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Plagiarism(Z|%j) = Academic Crime!

To plagiarize 1s to give the impression that something
you have written 1s your own when 1t was 1n fact taken from
someone else’s work. Plagiarism may take the form of :

* repeating another’s sentences as your own.
* adopting a particularly good phrase as your own.
e paraphrasing someone else’s argument.

* presenting someone else’s form of organization as your
own.

In the West, plagiarism is considered a serious
academic crime and may lead to expulsion from the
university!
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Follow these guidelines and you’ll never be accused
of plagiarism.

1. Use your own words and sentence structures.

2. When putting someone else’s 1dea in your own words
avold using any words from the original.

3. If you use any original words, use a quotation.

4. Acknowledge all 1deas taken from other writers,
except commonly held knowledge in the field.

[t 1s plagiarism to use some original words or phrases
from a sentence while changing others. It 1s also
plagiarism to keep the sentence structure and change all
the words to synonyms. .y



What is Chemistry

The branch of natural science that
deals with composition, structure,
properties of substances and the
changes they undergo.




Types of substances

]
Atoms Geometric Structure
Molecules
Clusters Size
Congeries makes the difference
Nano materials

Bulk materials \/ Electronic Structure
1



Structure vs. Properties

Structure determines properties
Properties retflect structures



Inorganic Chemistry =~ Material Science

Organic Chemistry Surface Science
Catalysis Life Science
Electrochemistry Energy Science
Bio-chemistry Environmental Science
etc. etc.

| |

Structural Chemistry



Funny things in Structural Chemistry
Nanoputians: Anthropomorphic Molecules
« "Nanoputian" is a

portmanteau of
nano and lilliputian.

Diol

Microwave Oven Irradiation
1-16 min

« Lilliput is a fictional
1sland nation that

Il? = acetal head and neck appears in the firSt
A part of the 1726

m u - Cgo \ novel Gulliver's

o\ro oTo oTo Travels by Jonathan
Swift.
NanoAthlete (14) NanoPilgrim (15) NanoGreenBeret (16) NanoJester (17)
oj\]/fo OTO OTO OTO OYO
NanoMonarch (18) NanoTexan (19) NanoScholar (20) NanoBaker (21) NanoChef (22) 1

Tour, .M. et al, J. Org. Chem. 2003, 68,8750; J. Chem. Edu. 2003, 80,395. ~ °




Funny things in Chemistry

Nanoputians: Anthropomorphic Molecules
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Tour, J.M. et al, J. Org. Chem. 2003, 68,8750; J. Chem. Edu. 2003, 80, 395.



Funny things in Structure Chemistry

Self-assembly of Nanoputians on Gold Surface

NH,4OH, THF

Au surface

Tour, J.M. et al, J. Org. Chem. 2003, 68,8750; J. Chem. Edu. 2003, 80, 395.



Role of Structural Chemistry
in Surface Science



NC - Coordination Number

Low-index surface:
NCMS < NCg.

High-index surface:
* Abundant edge sites.

X LIS
Sissassyy 0 Noa s NG = NG
0090700)0030050%¢ o W
%‘W L0W§r NC higher

O reactivity.

fee(775) fcc(108 7)

Surface structures of Pt single crystal



CH
AROMATIZATION | CH* 'CH
[ Il +4Ho»
CH. .CH
CH
CHy
CHy ™™
CYCLIZATION |2 }CH—CHg +4H,
Platinum CH}‘CH;
CH; CH; CH; Catalyst
CH; CHy CHy Excess Hp
Hexane ISONERIZATION ?H3
CH CHy
CH; CHj "CHj
HYDROGENOLYSIS CH; + CHp. . CHj
CHy CHj CH

(111)

(775)

(100)

(10 8 7)

Different surfaces do different chemistry.

Structure-sensitive Catalysis!



Another example of Structure-sensitive Catalysis
Surface Structure vs. Catalytic Activity

Fe
418 ,
- Fe single crystal
53 20 atm/700 K
: 1001
- 25
> T oo
*
s 10}
:l:m S
=
1
(110)




Role of Structural Chemistry
in Material Science



C Crystal Structures

o Graphite & Diamond Structures
0 Diamond: Insulator or wide bandgap
semiconductor: »>—»>— >—>—
0 Graphite: Planar structure: »>——
sp? bonding ~ 2d metal (in plane)

Same Element vs. Different Structures ]

Different structure = different properties!

o Other Carbon allotropes
“Buckyballs” (Cg,, C,, etc)
“Buckytubes” (nanotubes),

other fullerenes —>——

Stable hollow fullerenes: IPR
IPR = 1solated pentagon rule




Zheng LS (#==2%)), et al.
Capturing the labile fullerene[50] as C;,Cl,,
SCIENCE 304 (5671): 699-699 Apr 30, 2004.

* The pentagon-pentagon fusions in pristine C,,-D, are sterically
strained and highly reactive.

* Perchlorination of these active sites stabilizes the labile C,-Dy;.

I
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Two I,-symmetry-breaking Cgp ISOMers
stabllized by chlorination

#1.800C,_ Cl (1) #1.804C_ Cl,, (2)

YUAN-ZHI TAN*, ZHAO-JIANG LIAO*, ZHUO-ZHEN QIAN, RUI-TING CHEN, XIN WU, HUA LIANG, XIAO HAN,
FENG ZHU, SHENG-JUN ZHOU, ZHIPING ZHENG, XIN LU, SU-YUAN XIE", RONG-BIN HUANG
AND LAN-SUN ZHENG

Nature Materials, 2008, 7, 790. e



Chlorofullerenes
featuring triple
sequentially fused
pentagons

Xie S.Y., Lu X., Zheng, L.S.

et al

Nature Chem. 2010, 2, 269.

#BUC,Clg (), #*C54Cly, (b),
#169C _ Cl, (c), #19C, Cl,, (d).




Endohedral Metallofullerene:

Sc,@Cy, (Cs,) vs. S¢,C,@Cy, (1) QM-predicted in 2006
X-ray diffract. in 2009

Proposed ]

Sc,@Cyg,
AE = 28.8 kcal/mol AE = 0.0 kcal/mol
C,*@(S¢*),@Cy*-1,
° (Sc2+) 4@C 828' A Russian-Doll endofullerene
~ X.Lu, J. Phys. Chem. B. 2006, 110, 11098;
H. Rep. Prog. Phys. N Y > ’
2801:)1(1)1 Oggr%’grg,_ °p- T108- TAYS Lu & Wang, J. Am. Chem. Soc. 2009, 131, 16614

Highlighted by C&EN and Nat. Chem. 1



Role of Structural Chemistry
in Life Science



What do proteins do ?

Proteins are the basis of how biology gets things
done.

* As enzymes, they are the driving force behind
all of the biochemical reactions which makes
biology work.

* As structural elements, they are the main
constituents of our bones, muscles, hair, skin
and blood vessels.

« As antibodies, they recognize invading
clements and allow the immune system to get
rid of the unwanted invaders.




What are proteins made of ?

« Proteins are necklaces of amino acids, 1.e. long chain
molecules.

Primary protein structure
is saquenca of a chain of amino acids

Amino Acid




Definition of Structural Chemistry

e Itis a subject to study the microscopic
structures of matters at the

atomic/molecular level using Chemical Bond
Theory.

* Chemical bonds - structures - properties.



Objective of Structural Chemistry

1) Determining the structure of a
known substance

2) Understanding the structure-
property relationship

3) Predicting a substance with
specific structure and property
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Outline and Schedule
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hapter 1  basics of quantum mechanics 4
hapter 2 Atomic structure 4
hapter 3  Symmetry 4-5
hapter 4  Diatomic molecules 3
Midterm Exam !
hapter 5/6 Polyatomic structures 4
hapter 7 Basics of Crystallography  3-4
hapter 8 Metals and Alloys 1
hapter 9  Ionic compounds 2



Chapter 1 The basic knowledge of
quantum mechanics

1.1 The origin of quantum mechanics

--- The failures of classical physics

Black-body radiation, Photoelectric effect, Atomic and
molecular spectra

 Classical physics: (prior to 1900)
Newtonian classical mechanics
Maxwell’s theory of electromagnetic waves

Thermodynamics and statistical physics



1.1.1 Black-body radiation

« An object that absorbs all radiation falling on 1t, at all wavelengths,
is called a black body.

 When a black body is at a uniform temperature, its emission has a
characteristic frequency distribution that depends on the
temperature. Its emission 1s called black-body radiation.

The radiation represents a conversion
of a body's thermal energy into

electromagnetic energy, and 1s

— therefore called thermal radiation.

In classical physics, atomic oscillators
were supposed to have continuously

. . . distributed vibrational energy and
Device for experimenting

black-body radiation. therefore radiate energy continuousl, ] .



Black-Body Radiation Experiments
“Blackbody Radiation”

A large number of experiments

TS “"“ revealed the temperature-
| dependence of A, (or v, . ) of
experiment blackbody radiation and its

independence on the substance
made of the black-body device!

