms 1D, 3P, 1S). How to understand this?

e,: =1, m =0; - M =0 (may belong
> M, =0, butL canbe?2,1,or0. toS=1or0)
Case 1: L=2, M, =0 - — :
This microstate contains three
O SIS different patterns of e-e interactions
Case 3: L=0, M, =0 and is not an eigenfunction of atomic

L A Hamiltonian!
y
s Two other microstates contain similar

] \ patterns of e-e interactions.
1
>

of atomic Hamiltonian.

0Ky (2 ] Linear combinations of all three
\ X microstates can be the eigenfunctions



Alternative process to determine the spectral terms of np? -

The number of microstates: N, = C%;= 15 m1l 0 -1

,=1, I,=1 > L= 21,0 ||Pauli exclusion: Equivalent electrons
have the same value of n and the same

my=%m,=% > S=10 value of I. Two electrons should avoid to
have the same four quantum numbers!

NG| 4D, 1D, P, 1P, SS, 1S
However, combination of the computed L and S values Is no
longer arbitarily due to Pauli exclusion!

\4

1) L=2 9 (ML)max: 2= 1(mll) + 1(ml2)
> (M) =0>S=0 > 1D N;=5

2) S=1=» (MS)max =1-> (ML)max = 1(mll) t O(mIZ) -

2> L=1->°F N,=9 m1l 0 -1

3)N;3=Ns—N;-N,=1 > 1S Not strict!




The number of microstates: N, = C3; = 20 m1l 0 -1

= = = > L=210 Pauli exclusion: Equivalent electrons
have the same value of n and the same
My =My, =My =% = S=23/2,1/2 | value of I. The electrons should avoid to
have the same four quantum numbers!

I No need to consider the details of all possible 20 microstates!

1) L=2 MD)me=2=1(my) +1(mp) +0(m,) [T
>s=12>2D N_, =10 w0t
2) S=312=» (M.),,.,=3/12 2> (M) 1. = 1(Myy) + 0(M,,) -1(m,y)
SL=0> N4
_ _ _ m, 1 0O -1
3) Nmsg — Nms - Nmsl _NmSZ =6 & L=1
> S=1/2 > 2P Not strict!




» The terms arising from a subshell containing N electrons are the
same as the terms for a subshell that is N electrons short of being

full. Terms
Term: p° === p° 1S
pt === pS P
02 === pd 1D, 8P, 1S
p3 ZD’ 48’ ZP

« For m electrons within a (n,l) subshell, the total number of
allowed microstates Is Cy ..y

« So far, we have introduced two different ways to describe the
microstates pertaining to a electronic configuration of a many-
electron atom!




D. Energy level of spectral terms (microstates).

Hund’s Rule: (works very well for ground-state configuration!)
1. For terms arising from the same electron configuration, the term

with the largest value of S lies lowest! np2: 3p < 1P < 1§

2. For the same S, the term with the largest L lies lowest.

nps:
iS<2D < 2P

T T T e e e e s s

e-e repulsions  spin-orbit external field




E. Spin-orbit Interaction & Total angular momentum

Spin-orbital angular momentum
coupling

—

J=L+S

The total angular momentum
J= (L+9), (L+S)—1,...|L-S|

Spin — orbit coupling

Term symbol:

2S+1 LJ




E. Spin-Orbit interaction.

The spin-orbit interaction splits an atomic term into levels, giving
rise to the observed fine structure in atomic spectra.

2541 =2 25+, (J = L+S, L+5-1, ..., |L-S|)

nps: 4S, 2D, P
4S 2 4S5,

°D > ?Dg)p, “Dyp

P> Py, Py

e-e repulsions  spin-orbit External field




F. Ground state of the terms (ground-state term)
Hund’s Second Rule:

3. For the same L and S values, when the number of electrons is
half-filled or less, the term with the smallest J lies lowest; whereas
when the number of electrons i1s more than half-filled, the term with
the largest J lies lowest.

=312 > “Fyy

5 1 0 -1 = L =3, S=3/2, J.

