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三点说明：
1. 作业(15%, - 2%/次) + 考勤(15%, - 2%/次) 平时成绩

• 符合理科作业规范，每周三交

• 若全缺席+无作业，则理论上可及最高分为40分！

3. 化学前沿 (课外)： 科技媒体如C&EN,…

文献搜索引擎：web of science, scifinder, google

文献阅读：各大杂志社在线网站，图书馆

2.  考试方式：

• 随堂考试

• 期中/期末（30%/40%）

 期平成绩 = 平时(30%) + 期中(30%) + 期末(40%)



“钱学森之问”早有答案：
清华大学经管学院 钱颖一教授 讲述的小故事：

爱因斯坦在1921年获得诺贝尔物理学奖后首次到美国访问，有记

者问他声音的速度是多少？爱因斯坦拒绝回答，并说我不回答你

这个问题，因为你可以在任何一本物理书中查到答案。接下来爱

因斯坦说了句后来特别有名的话，他说“大学教育的价值不在于

记住很多事实，而是训练大脑会思考”。这是将近一百年前的一

句话。在当时，很多事实是从书中可以查到的。在今天，更多的

事实可以上网查到。在未来，又有更多的知识和事实机器会帮你

查到。所以这句话在当前和未来更值得深思。

结论：如果你只专注于学习知识，你肯定会被机器取代！



• 知识是人类智慧的结晶, 但 知识 智慧!

智慧是运用知识解决各种问题的能力！

• 学习知识  学习智慧，智慧蕴含于知识中！

• Learning knowledge is the bridge to approach 
wisdom!

• 道德修养 =  习惯养成！

• 抄作业 =  学术道德问题！

• 考试作弊 =  学术道德问题！



Plagiarism(剽窃)  =  Academic Crime!
To plagiarize is to give the impression that something 

you have written is your own when it was in fact taken from 
someone else’s work.  Plagiarism may take the form of :

• repeating another’s sentences as your own.

• adopting a particularly good phrase as your own.

• paraphrasing someone else’s argument.

• presenting someone else’s form of organization as your 
own. 

In the West, plagiarism is considered a serious 
academic crime and may lead to expulsion from the 
university! 



Follow these guidelines and you’ll never be accused 
of plagiarism.

1. Use your own words and sentence structures.

2. When putting someone else’s idea in your own words 
avoid using any words from the original. 

3. If you use any original words, use a quotation. 

4. Acknowledge all ideas taken from other writers, 
except commonly held knowledge in the field. 

It is plagiarism to use some original words or phrases 
from a sentence while changing others. It is also 
plagiarism to keep the sentence structure and change all 
the words to synonyms.



What is Chemistry

The branch of natural science that 
deals with composition, structure, 
properties of substances and the 
changes they undergo.



Types of substances

Nano materials

Bulk materials

Geometric Structure

Size
makes the difference

Electronic Structure

Atoms
Molecules

Clusters
Congeries



Structure determines properties
Properties reflect structures

Structure vs. Properties



Structural Chemistry

Inorganic Chemistry
Organic Chemistry
Catalysis
Electrochemistry
Bio-chemistry
etc.

Material Science
Surface Science
Life Science
Energy Science
Environmental Science
etc. 



Funny things in Structural Chemistry

Nanoputians:  Anthropomorphic Molecules

Tour, J.M. et al,  J. Org. Chem. 2003, 68,8750; J. Chem. Edu. 2003, 80, 395.

• "Nanoputian" is a 
portmanteau of 
nano and lilliputian.

• Lilliput is a fictional 
island nation that 
appears in the first 
part of the 1726 
novel Gulliver's 
Travels by Jonathan 
Swift.



Funny things in Chemistry

Nanoputians:  Anthropomorphic Molecules

Tour, J.M. et al,  J. Org. Chem. 2003, 68,8750; J. Chem. Edu. 2003, 80, 395.

NanoBalletdancers

NanoToddlerChain of Nanoputians

Pas de duex



Funny things in Structure Chemistry

Tour, J.M. et al,  J. Org. Chem. 2003, 68,8750; J. Chem. Edu. 2003, 80, 395.