-

12000K

[rewity

Prior explanations based on
statistical mechanics & Maxwell’s
theory of electromagnetic waves are
not satisfying at all, especially in

3 | the high-frequency portion!

6000K

Note that according to classical theory, atomic oscillators
radiate energy continuously! i



Classical solution I: Stefan-Boltzmann law and Wien’s
law (high energy, low T)

(1) Stefan-Boltzmann Law M (T)/(10%W-m™)
M(T)=| M,(T)d2 =oT* P
0 1.0 E
Stefan—Boltzmann const. B o
oc=5.670x10"°W-m~> - K™ N
(2) Wien’s approximation 0.5 B
2 Iy’ £ \6OOOK
M, (T)==——e""" .
¢ e
Spectral
energy ﬂ’mT =) | / nm
density T 0" 1000 2000
b=2.898x10"m-K -



Classical solution II: Rayleigh-Jeans Law
(low energy, high T)

M (T)(107 W/(m? -Hz))

i Rayleigh-Jeans Rayleigh-Jeans law
2wy’
EXptl. MV (T) — ) kT
C

7= 2000k ﬂ

Ultraviolet Disaster

—_ N W A uhn N
|

| at low T!

31 /10" Hz




Solution to Blackbody problem [ .
(problem: theory diverges at low wavelength) '
won 1918 Nobel Prize in Physics. |

solution:

— =
* 1900: Max Planck proposed a formula
which fit the experimental data.

» required that the energy in the atomic

vibrations of frequency v was an integer n
times a small, minimum, discrete energy,

E=nhv (n=0,1,2,...)
* h is now known as Planck's constant,
=6.62x 1034 ] s

* no known physical basis for the “fitting”™

4h . . . .
3;,:; Quantized energy levels of atomic vibrations
%2]‘/’ -- The dawn of quantum mechanics! i

Key point!




Black Body Radiation

Planck showed using quantum mechanics that a black

body would emit radiation of the form To make this equation rationally

" approachable, the atomic
2hv’ / C2< oscillators could only gain or lose
MV(T ) = " hv/kT 1 energy in chunks, E = nhv !

/™

Many stellar sources can usefully be approximated to be
black bodies

_/

Hypothesis!

hv 2hv’ —hvIkT . .
il @(T): . e Wien's Approximation

hv 2V2
— <<1 M, (T) = — kT Rayleigh-Jeans Law
C




1.1.2 The photoelectric effect



The photoelectric effect

Evacuated
/ tube

photoelectron

plate

| . :
y J 0: -
C e
Positive / e
\n

electroce
++

‘+ Current
. / meter

Battery — | . 7



The Photoelectric Effect B

m
Light
E = hv
Electron
° Slope = h
\\\
N\
X 7 "
'\ /
/
Metal —qP

(a) (b)

1. The Kinetic energy of the ejected electrons depends exclusively

and linearly on the frequency of the light.

2. There is a particular threshold frequency for each metal.

3. The increase of the light intensity results in the increase of the

number of photoelectrons (current intensity). 1




Amplitude of a Wave

Higher

amplitude

(brighter)
Lower
amplitude
(dimmer)

Wavelength, A

Classical physics: The energy of light wave should be directly
proportional to intensity, but not affected by frequency, which
unfortunately 1s unable to account for the phenomena of

I
9 3

photoelectric effects.




Explaining the Photoelectric Effect

* Albert Einstein
— Proposed a corpuscular theory of light in 1905.
— won the Nobel prize in 1921

1. Light 1s consisted of a stream of photons. The energy of
a photon 1s proportional to its frequency.

E=hv (h -- Planck’s constant)

2. A photon has energy as well as mass. Mass-energy
relationship: &€ = me¢? 2 mass-frequency rel.. m = hv/?

3. A photon has a definite momentum. p=mc= hv /c = h/A.
4. The 1ntensity of light depends on the photon density.




Explaining the Photoelectric Effect

Therefore, the photon’s energy 1s the sum of the
photoelectron’s kinetic energy (E,) and the binding
energy (E,) of the electron in metal.

E,, = + E,,

photon — *~ binding inetic energy

hv =W+E, (work function of metal: W= Ej;, ...)

However, it should be mentioned that the particulate nature of light
had long been proposed by I. Newton et al. in later 1600s, while C.

Huyghens et al. noticed the wave nature of light!

I
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Example I: Calculation Energy from Frequency

|
Problem: 1) What is the energy of a photon of electromagnetic
radiation emitted by an FM radio station at 97.3 x 108 cycles/sec?
2) What is the energy of a gamma ray emitted by Cs!37 if it has a
frequency of 1.60 x 102%/s?

Plan: Use the relationship between energy and frequency to obtain
the energy of the electromagnetic radiation (E = hv).

Solution:
Ephoton =hv = (6.626 x 10-34J5)(9.73 x 10%/s) = 6.447098 x 10->4]

E =6.45x10-*#J

photon

E yunma ray =V = ( 6.626 x 10345 )( 1.60 x 102/s ) = 1.06 x 10-13J

E =1.06 x 10-13J

gamma ray 'f
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Example Il: Calculation of Energy from Wavelength

Problem: What is the photon energy of electromagnetic radiation

that 1s used in microwave ovens for cooking, if the wavelength of the
radiation 1s 122 mm ?

Plan: Convert the wavelength into meters, then the frequency can be
calculated using the relationship,wavelength X frequency = c (where c

is the speed of light), then using E=hv to calculate the energy.
Solution:
A=122mm=1.22x 10'm

E poon = hv = e/ A

~(6.626x107°*Js)(3.0x10°m/s)
1.22%x 10" 'm

=1.63x107*J




Example lll: Photoelectric Effect

* The energy to remove an electron from potassium metal 1s

3.7 x 10-1°]J. Will photons of frequencies of 4.3 x 10'%/s (red
light) and 7.5 x 10'* /s (blue light) trigger the photoelectric
effect?

. E,_, =hv=(6.626 x10-3Js)(4.3 x10'4 /s)
E ,=28x10"19]

e E,..=hv=(6.626x10"3s)(7.5x10'/s)
E . =50x10"19]



The binding energy of potassiumis = 3.7x10-°]

The red light will not have enough energy to knock an
electron out of the potassium, but the blue light will eject

an electron !

E photon =E Binding Energy + EKinetic Energy of Electron
E Electron Ephoton -E Binding Energy

-_ = 19 - = 19
E fecron =5-0x10°1°J - 3.7x10-1°J

=1.3 x 10-Joules
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1.1.3 Atomic and molecular spectra

* An atom can emit lights of discrete & specific frequencies

upon electric/photo-excitation.

Gas
discharge
tube
containing
hydrogen

A

Visblo -
A (nm)! ; T

4co

<00
B

A

LY

/ Sit

450

430

0

920

Prism

d /|
spectrum of S g €0 &
g [ | |

W

spectrum of H




Planetary model: Cm

 First proposed by Rutherford in 1911.

* The electrons are like planets of the solar system --- orblt
nucleus (the Sun).

» Light of energy E given off when electrons change orbits of
different energies.

Based on classical physics, the electrons would be attracted by
the nucleus and eventually fall into the nucleus by continuously
emitting energy/light!!

Why do the electrons not fall into the nucleus?

Why are they 1n discrete energies? 1



Bohr’s atomic model

* Niels Bohr, a Danish physicist, combined the Plank’s quanta
1dea, Einstein’s photon theory and Rutherford’s Planetary
model, and first introduced the 1dea of electronic energy level
into atomic model. (Proposed in 1913)

y n=4
* Quantum Theory of Energy.
* The energy levels in atoms can be pictured
as orbits in which electrons travel at
definite distances from the nucleus.

* These he called “quantized energy levels”,
also known as principal energy levels. n : principal

quantum

number
(Proposed in 1913, won 1922 Nobel Prize in Physics) ;



The Bohr Model Explanation of the
Three Series of Spectral Lines

n
S g
SESSSIFSSR=c6
L ] (I
= Pnfrared
G SN | ]
= -~ Visible
> S
Visible < & 8" -
series X =
</ e I
v/ 5
Ultraviolet series §
-200
Ultraviolet
.-218._"!-&"-! --------- 1

A B 100 200

Wavelength (nm)

The electron in H atom can be promoted to higher energy levels by
photons or electricity.

I
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The Energy States of Hydrogen-like Atom/Ions

Bohr derived the energy for a system consisting of a nucleus plus
a single electron (H and H-like 1ons),

C.g. H He+ le +

and predicted a set of quantized energy levels given by :

2
RZ
E = 5 N= 1,2,3... Rydberg Equation
n
- R is called the Rydberg constant (2.18 x 10718 J)

- n is a quantum number
- Z is the nuclear charge



Problem: Find the energy change when an electron changes from the
n=4 level to the n=2 level in the hydrogen atom? What 1is the wavelengtt
of this photon?
|
Plan: Use the Rydberg equation to calculate the energy change, then
calculate the wavelength using the relationship of the speed of light.