1 0 -1

aleid 1) 1t L=1, S=1,J,,x=2 => °P,

max-—

np3 IR L=0, S=3/2, J,;,=3/2 2> S,

np* B L=1, S=1,J,,..=0 > 3P,




By following Pauli exclusion and Hund’s Rules, a practical way to
derive the ground-state term for a given electronic configuration

can be drawn:

1. Equivalent vs. nonequivalent electrons; for equivalent ones, please
follow steps 2-4 derived from Hund’s rule.

2. Find (M), Which gives the ground-state S value.
3. For thus-defined S, find (M| )., as the ground-state L value.

4. find J.;, = |L =S| In case n, <2|+1,

orJ. .. = L+Sin case n, 221+1, for the ground-state J value.

(Mg),.,.=1>S=1> gl t1 t t) t 1

2 1 0 -1 -2
U DPEc i AR RECRRC B R ol (3x2+1)(1x2+1)= 21 microstates!

Asn=82>5->J...=42>°F, (4x2+1)= 9 microstates!

Likewise, the ground term is 3F, for nd. , T




Example: Why does Cu Ka radiation ( X-ray ) consist of Ka.,
and Ka,, radiations?

Ground state of Cu:  1s22s22p%3s-.....

Depletion of a K-shell electron!

\/
Excited state of Cu*: 15! 2s22p63s2..... S
X-ray Ka radiation l \Kal
29291522
1s22s*2p~3s-..... 2Py /55 2P5)5
A <A, ,why?

Question: Why is the atomic transition from 2p - 1s allowed?

Selection rule for atomic transition: Al =+1, A4)=0, £1; Am; =0, ilm



Electronic configurations

Interelectronic
repulsions

Terms

Spin-orbital
Interaction

_evels

l external field

States

Atomic spectra

Spectral lines

Fine spectral lines

Ultra-fine spectral splittings in
external field — Zeeman effects




Summary

2.5 Atomic spectra and spectral
term




Suppose a microstate with

Note that the orbital angular
momenta of an electroninagiven € 1=2,m; =0
AO are distributed in a cone shape!

tz Case 1: M, =0 of L=3
Cone traced out by L
e Case 2: M, =0 of L=2

Case 3: M, =0of L=1
1Yy
A

P

The wavefunction of this microstate

X
—

IS not an eigen-function of atomic
Hamiltonian!!

F



2.5.1 Total Electronic Orbital and Spin Angular Momenta

a. Addition of two angular momenta:

The addition of two angular momenta characterized by
quantum number j, and j, results in a total angular momentum
whose guantum number J has the possible values:

J:j1+j2; j1+j2'1’ coey Iil'j2|




Angular momenta are vectors!




B. The total electronic orbital angular momentum

The total electronic orbital angular momentum of an n-electron
atom is defined as the vector sum of the angular momenta of the
Individual electron:

The total-electronic-orbital-angular-momentum quantum
number L of an atom Is indicated by a code letter:

L 0 1 2 3 4 5 6 {
Letter S P D F G H | K

For a fixed L value, the quantum number M, (M, /i--- the z
component of the total electronic orbital angular momentum)
takes on 2L+1 values ranging from —L to L.




Orbital symbol

| 0 1 2 3 4 5 6 I

Letter s P d f g h i K

Term symbol W = L(L+1)h*¥ LY =M h¥
2 3

L 0 1 4 5 6 7

Letter S P D F G H I K

M, =-L,-L+1, .., L




C. The total electronic spin angular momentum

The total electronic spin angular momentum S of an n-electron
atom is defined as the vector sum of the spins of the individual
electron:

For a fixed S value, the quantum number Mg takes on 2S5+1
values ranging from —-S to S.




D. The total angular momentum

1= (L4 (L4 )ty /L)

Spin — orbit coupling




2.5.2 Atomic term and term symbol

J The total angular momentum
J= (L+S), (L+S)-1,...|L-S
% Spin — orbit coupling

cone traced out by L

—_—

J=L+S

P Term symbol:

~-cone traced out by 8§

25+1 I—J

|

the atom




2.5.3 Derivation of Atomic term

a. Configurations of Completely filled subshells
M=2m(i)=0 > S=0
M =2m(@i)=0 > L=0
Only one term: 1S

b. Nonequivalent electrons.

(2p)*(3p)* Here we need not worry about any restrictions
Imposed by the exclusion principle.