Solution: |~ £ =-RZ’/n*> (R=2.18x10""J)

| |
.'.AEzEm—Enz:—R(_2— =)
n.n

= —R(412 — 212 )=3R/16=4.09x10"J

Ao M 474107 m =487 nm

hoton
i E

photon AL T
9 3




Summary of Class 1
1.1 The failures of classical physics

1.1.1 Black-Body Radiation

Planck’s quanta idea E =mnhv for atomic vibrations
1.1.2 The photoelectric effect

A corpuscular theory of light (photons)

e=hv =mc’ h=Planck’s constant
p=h/A  (particle nature of light !)

Qualitative model

1.1.3 Atomic and molecular spectra
Planetary model: orbits of electrons around the nucleus
Bohr’s atomic model: quantized energy levels of orbits

For H-like atom/ions . _ RZ Quantitative model
n- 2
n




The aforementioned experiments implied, for the first
time, distinctive quantum effects pertaining to the
behaviors of such microscopic particles as atomic

oscillator, photon, and electron (within atoms) .

1.2 The characteristic of the motion of
microscopic particles

Wave-particle duality & The uncertainty principle



1.2.1 The wave-particle duality
of microscopic particles

In classical physics, waves and particles behave differently
and can be described by rather different theories.

Air
Water .
Angle of |
refraction i _
1 ]
A B
Crests of Beam of
particles

=1l




Einstein’s Corpuscular Theory of Lights for the first time

introduced the wave-particle duality of photon:

E=mc’=hv & p=h/A (Wave-particle relationship)

¢ In 1924, de Broglie suggested that microscopic
particles such as electron and proton might also have
wave properties in addition to their particle properties.

E=hv (1) |\p -particle momentum

1929 Nobel prize!

p=h/A (2) |4 -deBroglie wavelength

» The wavelength of a particle:

A = hlp = h/mv (v: velocity, m: mass) i



Example: Calculate the de Broglie wavelength of an
electron with speed 3.00 x 10°m/s.

The mass and speed of an electron are:

m,=9.11x 103 kg v,=3.00 x 10° m/s
Its momentum can be expressed as: p=mv & p=h/A

Thus its wavelength can be expressed as,

1= h _ 6.626 x 1034J - s
m,yv, (9.11 x 10-3'kg )( 1.00 x 10° m/s )
)
1J= 1 ng M  hence
S

Wavelength of the electron: A=2.42x 101 m = (0.242 nm

Q: How to make use of the wave nature of electrons?

I
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An moving electron accelerated by an electric field:

The moving speed of an electron 1s determined by the

potential difference of the electric fiel

d(¥)

E,=my./2=eV =v, = JZeV/me

(If Vo= 0)

1 eV=1.602x10"1°]

If the unit of ¥V 1s volt, then the wavel

A=h/p=h/my,= h/\/ZmeeV
6.626 %107 I

2% 9.110%10 x1.602x10™° vV
~ 1.226x107

Vv

(m)=1.226/V (nm)

ength 1s:



The de Broglie Wavelengths
of Several particles

Particles Mass (g2) Speed (m/s) A (m)
Slow electron 9x 102 1.0 7x 104
Fast electron 9x10-28 5.9 x 10° 1x10°10
Alpha particle 6.6 x 10-24 1.5 x 107 7x 101
One-gram mass 1.0 0.01 7x10-%
Baseball 142 25.0 2x10-34
Earth 6.0 x 10%7 3.0 x 104 4 x 10 -3

I
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The diffraction of electrons
- -Evidence of wave-like behavior

Electron beam (50eV ~A =173 A) | szess

Si Crystal

STM image of
Si(111) 7x7
surface

Pattern of
electron diffraction

(Si-Si=2.35 A)
T,



Electron as waves

Spatial image of the confined electron states of a quantum corral.
The corral was built by arranging 48 Fe atoms on the Cu(111)
surface by means of the STM tip. Rep. Prog. Phys. 59(1996) 1737

9 f 3



The wave-particle duality
* Wave (e.g., light)

- can be wave-like (diffraction)
- can be particle-like (p = h/A)
* Particles (e.g., electron)
- can be wave-like (A =h/p)
- can be particle-like (classical, p = mv)

* A wave of microscopic particles 1s a probability wave,
neither like the macroscopic mechanical wave nor like the
normal electromagnetic wave!

* [t reflects the statistic probability of particle motion in
space!




The differences between photon and microscopic particles

For photon: ~
_ , : Wave-like
p =mc (c1s a constant, variable m) \[
E=hv =h(c/A) =pc =mc?
E=hv
# p%/2m = (1/2) mv? >
P : . . p=hA
or microscopic particles:
p=mv (given m! velocity v ) Par t'!cle-like

E =mv?/2=p%(2m) =pv/2 |+ pv _/

A=u/v ...whatis the meaning of u?

For photon: v=c, A=h/p = h/(mc) = u=h/m (variable)

For particles: A=h/p =h/(mv) 2 u=h/m (givenvalue!) , | .



Ira N. Levine’s words regarding “wave-particle duality”

How can an electron be both a particle; which 1s a localized
entity, and a wave, which 1s nonlocalized? The answer i1s that an
electron is neither a wave nor a particle, but something else. An
accurate pictorial description of an electron’s behavior 1s impossible

using the wave or particle concept of classical physics. The
concepts of classical physics have been developed from experience
in the macroscopic world and do not properly describe the
microscopic world. Evolution has shaped human brain to allow it to
understand and deal effectively with macroscopic phenomena. The
human nervous system was not developed to deal with phenomena
at the atomic and molecular level, so 1t 1s not surprising if we
cannot fully understand such phenomena.

I. N. Levine, Quantum Chemistry (5" ed.)

3



1.2.2 The uncertainty principle

* In classical Physics, the position and momentum of a
macroscopic particle (a body) can be certainly determined at a
given time.

 This 1s not the case for a microscopic particle!

 In the diffraction experiments that imply the wave nature of
electrons, the observed wave pattern 1s just a statistic
distribution of electron motion. The exact position and

momentum of an electron at a given time remain uncertain.

In 1925, Heisenberg developed the matrix formulation of quantum
mechanics and noticed the uncertainty in position of electrons in an
atom. .



e-beam

Csl film

Image of electron diffraction of Csl

The Csl film works as a (atomic-level) slit! ‘



* The experiments of electron diffraction revealed:
The narrower the slit 1s, the larger 1s the central area of
the diffraction pattern.

 What is behind such phenomena?

1932 Nobel prize in Physics

—

The more precisely the position is determined, the less
precisely the momentum is known in this instant, and
vice versa.

--Heisenberg, uncertainty paper, 1927 - I,



The experiments of electron beam diffraction revealed that the
narrower the slit 1s, the larger 1s the central area of the diffraction
pattern. What is behind this phenomenon?

The width of the slit:

position uncertainty of electrons passing through the slit.

 The central area of the diffraction pattern:

The 1st—order diffraction area, which reflects the momentum

uncertainty of electrons passing through the slit!

* Thus, the phenomenon of electron diffraction illustrates that
“the more precisely the position of electron 1s determined, the less

precisely momentum is known...”

How to prove the uncertainty principle? 1



Electron diffraction vs. The electron “waves” reaching the

Uncertainty principle edge of the 1%t-order diffraction area
Ax =D =204 (width of the slit) should be destructively interfered:
(position uncertainty!) OP— AP = 1 1=0C
2
A g = sind=0C/O0A= /D
l Meanwhile, the electron deflected
A upward/downward by an angle 6
0
53 O \9 B » has an x component of momentum:
T I p.=tpsind = Ap= psin0
'+ ZLPCA = 90° Q -
= AxAp =Dp(A/D)=h
S LPCB =~ LOAC =6 P p( )
Intensity of . . . .
diffraction Including higher-order diffractions,
p Ap = psind — AxAp=>h

C /l psind A quantitative version
0 O 'B AxAp>h/4x or W/2 .|,




Example

The speed of an electron 1s measured to be 1000 m/s to
an accuracy of 0.001%. Please find the uncertainty in
the position of this electron.

Accuracy of speed: o= 0.001%

The uncertainty in its momentum: Ap = m vo

The uncertainty 1n its position: Ax = h/Ap = h/(m v o)
= (6.626 x 10-3%)/[ (9.11 x 10-31)(1 x 10%)x0.001%]
=7.27x 102 (m)=7.27 cm



Example

The speed of a bullet of mass of 0.01 kg 1s measured to
be 1000 m/s to an accuracy of 0.001%. Find the
uncertainty in the position of this bullet.

Accuracy of speed: o= 0.001%

The uncertainty 1n its momentum: Ap = mvo

The uncertainty 1n its position: Ax = h/Ap = h/(mv o)
= 6.626 x 1034 /[(0.01 kg) (1 x 10° m/s) x 0.001%]
= 6.626 x 1030 (m)



Another form of the Uncertainty Principle!
AE At > h

Example

The average time that an electron exists in an excited state
is 10 s. What is the minimum uncertainty in energy of
that state?

AE = /At =1.06x107* Js/ 107 s

—26
_1.06x102 j=100x10 "~y

1.6x107"
=0.66x107" eV
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Measurement

*Classical: the error in the measurement depends

on the precision of the apparatus, could be

arbitrarily small.

Quantum: 1t 1s physically 1mpossible to

measure simultaneously the exact position and

the exact velocity of a particle.



CLASSICAL vs QUANTUM MECHANICS

Macroscopic matter - Matter is particulate, energy varies

continuously. The motion of a group of particles can be
predicted knowing their positions, their velocities and the

forces acting between them.

Microscopic particles - microscopic particles such as

electrons exhibit a wave-particle “duality”, showing both
particle-like and wave-like characteristics. The energy level

1s discrete. ...

Description of the behavior of electron(s) in an atom
requires a completely new theory-- “Quantum Theory’ 7}




Quantum mechanical description of Electron

* Quantum mechanics 1s basically statistical in
nature.

* Quantum mechanics does not say that an
electron 1s distributed over a large region of
space as a wave 1s distributed.

« Rather it 1s the probability patterns used to
describe the electron’s motion that behave like
waves!



1.3 The basic assumptions
(postulates) of quantum mechanics
Wavefunction Hr, t) of OM State
* Operator of Mechanical Quantity
 Time-dependent Schrodinger Equation
* Superposition Principle

 Pauli’s Principle



Postulate 1. The state of a system
is described by a wave function of

the coordinates and the time.

H“r Y



CM (classical mechanics) :

The state of a system of /V particles 1s specified totally by giving:

3N spatial coordinates (x;, y, z;)
&

3N velocity coordinates (v, vy, V.,).

Phase Space :  {(x,y2)}, {(Dsi» Py P2/
OM(Quantum Mechanics):

The state of a system of /V particles 1s described by

a wave function y(r, t) that depends on the coordinates of the
particles and on time.

Hilbert space



For example:

The wavefunction of plane monochromatic light:

v = Aexpl i2n(x/ A —vt)]

Now let us consider the wave function for a microscopic particle of a
1-D free motion.
 Its particle-wave duality gives,

E=h&p=h/A =2 v=E/h& I/1=plh.

e Thus, its wave function ¥ can be derived as:

v = Aexp[( i2x / h)( xp — Et )]



A wave function must satisty 3 mathematical conditions:

1. Single-value; 2. Continuous; 3. Quadratically integrable.

a) The product of wave function ¥(r,t) and its complex
conjugate ¥(rt)* represents the probability distribution
function of the system. (Physical meaning of wave function!)

probability density : “P( r,t )‘2 =VY*(r,t )¥Y(r,t)

b) The wave function ¥(r,t) must be continuous in space.
Otherwise 1ts second derivative would not be attainable.

c) The wave function of a system must be quadratically

integrable so as to evaluate the statistical average values of its
physical properties. i



The probability distribution function is ¥ * (7, 1)y (7, 1)

Thus the probability that the particle presents in the
volume element d7 (=dxdydz) around r at time ¢ 1s

= (r, )y (r,t)dxdydz

To be generally normalized

o0 00 0O

jjjl'”*(’"af)W(V,l)dxdydz —1

—00—00—00

* Wave functions of different states for a given system
must be generally orthogonal:

TTTW;‘(VJ)WJ(V,I)dxdde —()



Postulate 2. Each observable mechanical
quantity of a microscopic system is associated
respectively with a linear Hermitian operator.

To find this operator, write down the classical-mechanical
expression for the observable i terms of Cartesian
coordinates and corresponding linear-momentum, and then
replace each coordinate x by the operator x, and each

momentum component p_ by the operator —ihJ'cx.

of phase space normally become hermitian operators in a Hilbert

In quantum mechanics, the coordinates p (momentum) and q(position)'
space.

I
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Definition of operator:

An operator 1s a rule that transforms a given function into
another function, e.g. d/dx, sin, log etc.

D = d/dx fx)=x"-5
Df(x)=(x"=5)'=

(A + B)(x) = Af(x) + Bf(x)
(A — jé)f(x) = Af(x) - Bf(x)
ABf(x) = A[Bf(x)]

Operators obey the associative law of multiplication:

A(BC) = (AB)C



* A linear operator means

Ay, +y,) = Ay, + Ay,
Acw =cf\\|/

A Hermitian (B 3£3E or JEZK) operator means
I \|/TA\|/1dZ' = j v, (A, )*df
_[ \VTA\Vsz = J. Vs (AWI ) dr

A Hermitian operator ensures its eigenvalue being
a real number!




Eigenfunction and Eigenvalue

Suppose that the effect of an operation on a function f(x)
by the operator A is simply to multiply f{x) by a certain
constant k. We then say that f{x) is an eigenfunction of A
with eigenvalue k.

Eigen 1s a German word meaning characteristic.

Affx) = kf(x)
e.g., (d/dx)e™ = 2e™

Hence, e’ is an eigenfunction of the operator d/dx
with an eigenvalue 2.




Mechanical quantities and their Operators

* To every physical observable there corresponds a linear

Hermitian operator.

« To find this operator, write down the classical-
mechanical expression for the observable in terms of
Cartesian coordinates and corresponding linear-

momentum components, and then replace each

coordinate x by the operator x and each momentum

component p by the operator —ihd/cx.

I
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Some Mechanical quantities and their Operators

Mechanical quantities

Position
Momentum (x)

Angular
Momentum (z)

Kinetic Energy
Potential Energy V

Total Energy

Mathematical Operator

2

~

X X =
. ih © 0
p = - — = —Jh—
x PO T ok ox
A ih % 0
_ M =- X—-
Mz_Xpy_pr ’ 2 ( oy Y @X)
2 2 2 2
T=02/2m T 0 0 0 _ h
2 87r2m(6x2 i oy’ " 822) 87°m
V=V
— A nw o0° 0 0
E=I+V Blsce—"—(C 55>+ 5
____———  87'm oOx° 0y 0z

Hamiltonian

I
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The average value of a physical observable

If a system 1s 1n a state described by a normalized

wave function ¥, then the average value of the

observable 4 corresponding to operator A4 is given by —

<Cl> = I V' APdr  with I wryg =1  (normalized

function!)

General case: Whether ¥ 1s normalized or not, the average value
of the observable 4 corresponding to operator 4 1s given by

I v APdr
= (Please always use this formula!)
I WYt i

(@)




If the wave function ¥, is an eigenfunction of A, with eigenvalue
a,, then a measurement of the observable corresponding to 4 will

give the value a, with certainty.

9

n

| W d =1 & AV, = a¥

(a) = [ x40, dr  (a*) = | V347V dr

J‘ ¥ *a ¥V dr = j SUn*;l (a ¥V )dr

= anj‘ Y * dr= a,

asj‘ W R dr=a’

Scattering - 2 <a2> B <Cl>2 — =0
difference ~a -~ no

Thus the only value we measure for A is the value a,. T




Commuted operators (X7 2 5 77)

jﬁ\,c"}]:ﬁé-éﬁzo

Poisson bracket

 When two operators are commutable, their
corresponding mechanical quantities can be measured

simultaneously.



A AD

Example: What is the value of [X, px] ? Are the two operators
commutable? z

A A2 I Z V. Ox
[x9px]w_xx_pxx)W) 82
52 52 p.=p.p. ="~
= [x(-h =—y)+h — Ox
[ x( ™ ) ™ (xy)]
0’ 0 0
= [x—y ——(y +x—
[xaxzw 5x(w xaxw)]
2 a 82

%,
=W [x—y—(—W+—y+x—
[xﬁle// (le// wa x8x2 2

0

:2h2_l// =2ihﬁxwz>[x)ﬁ§]=2ihﬁx # 0 ( ﬁx =_ihi)
Ox Ox

The two operators are not commutable! How about [X, P, ]?

I
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Postulate 3: The wave-function of a system
evolves in time according to the time-
dependent Schrédinger equation

Potential-energy

=H¥(r,t), H= f+V(r,t)Vfuncti0n
|

L OV(r,1)
ot

(This concept was first discovered in 1926 by the Austrian physicist
Erwin Schrodinger (1887-1961), who won the 1933 Nobel Prize.)

Let’s consider a free particle of 1D-motion. Its wavefunction is

i oy iE oy
)= Aexp[/——( Et — = — —— W =>ih—=F
w(x,1) pl h( px)f Py Y Py W
629” p2 h2 a2w p2 p2
& = — o == te: V=0
ox> h? FYh i 2m Ox?> 2mw 2m (noie )

i oy _ h* 0w Time- dependent Schrodinger equation ,
ot 2m ox?  forafree particle of 1D-motion. 1



oVY(r,t) ~
ot

17

=HY(r,t)

e.g., ﬁ=f+V(r)

In case the Hamiltonian H is fime-independent, fthe variables in

this equation are separable, 1.¢.,

V(r,)=y(1) i

df (1)

dr

= ihy(r) = flt)- Hy (1)

divided by y(r) of(1)

f(1)= ol

i df(1) _ Huy(r) _ =

—
f(r) dt y (1)

Time-inde

jw(r’t):lly(r)e-lﬂt/h

or simply using

w(r)

Hy(r) = Ey(r)

pendent Schrodinger Equation!