=1, 1,=1 L=2,1,0 3D, 1D, 3P, 1P, 3S.
myg=% m,=% 5=1,0 'S

terms




c. Equivalent electrons

15225°2p? (two electrons in the same subshell)
|1:1’ |2:1 =210 Only when L+S Is even,
. ) the Pauli exclusion
S.=72,8,=%  5=1,0 orinciple is fulfilled

1D, 3p, 1S
5 9 1->15

3D (x)
M, =2, M =1 (X)

gipld

2D,y

p2~p4

m,(l M, =) m(i)
--n- -2




c. Equivalent electrons

1522s22p? (two electrons in the same subshell)

1D, 3P, 1S

5 9 1 ->15
Y o I | =7 1
Mg O 5=0 D
M 1,0,-1 | =1
Mg 1,0, -1 S=1 °P
M_0 L=0
Mg O S=0




« The term arising from a subshell containing N electrons are
the same as the terms for a subshell that is N electrons short
of being full.

Term: p% === p°




D. Energy level of microstates: (terms).

Hund’s Rule:

1. For terms arising from the same electron configuration the
term with the largest value of S lies lowest.

2. For the same S, the term with the largest L lies lowest.

nd® AR ‘F

E. Spin-Orbit interaction.

The spin-orbit interaction gives the observed fine structure
In atomic spetra.

2541 S 2S¥] . J=L+S, L+5-1, ..., [L-S|
4S 9 483/2, 2D 9 2D5/2’ 2D3/2




20 microstates in total.

\
\ 4
\S

A

BRI




L=3, S=1 - 3F,

N(microstate) = C,,> = 45

1) Ms(overallmax)=1->S=1, (Ms=1,0,-1) & ML(Max) =3,
- L =3 - 3F, N(microstate) = (2L+1)(2S+1) = 28

2) M, (overallmax) =4 > L=4, Ms(max) =0, 2> S=0
- 1G, N(microstate) = (2L+1)(2S+1) =9




Nobel Prizes in Chemistry (1980-present) Awarded
to Theoretical and Computational Chemists

« 2013:

Martin Karplus, Michael Levitt and Arieh Warshel

"“for the development of multiscale models for complex chemical
systems"

« 1998:

Walter Kohn "for his development of the density-functional theory”
John A. Pople "for his development of computational methods in
quantum chemistry”

e 1981.

Kenichi Fukuil and Roald Hoffmann

"for their theories, developed independently, concerning the
course of chemical reactions"




Example: Find the possible values of the total-angular-

momentum quantum number resulting from the addition of two

angular momenta with quantum number j, =2 and j, = 3/2 .
Solution: J..., = J;+],=2+3/2=17/2
‘Jmin = |j1'j2| = |2'3/2| =1/2

- The possible J values are: 7/2, 5/2, 3/2, 1/2




quantum physics

Multiscales
modelling of Multi-
copper-oxidase

embedded In water RIS
physics

dielectric
medium

* Nobel Prizes in Physics for Quantum mechanics: M. Planck
(1918), N. Bohr (1922), Prince de Broglie (1929), W. Heisenberg
(1932), E. Schrdalinger (1933)




Effects of e-e interactions in an atom:
1) For the same n, different | = different E(AQO)

2) Different occupation patterns for a given number
of electrons within the same subshell differ In

energy.

m, 1 0 -1 m,
Single electron Many-e atom
No e-e Interaction e-e Interactions
Energy n (shell)  Electronic configurations
Angular momentum L=>"m (i) iIdn
orbital or I, m, —

Spin il or m,




The energy of the interaction between a magnetic dipole x and an
external magnetic field B Is angular momentum

Magnetic induction or

magnetic flux density

We take the z axis along the direction of the applied field: B = BK,
where K 1S a unit vector In the z direction. We have

E,=—" B(Mi+M. j+Mk)ek =2iB|v|z _Pegm
m

2m, h
angular momentum Z-component of angular momentum

We now replace M, by the operator M, to give the additional term in

the Hamiltonian operator: B P
| | p HB — IBeBh_le

The Schrodinger equation for the H-like atom in a magnetic field is

(I:Io+|:||3)l//: Ey




Wn,l,m — Rn,l(r)®l,m(0)®m(¢) — R(I’)Y|m(6,¢)

(Ho+Hg)R(r)Y,"(8,8) = H,R(r)Y," + i *A,BM,R(r)Y,"

Field-free Hamiltonian _Z°R + BBMR(FY"

r.|2

» There iIs an additional term in the energy.

» The external magnetic field removes the m degeneracy of
AQO’s in the same | subshell.

 For such obvious reasons, m is often called the magnetic
guantum number.