-- wavefunction of stationary state

I
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w(r,t)=y(r) e (1) wavefunction of stationary state

Its probability density can be expressed as,

W (r ) =y(r)*y(r,)
— [e—iEt/hV/(r)] e e—iEt/hw(r)
_ eiEt/hw(r)* e—iEt/hW(V)

—w(r)*w(r)=|w(r) e Time-independent!

@ For the states defined by equation (1), the probability density is

solely given by |y(r)|? , being time-independent!

@ These so-called stationary states have constant E and time-

independent distribution of probability density. i



For a one-particle QM system, its wave function fulfills the

Time-independent Schrodinger’s Equation

[r[l//(x, v, Z) = Ew(x, v, )| one-particle Eigenequation

PP =P+ P24 P g:_;'_haiz_ihaiﬁ P
T OX 57 * Ox
A h°  0° 0° 0° A
S H = —2m(ax2 +8y—2 +a7)+V (Ih\—/’l/zﬂ')
Dirac constant
2 2 2 2
—— h2 Vi +V (LetV2=~8—2+a—2 +a—2
87 °m Laplacian ( Ox oy Oz f




For the electron 1n a H-like 10n:

Spherical polar coordinates

e (rog)

X

=y

1 0, ,0

Vie — 2 (P )4

N r* or or

Laplacian

1

A /R h? 5 A
H=- Vi+V, . =-—5—V +V .
2m, r'm,
: A 70’
x=rsincosy | 17 _ _~£€
y = rsinfsing " dre,r
Z = rcosf
o , . 0 1 0’
. (SInf—)+—5— ;
r-siné 06 060 r°sin" 6 0¢

I
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Example : For a particle moving around a circle of r = a with V' =10,

please derive i1ts Schrodinger equation and wavefunction(s).
(p.21, 1.28)

A " A A hz ,
Hy = Ey H:T+V:—2m V2 w(x,y)orw(0)
, 00 o* 1 & Crox=acoest Y .
V = 2+ 5 — 5 5 B . e .
ox~ ov- a 060" y=asin0)
h2 62
S aaWEEy & p(0)=y(0+27)
2ma” 00 Boundary condition
= -1/2 _in6 _ h’n® .
Wn_(zﬂ') e ,En— R n=0,+1,%£2,---
87T °ma

Theirreal form: w,  =z""*sin(nd), v, ,=7"*cos(nd)

There exist two degenerate states for each energy level, except for i
n=0! S



The Schrodinger’s Equation is an eigenequation.
Ay =ay

In any measurement of the observable associated with the
operator A4, the only values that will ever be observed are the
eigenvalues a, which satisfy the eigenequation.

« For a QM system, an eigenfunction of the Schrodinger equation

describes a pure quantum state, namely eigenstate.

« A system in a linear combination of multiple different eigenstates

(1.e., a mixed quantum state) does 1n general have quantum

uncertainty for the given observable.



I. The eigenvalue of a Hermitian operator is a real number.

Proof: A"W“ _ a’*‘w"‘

f w' Apdr =a j W wdr = a j w(A"w )dr=a" j " dT =

'.'Jw(A*w*)df:Jw*Awdr ca=a

Quantum mechanical operators have to have real eigenvalues.

I1. The eigenfunctions of Hermitian operators are orthogonal

J‘%*wjdf:dj =(

av’c



I1. The eigenfunctions of an Hermitian operator are orthogonal
Consider two eigenequations of a system
Ay, =ay, Ay,=ay,

which corresponds to two different states of the system concerned.

Multiply the left of the 1st eqn. by w,* and integrate, then

take the complex conjugate of eqn. 2, multiply by y, and
integrate

oAy, dr=a,|y,y,dr

(v, Ay, dr=a;, [w,y,dr



Substracting the two equations gives

J"% * Ay dr — j w A*y *dr =(a_ - am*)me *w dr
As A is Hermitian, it gives
J‘l//m *ﬁwndr —Iy/ﬂﬁ*gym *dr =0
= 0, -0, v, ", de =0

There are 2 cases, n = m, or n #m.

1) If n = m, by normalization, the equation becomes
(a,-a,*)=0 - jwn *w dr=1 (normalization!)

S.a,=a,™ The eigenvalue is a real number! fi



1) If n #m, and the two states of the system are nondegenerate (i.c.
different eigenfunctions do not have the same eigenvalues,

a, #a_ ), then
(a, -am)M *y,dr =0

demands Il//m * Wndf =()

The eigenfunctions of an Hermitian operator are orthogonal.

(v, *wdr=5,=0 (i#}))




Example: The 1s and 2s orbitals of H atom.

B 1 2a, r
P (H)=——e"" @, (H)=———e "> (2"
'\/ﬂug 327200 d,
oz —-rlay —-r/2a
PP, dT = 1724 (2 = L) sin Odrd@d §
j o 4\/_7m ’[ J. '[ a,
A4z =2 _2; 2 r
= 0 2__d
427 '[0 ¢ ao) "
T o 3r
_ | [J‘ ezaorzdr_"‘ ezagr_dr =y
2613 ¢ 0 a, 20!0
—— e‘y 3d
B 27] “dy yay]
16 16 1 16 16

==l TR - T (4)] =

\r

2——.311=0
ﬁ[z7 81 | ’



Postulate 4 : Superposition Principle
(2R E)

If vy, ws,.. v, are the possible states of a microscopic
system (a complete set), then the linear combination of
these states is also a possible state of the system.

W=y ey, ey ey, = cy,

1) The coefficient ¢; reflects the contribution of y; to ¥.

2) If {y} are eigenstates fulfilling the eigenequations {4y, = 4.y}, a
system 1n such a mixed quantum state ( ¥) does in general have
quantum uncertainty for the given observable A4, the average value of
which can be derived as,

Jgj*ABUdT ZCzA In case ISU*SUdr—Zc —

j&”*&”df ZC (4 >=ZC,- j .y

(4)=



'-"P=Zc,-w,-;?1wz-=/1,-w,-; ft//ﬁ“%dr:l; fc//,-*wjdf=0

- [rwde = | (Zc,- 7 )*(Zcf w, )dr
—Zc Il// V. dr+Zc C. Jw y,dr = Zc-‘

=1, Yis

normalized!
*1, ¥ is not

i#] —normalized yet!

J‘SU*QSUd‘L':j‘(ZCi Vi )*A(Zcil)yi )dt
—Zc jw Aw dr-l—Zc,cljw AI,V ar = Zc

I-‘;ﬁj

normalizing

<

jav*AsUdr ZC“L If [rvde=3 ¢ =1 quz\P/\/?
Jrrede 2e ()= Zc?/\ |

the eigenstate .

RN eIl

c; is the probability of the particle (described by V) presenting |
I




Example:

When /=1, atomic p orbitals in complex form have three

components (p,, p+; and p_;). The real forms of atomic p
orbitals can be constructed as,

pO :pz
P :(p+1+p-1)/\/5

The p, (or p,) 1s not an eigentunction, having 50% p,, and 50% p_;.



Example: CH, has four valence MO’s (canonical MO’s or
delocalized MO’s) V. of different energies, 1.¢€., a lower-energy MO
of a; symmetry, and three higher-energy MOs of t;, symmetry. The

four localized MO’s of this molecule can be constructed as,
C CH, 4H
4

LMO CMO =l
(Di B ZCU\PJ T A

g

J=1 F+ 4 4o
On the contrary, 1f we know -H- H— -H- f, -14.6cV (UPS:-14.35¢V)
the localized MO’s of this 25 1
molecule, its canonical MO’s H‘ S
can be derived as C/
CMO : / \
B LMO ‘
\IJJ - ZCU CDi &l /b\ O

i=1 Q // N



Generally, the CMO’s of a molecule are expressed in the form of linear
combination of all atomic orbitals (LCAOs) of its constituent atoms.

Thus, CMOs are delocalized 1n nature. MO _ Z c. o0l
CMOs of CH, ’ —
g™ CMO AO. AOsof H atoms O
g a ¥, =s+(s, +1s, +1s +1s,)/2 / ‘ A
&, h:¥. =p +(s,+1s,—1s,-15,)/2 [ WX
i 1 X P o ( a b ¢ a’) =Y _ o _\ O

g ¥, =p +(s,-1s,—1s, +1s,)/2

& LYY, =p +(1s,—1s, +1s,—1s,)/2 |
LMOs of CH, )
LMO  CMOs HO of C, Hls

O, =Y +V +¥ +¥Y.=(s+p,+p,+p.)/2+]1s, Are the four LMOs
O, =¥ +¥ -¥ -V, =(s+p,—p,—p.)/2+1s, equalinenergy?

D, =¥, ~F, ¥, +W, =(s—p,—p,+p,)/2+1s, DS POV

O, =Y -VY.+Y¥Y -Y.=(-p,+p,—p.)/ 2+]1s, 1

L
\J




|

Postulate 5 : Pauli's principle(ZF| A HH % R #

Every atomic or molecular orbital can only
contain a maximum of two electrons with
opposite spins.

).



Energy level diagram for He. Electron configuration: 1s2
0 1 2 4

3

AL

Energy

1s!

N
< paramagnetic — one (more) unpaired electrons
S

N 1s?

diamagnetic — all paired electrons T




The complete wavefunction for the description of electronic motion
should include a spin parameter 1n addition to its spatial coordinates.

m¢ = Spin magnetic quantum number — electron spin
ms=T% (-2=a) (+72=f)

Pauli exclusion principle:

Each electron must have a unique set of quantum numbers.

Two electrons in the same orbital must have opposite spins.

*Electron spin is purely a quantum mechanical concept.

I
9 3



The complete wavefunction for description of electronic motion
should include a spin parameter 1n addition to its spatial coordinates.

O = ‘P(n,l,m,)-;((s,ms)

e.g., For atwo — particle system

#(q,9,)

2 2
‘¢(%,%)‘ = ‘¢(C]2,%)‘ { + symmetry (Bosons)
#(q,9,) =*+9(q, 9,) - Antisymmetry (Fermions)

 Fermions (e.g., electron) obey the Pauli Exclusion Principle.

 Bosons (e.g., photon) do not obey the Pauli Exclusion Principle

Note: Electrons within a many-electron molecule/atom are
fermions! Thus, the wavefunction to describe any of the states

of such a many-electron system should be antisymmetric! 1



N

Permutation operator P1 5

e.g.,wavefunction for atwo - particle system: ¢(q, q,)

]312¢(%,%) = ¢(Q2,91) = }312}512¢(%,‘]2) = }312¢(%,%) — ¢(ql,%)
Suppose B,¢(q,q,) =c$(q,q,) (c: eigenvalue of B,)

— PlzPlz¢(qL%) = Plz[c¢(%,%)] = Cz¢(%,%)
—=c’ =1, c=+1 (fermion:c=-1;

2

boson: c=1)

e.g., the wavefunction of two electrons in the ground state of He (1s?)
should be antisymmetric upon permutation (1.e. fermionic)!

#(1,2) = [1s(D1s(2)][a(1) £(2) - a(2) £(1)]

Orbital part Spin part
Symmetric anti-symmetric

which 1s a linear combination of the possible microstates of the i
very electronic configuration! T




1.4 Solution of free particle mm a box -
a stmple application of Quantum Mechanics



1.4.1 The free particle in a 1-dimensional box

1. The Schrodinger’s Equation A A
and its solution ;
V(ix)=% . Vi(x)=
3 ~ nod’ A
Hy =ty H=-— ~- + V
hz dz V(x)=0
V) (B y(x)
&qr°m dx >
x=0 x=[
Inl& I (1D potential trap)
== — =V hz d2'//
5 ) l//(X) — 5 ) 5 0
h™ dwy(x) > Sqz-mV  dx
; s =Vy(x)
8r°m  dx (x<0 or x>1/)

- The probability of the particle presenting in either area I or 111 is 0.
That is, the particle 1s completely trapped 1n area I1. i



Area II: V=0 ﬁw:Ew with 17 __ h' d’ L= hod’
87°m dx’ 877°m dx’

i 2
|:> 4 V/(x)+8722mEt//(x):O Now set 87°mE/h” =

dx’
The equation becomes  J*w/( x
1 W(z )+a2t//(x)=0
dx
o wy(x)=A"e" +Be '™ or
with

w(x)= Acosox + Bsinax
Considering the boundary conditions: y(0)=0, y(l)=0
We have y(0) =Acos0+Bsin0 = A + 0 = 0 2> A=0
wm(x) =Bsinax (B+#0)
w(l) = Bsinad =0 =@sinal=02> al=nn, o=nn/l(n=1,2,...) e



87'mE | n'rm n’h’
- S ¢ 2 2
h [ 8ml

“w(x)=Bsinax = Bsin(%x}

Now normalizing it,

] 2
2| (o) de=1
oy, . ATX 5, NPT | P
..IOB (smT) dx =1 (.j(smx) dx= |2(x 2Sthx))

332.1””( / x)5=32.l”77. / .[=B2.i=
2 |l nrx 2 |l nrx 2

:B:\g .'.y/(x):Bsin%xz\/%sin%x

1



n*h’
8ml*

&y = \/% sin(? ) (n=12,3..)

2. Properties of the solutions £ =

a. The particle can exist in many pure quantum states (eigenstates).

b. Quantization of energy. Ground-state energy

—

c. The existence of zero-point energy (minimum energy

(E i = h¥/8mP?) = ——
=l g = —e = EIEs
d. There 1s no trajectory but only ,
o bt | B 45 _ 2 . 2mx
probability distribution! n=2 £ = W, sin
> 8ml? / /
. Th .
e. The presence of nodes . o7 T
n=3 = W, = |~ sin——
P 8ml? [ [




Energy levels in the well v/(\) « sin(nmv/a)  Probability density o« | y(x)|?

Energy

n=4
E,

node

Y3 node
n=3

g

EZ"

e

E, n
0 |I r.\‘ -/\
x=10 X=a 3 X

0 a a

In the ground state (n=1), the highest probability of the particle
occurs at the location a/2.

In the first excited state (n=2), the highest probability of the particle
occurs at the locations a/4 and 3a/4, the lowest probability at the
location a/2. T



Discussion:

1. Normalization and orthogonality

| —
Jéwn(x)wm(x)dx:%j;sm%m@dx:{ (n=m)

0 (n#m)
ii. Average value . y~_ 2 I ] (sin 222 x(sin 2%y = !
[ 90 [ [ 2
< x*>= %j](sin @)xz (sin @)dx = E
[ 70 [ [ 3

I ., . nmx ., .. d . nmx B
<p >= J.ngnp @, dx = J.O(smT)[—zha(smT)]dx =(

A A

oH=T=p*/2m (Thus p* and H are commutable!)
= Py, =2mHy, =2mE,y,

2h2 h
n412 = p\zZ—l Differing from <p>!

I
9 3

=< p’>= ‘p‘z =2mE =



111. Uncertainty
A =A< >—<x > =

203
nh
Aza=\/<pz>—<p>2 |yl i) >=7

When n=1 (ground state)

nh nh

2f21 a3 AxApzzi:h
T

— AxAp =

1v. Wave-particle duality

‘}3 —h/ 1= A= h _ 2] e, deBroglie wavelength of the
‘ }3‘ n  particle in the 1D potential box!



The general steps in the quantum mechanical
treatment:

a. Obtain the potential energy functions followed by
deriving the Hamiltonian operator and Schrodinger
equation.

b. Solve the Schrédinger equation. (obtain v, and E,)

c. Study the characteristics of the distributions of vy,
(e.g., boundary conditions)

d. Deduce the values of the various physical quantities
of each state.



Remarks on the 1-D system with an infinite potential well

* The aforementioned 1-D (or even 3-D) system with an
infinite potential well 1s just an 1deal system that can never

be found in reality.

* In reality, we always encounter such microscopic systems
that have finite potential wells/barriers. The probability for a
microscopic particle to present out of a finite potential well
1s not zero. It 1s difficult to imprison microscopic particles

exclusively within a finite potential well.

= Quantum leak/tunneling! fi



3. Quantum leaks --- tunneling

 In classical mechanics, all particles with E > ¥ can pass through the
barrier of potential V, whereas the particles with E<V can not pass
through the potential barrier.

 This 1s not the case in quantum mechanics.

7.2 2
— h2 azl’V:Ew (L:x<0; 1 :x>1) V>0
87°m 0" x B

W' 0’y Vim0 Vi =0
—————F =E-V)y U 0<x<l) — .
S 0" x T | o | m
When E<V, ¥,;(x)#0 (0<x</)

0 | X

—o0 ] o0
.‘-0 y| +.[0 Wl v +L Wl de=1 g probability for

o particles to penetrate the
0< J.O ‘l//ﬂ‘ dx << 1 —  Dbarrier is not zero!!!!




* The probability of penetration 1s given by

Prd4(E/V)[1—(E/V)]e 7=/ ((p<y )

P decreases exponentially with increasing V and its width / and m!!

Tunneling

i(.‘lassical Picturel
clecron .

l Quanmum Tunnoling ,

clectric Licld

| Quantum Picture

electron
wave . )

in classical physics, the clecron

is repelled by an eleciric field as
long as cnergy of clectron is below
onergy level of the field

in quantum physics, the wave

function of the clectron cncounters
the ¢lectric ficld, but has some
tinitc probability of tunncling through

this is the basis for transistors

A




Quantum Tunneling

CLASSICAL MECHANICS

| f

P ARl P W

QUANTUM MECHANICS ’



Tunneling in the “real world”

* Tunneling 1s widely exploited:

- for the operation of many microelectronic devices
(tunneling diodes, flash memory;, ...)

- for advanced analytical techniques (scanning tunneling

microscope, STM)

* Responsible for radioactivity (e.g. alpha particles)



STM System

Free electrons of metals can tunnel between the surfaces of two metals
of atomic distances (~ 1 nm) driven by a suitable bias voltage.

—P1ezo-
\

—g\/Zm((D—E)Z

oI A e s L :
h N t-..' g el ._ ‘
P ~ Ke o Q; .%:‘\:%‘“‘ \ t: ,f
9 3

Mode: Constant Current mode, Constant height mode



1.4.2 The free particle

in a three-dimension box



Particle in a 3-D box of dimensions a, b, ¢
Out of the box, V(x, y, z) =~ 2 y(x,y,z) =0 cT ©

In the box, V(x, y, z) =0
A
A=f+V=F=—"1_v I<x<a
d7°m O<y<b
X O<z<c
—— Viy=E
87°m e d
2 2 2 2 X
— h2 (82 + 62 + az)W:EW Separation
dq7'm oOx~ Oy~ oz | .
of variables

Let y(x, y, 2)= X (x)Y (y)-Z (2)
and substitute into the Schrédinger equation.



(separation of variables)
oo ot o 62
- +
87°m (8x2 oy 8 :
2 2 2 2
- (OO vz = Exvz
87°m ox° Oy’ 62

K (YzaZX XZ0°Y  XY0'Z
87°m  Ox’ oy” oz’

Boox . K &Y 9Z

-~ =FE+ + =L,
87°m Xox” 87°m (Y6y2 70z )

} Let E, = E — (E,+E,)

W o /G W o’
_ X=EX - Y=EY _ 7=E7
87°m Ox° ) 87°m oy’ ’ : -

E=E+E +E, T

)y =FEy

Divided by XYZ
| >

)= EXYZ




The three equations separately give:

2 . nx7DC h2 n2
X(x)= o Ex=%a—; (n=1,2, ...... )
2 . 7y W on’
Y(y)= 5 sin yb Eyng—;’ n,=1,2,......)
2 . nz h’ n
Z(z)= —sin—= T (=12 )
Then l//:XYZ: isin nszx Sl'n nyﬂ’y Sl'n I’IZJZZ
\ abc a b C
hz nz 2 n2
E=E+E,+E = (4% 2
8m a~ b ¢

A pure quantum state (eigenstate) of the particle in a 3-D box is
defined by a unique set of quantum numbers, (n,,n,n)!

I
9 3



When the box is cubic, degenerate energy levels present.

(i.e,a=b=¢)

Bonlon, onl b
E=E +E +E =—(Z+—2+=2)=——(n’+n’ +n)
S - 8m a b c &ma- -~
1. The ground state: n,=n =n=I E, =3h*/8ma’

ii. The first excited states: n=n=1, n,=2 £, =6/" /8ma’

 This energy level is triply degenerate! |E

* Degeneracy=3 n, n, n, /,E5 =12h* / 8ma’
(1 1 2 (222) — AE4 =11h*/8ma’
| o p (UI3A3DEID . 2
) (122) (212) (221) >FE, =9h" /8ma

2 1 1 (11220l 5

2

(111) — i

Is there an energy level with higher degeneracy? k, T



m-dimensional box (m=1-3)

e Wave functions

2 .
Wy = Hw,, v, \gsmnfxl (i=1,..m)

. Energy

" n’h’
E=» FE =— L2 E =- i=1,..m
z 8m= I’ Sml’ ( )

Quantum number: n;=1,2,.........



1.4.3 Simple applications of
potential-box model



Example 1: The delocalization effect of 1,3-butadiene
( Suppose [ = C-C bond length )

Localized model 1 Delocalized model Il
Four & electrons form Four it electrons form a
two localized n-bonds delocalized I1,4 bond.
_n2h2 C—— € —— {——= ¢ C — C — ===
T 4 o
El — Ea En = " h 2
, 8m I
. 1
=5 2 E, =4E_/9
8m, [ 14 2 "ra
E, =E./9
=1 I =1 I, = 31

E'=2X2XE,=4E, > E'=2XE,+2XE,=(10/9)E,

E,,.=E"_E'=(10/9)E, - 4E,~—(26/9)E, T

deloc



Example 2: The adsorption spectrum of cyanines

The general formula of cyanines: R2I<I-(CHZCH-)m-CH=+NR2

e 1D-box model of their I1-bond:
The nth m-molecular orbital (MO)

n°h’
" 8m [°

« The Il bond has a total of 2m+4 n-electrons.

e Ground state: the lowest m+2 n1-MQO'’s occupied

* The longest-wavelength absorption corresponds to
photo-excitation of an electron from the highest
occupied MO (HOMO, n=m+2) to the lowest

unoccupied MO (LUMO, n=m+3).

AE =

hZ

8m

12

e

[(m+3)" —(m+2)°]=

h2
8m

12

e

(2m+)5)




p=— = _[(m+3)* —(m+2)°]=

h

8m [

e

¢  8mlc 3.3/
v  h(2m+5) 2m+5

(pm) [ ~248m+ 565 (pm)

Table 1. The absorption spectrum of the cyanine dye
2N -(CH=CH-),, CH—NR

m A, (calc)/nm A . (expt) /nm
1 311.6 309.0
2 412.8 409.0
3 514.6 511.0




More Examples

1. Are e™?and cos(md) eigenfunctions of operator id/d¢g ?
If so, please determine the eigenvalue.

d

a) l-_eimqé _ ieimqé img
d

®im=—me

So e™? is an eigenfunction of operator id/d¢ with an
eigenvalue of —m.

b) idicosnw =i(—sinme@)em=—imsSInmae # ccoSmae

So cosm @ 1s not an eigenfunction of operator id/dg.



2.

For the n-conjugate molecule CH,(CH).CH,, its UV-vis
spectrum shows the first long-wavelength absorption at 460

nm. Please estimate the length of 1ts carbon chain using the
1-D box model.

Ans: The energies of 1-MOs given by 1-D box model are

~n’h’
" 8ml’®
In the ground state of this delocalized I'T%; bond, MOs 1-4 are

doubly occupied. The energy of the first excitation 1s given by
the energy difference between the 5™ and 4" MOs.

(n=123..)

;

h’ 9h°  hc hc
AE =E5—E4=8m[2(52_42) = .

B AEphoton _ i

T 8ml> A

S——

Oh’ A OhA l: the length of carbon chain.
= = . [—— =1120pm :
8mhc dmc 1




3. Does the following function represent a state of a particle in a

1-dimensional box?
P(x) = 2\/: Sin — — 3\/: SIn ——

If yes, does 1t have a certain value of energy and what 1s the energy
of this state? If not, determine the average energy.

Ans: The wavefunctions and energy levels of a particle in a 1-d

box of length a are given by > w22
¢ (x)=,—sm——-, E_ = .
a a 8ma
Thus, the first two lowest-energy eigenstates are,
()_g.@. (_2.27zx
Prx) =S pa(X) =7 ST o () = 209, (x) = 30, (%)

So @(x) represents a possible state of a 1-D-box particle, according
to the superposition principle. However,

Ho(x)=2Ep,(x) - 3E,0,(x) # co(x)
So @(x) 1s not an eigenfunction of Hamiltonian and has not a i
certain energy. S




To evaluate <E>, ¢(x) must be normalized.

Define , then

ja‘(ﬁ'(x)‘zdx = J‘a‘A (p(x)‘zdx = Azjoa 0 (x)dx

—A[2 ( \/ism——3\/:sm—] dx =134 =1

= A7 =—
13

= 4=1-13

= ¢'(x) =p(x)/ J13 1.e., the normalized form of ¢(x).

i A A hZ d2
S B we "*(x )Ho' (x )dx, H=-
fw()(/)() 2o 2
_AI 2(91 3@2) (2% 3@2)955
= A*(4E, +9E, ) = A* (4 x h +9x 4h )= Sh”
1 ? Sma’ Sma’ 13ma’

Note: ¢, and ¢, are eigenstates, being normalized and mutually

orthogonal!

I
9 3



Complementary Concepts

Complex and its conjugate

Suppose there is a complex A = a + ib, its conjugate should be 1n
the form of A* = a-ib.

The absolute value of A4: ‘A‘ = \/a2 + bz

Relationship between A4 and its complex conjugate 4 *:

A-A*=a’+b =|4

o A*=|4/4




Summary of Chapter 1
1.1 The failures of classical physics

1.1.1 Black-Body Radiation

Planck’s quanta idea E =mnhv for atomic vibrations
1.1.2 The photoelectric effect

A corpuscular theory of light (photons)

e=hv =mc’ h=Planck’s constant
p=h/A  (particle nature of light !)

Qualitative model

1.1.3 Atomic and molecular spectra
Planetary model: orbits of electrons around the nucleus
Bohr’s atomic model: quantized energy levels of orbits

For H-like atom/ions . _ RZ Quantitative model
n- 2
n




1.2 The characteristic of the motion of microscopic particles

1.2.1 wave-particle duality (e.g., electrons)
E=hv, p=h/A  (de Broglic wavelength of particle)

* A wave of microscopic particles 1s a probability wave.

« The wave pattern 1s the statistic distribution of particle motion.

1.2.2 The uncertainty Principle

AxAp > h; or AxAp=>h/2
AEAt > h



1.3 Basic assumptions of quantum mechanics

Postulate 1 -- The state of a system 1s described by a wave
function of the coordinates and the time.

Hr,1): single-value, continuous, quadratically integrable.

v *(r,t)w(r,t) Probability density distribution function.

For a given state,

[ [ [w*.ow(r.ndxdydz =1 Normalization!

For different states of a QM system,

[ [ [v#uow (ryddidz =0 ontogonaiiy:



Postulate 2: Each observable mechanical quantity of a
microscopic system is associated respectively with a
linear Hermitian operator.

To find this operator, write down the classical-mechanical
expression for the observable in terms of Cartesian coordinates and
corresponding linear-momentum, and then replace each coordinate

x by the operator x, and each momentum component p_ by the

operator —ihd'cx.

* A Hermitian operator means

[wiAy, = [y, Ay)" [viAy, = [y, Ay,)
T




Some Mechanical quantities and their Operators

Mechanical quantities Mathematical Operator
Position X % =x
Momentum (X) Py p.=- ih 0 _ 0
Y 2mox Ox
Angular . T

Momentum (z) M, =xp,-yp, M, =- 7 (x oy b a—X)

Kinetic Energy  T=p?2m f-. h (az 0 az): i V?

87°m ox’ oy’ 0 81’

y Z 87°m
Potential Energy V V=V
Total Energy E =T+V =- h ( - o O )+ V

2 2+ 2+ 4
= 8&r'm 0x° 0y 0z

Hamiltonian 0 1 s




The average value of a physical observable

If a system 1s 1n a state described by a normalized wave function

w, then the average value of the observable A corresponding to

operator A 1s given by — <a> _ J‘ N

Commuted operators [f?, G] — ﬁé - (}15 — ()

 When two operators are commutable, their
corresponding mechanical quantities can be measured
simultaneously.



Assumption 3: The wave-function of a system evolves
in time according to the time-dependent Schrodinger
equation - PN,

[;T‘Px, JZ,)=1h——
(X, ,2,1) Py

In general the Hamiltonian H 1s not a function of ¢, so we can
apply the method of separation of variables. Thus we have

Y, y,2,0) =yx,y,2) /(1)
— ﬁW(Xa Y Z) - f(o =1h W(Xa y,Z)

_Hy®y.o) o 1 df@0)
y(x.y,2) S di
(e Hyxyz) = Eyxyz) )

= y(x,y,z,t)=y(x,y,z)e

df (1)

dt

— f(t) _ e—iEl‘/h

-iEt/h i




Time-independent Schrodinger’s Equation

[:[g//(x v,z)=Ew(x,y,z) Eigenvalue equation
H:T+I? T=mv’/2=p"/2m - T = P*/2m

%) N2 N2 A - .

P’ Py 1/ Px:-iiz—ihg P2__h28_
) 21 Ox ox Ox”

A Ze

V = H atom or H-like ions

2 2 2 2
S H = I (82 +a— +8_) +
2m  Ox oy* oz




Time-independent Schrodinger’s Equation

[:[g//(x v,z)=Ew(x,y,z) Eigenvalue equation
H:T+I? T=mv’/2=p"/2m - T = P*/2m

%) N2 N2 A - .

P’ Py 1/ Px:-iiz—ihg P2__h28_
) 21 Ox ox Ox”

A Ze

V = H atom or H-like ions

2 2 2 2
S H = I (82 +a— +8_) +
2m  Ox oy* oz




Postulate 4 : Superposition Principle
(E R E)

If vy, ws,.. ¥, are the possible states of a microscopic
system (a complete set), then the linear combination of
these states is also a possible state of the system.

Y=cy +e,p,toy; +c, ¥, = Zcfl//z'
i
1) The coefficient ¢; reflects the contribution of wavefunction y; to ¥.
2) In case the system has J.l‘y*y/d r=1
IW;‘ *ydr =1 Iwi i I,def =0 ‘21 W, = AiWi

the average value of 4 of this state () can be derived as,

o |Prawd i
(4)= Ifsv*avdf: 3<A>:ZCEA,. K




Postulate 5 : Pauli’s principle(JaF] A #1255 ).

Every atomic or molecular orbital can only
contain a maximum of two electrons with

opposite spins.

m¢ = Spin magnetic — electron spin
mg=1t% (-2=a) (+/2=)

 The complete wavefunction for the description of
electronic motion should include a spin paramete
addition to its spatial coordinates.

rin

Pauli exclusion principle:

Each electron must have a unique set of quantum numbers.

Two electrons in the same orbital must have opposite spins.

*Electron spin is a purely quantum mechanical concept. i



1.4 Solution of free particle 1n a box —
a simple application of Quantum Mechanics

1.4.1 The free particle in a 1D box

1. The Schrodinger’s Equation A A

and its solution V(x)=o0 5 V(x)=00
o d’ 5

H= - 5 -+ V Il
8" m dx

In area 1, I1I:

W 0y >
_87Z'2m 72 +Vy =Ey =0 =]

2 : 1D box
22‘”—87;2me=0 (V=) V—E=V
X

I V(x)=0 1

oOw  h* o (i-e., the probability of particle

V= 0*x SrimV presenting in area I and III 1s 0).



Areall: V=0 I:Il// — Ey
2 2 2 2 2712
Gk d o W d e %:\Em@
87°m dx’ 87°m dx’ 8ml [ /
(n =1,2,3,...)
2. The properties of the solutions
a. The particle can exist in R B2 2 om
many states. = B=o i Vs
. izati f ener 2 .
b. quantization of energy =2 p 4h2 v, :\Essz;zx
c. The existence of zero-point &ml
energy. minimum energy n=3 7 _ 9h* _\P 3w
(h2/8mi2) ST gmr T

d. There is no trajectory but
only probability distribution

e. The presence of nodes




1.4.2 Particle in a 3-D box of dimensions a, b, ¢

Out of the box, V(x, Y, z) = 5 O<x<a
In the box, V(X, y, z) =0 h
O<y<b
87r m
O<z<c
h* 0* 82 82
( SV =LEYy

- 87m 82x 0’y 62

Let w=uyx,y, z)=X(x) Y (y) Z(z) (separation of variables)
Substituting into 3-D Schrodinger equation: E= E + Ey+ E,
2 2 2 2 2 2
! 62 X=EX - h2 52 Y=EY - 9 Z=EZ
87°m 0% x “ 87°m 0"y 87°m 0’z




The solution is:

2 . nox h n’

X(x)= ;sin xa E":S__é (n=1,2,...... )
m a
2 . nay hon.
Y(y)=q7sin— Ey—%b—;’ n=1,2,......)
2 . nnz W n
£(z) = s Z=8_—mc§ m=1,2,...... )
Then
8 . . n .
w:XYZ:W/—smnxﬂxsm v in 2E
abc a b ¢
wont o ont n?
E=E +E +E =—(3+—=+-%)
8m a b~ c

Each state of a 3-D box system is defined by a unique set of i
quantum numbers, (n,n,n)! B



Multiply degenerate energy level when the box is cubic

(a=b=c¢)

ponlon o onl W
E=E +E +E =—(Z2+—2+3)=——(nl+n. +n’)
S - 8m a b c 8ma~ ~
The ground state: n,.=n =n,=1 . 3h°
8ma’
| E

The first excited state: n=n=1, n, =2 672

The wave-functions are degenerate = ma’ .

(triply degenerate)

11 2
21
2 1 1




Brief S f Chapter 1 = =
riel Summary o apter A BEEBE TV

AR TR B 1E--12 3
RS 1EZE (A H LAY LR
7t 2 PR HFIE--JL
R

'B‘\

'

He
—

B. WARHEFRE : AxAp or AEAt>h
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W = H —sm

i=1-3

4. Schrodinger 5 12 : HY¥(r) = E¥(r)

5. 5BMER: =120y, Ay, = Ay,

RFBE: <4>= /A W/ P Pdc
= Jc’A/ Xcf

—Z— (n,=1.23,...) T

1131



What is Quantum Mechanics?

* QM is the theory of the behavior of very small objects (e.g.
molecules, atoms, nuclei, elementary particles, quantum
fields, etc.)

* One of the essential differences between classical and
quantum mechanics 1s that physical variables that can take on
continuous values 1n classical mechanics (e.g. energy, angular
momentum) can only take on discrete (or quantized) values
in quantum mechanics (e.g. the energy levels of electrons in

atoms, or the spins of elementary particles, etc).

I
9 3
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