Self-assembly of Nanoputians on Gold Surface



Role of Structural Chemistry 
in Surface Science



fcc(100) fcc(111)

fcc(775) fcc(10 8 7)

Surface structures of Pt single crystal

Low-index surface：
NCS

LIS <  NCB.

High-index surface：
• Abundant edge sites.
• NCes < NCS

LIS < NCB

• Lower NC  ~ higher 
reactivity.

NC - Coordination Number



(111)

(775)

(100)

(10 8 7)

Different surfaces do different chemistry.

Structure-sensitive Catalysis!



418

1

25

Surface Structure vs. Catalytic Activity

N2 + 3H2  2NH3

Fe single crystal
20 atm/700 K

Another example of Structure-sensitive Catalysis

Fe



Role of Structural Chemistry 
in Material Science



 Graphite & Diamond Structures
Diamond: Insulator or wide bandgap 

semiconductor: 
Graphite: Planar structure: 
sp2 bonding  2d metal (in plane)

 Other Carbon allotropes
“Buckyballs” (C60, C70 etc)      
“Buckytubes” (nanotubes), 
other fullerenes   

C Crystal Structures

Same Element vs. Different Structures

Different structure  different properties!

Stable hollow fullerenes: IPR
IPR = isolated pentagon rule



Zheng LS (郑兰荪), et al.
Capturing the labile fullerene[50] as C50Cl10

SCIENCE 304 (5671): 699-699 Apr 30, 2004.

• The pentagon-pentagon fusions in pristine C50-D5h are sterically 

strained and highly reactive. 

• Perchlorination of these active sites stabilizes the labile C50-D5h. 



Nature Materials, 2008, 7, 790.



Chlorofullerenes 
featuring triple 

sequentially fused 
pentagons

Xie S.Y., Lu X., Zheng, L.S. 
et al

Nature Chem. 2010, 2, 269.

#540C54Cl8 (a), #864C56Cl12 (b), 
#4,169C66Cl6 (c), #4,169C66Cl10 (d). 



Endohedral Metallofullerene:
Sc4@C82 (C3v) vs. Sc4C2@C80 (Ih)

• (Sc2+)4@C82
8-

Shinohara, H. Rep. Prog. Phys. 
2000, 63, 843.

Proposed

QM-predicted in 2006

X-ray diffract. in 2009

Sc4@C82

DE = 28.8  kcal/mol DE = 0.0  kcal/mol
C2

6-@(Sc3+)4@C80
6--Ih

A Russian-Doll endofullerene

X.Lu, J. Phys. Chem. B. 2006, 110, 11098; 
Lu & Wang, J. Am. Chem. Soc. 2009, 131, 16646.
Highlighted by C&EN and Nat. Chem. 



Role of Structural Chemistry 
in Life Science



What do proteins do ?
Proteins are the basis of how biology gets things 

done.

• As enzymes, they are the driving force behind 
all of the biochemical reactions which makes 
biology work. 

• As structural elements, they are the main 
constituents of our bones, muscles, hair, skin 
and blood vessels.

• As antibodies, they recognize invading 
elements and allow the immune system to get 
rid of the unwanted invaders.



What are proteins made of ?

• Proteins are necklaces of amino acids, i.e. long chain 
molecules. 



Definition of Structural Chemistry

• It is a subject to study the microscopic 
structures of matters at the 
atomic/molecular level  using Chemical Bond 
Theory.

• Chemical bonds  structures  properties.



Objective of Structural Chemistry

1) Determining the structure of a 
known substance

2) Understanding the structure-
property relationship

3) Predicting a substance with 
specific structure and property



Chapter 1    basics of quantum mechanics  4
Chapter 2     Atomic structure                     4
Chapter 3     Symmetry                              4-5
Chapter 4     Diatomic molecules                3

Midterm Exam ! 
Chapter 5/6  Polyatomic structures             4
Chapter 7 Basics of Crystallography      3-4
Chapter 8 Metals and Alloys                   1
Chapter 9 Ionic compounds                    2

Outline and Schedule



Chapter 1 The basic knowledge of 
quantum mechanics

1.1 The origin of quantum mechanics 

--- The failures of classical physics
Black-body radiation, Photoelectric effect, Atomic and 
molecular spectra

• Classical physics: (prior to 1900)
Newtonian classical mechanics

Maxwell’s theory of electromagnetic waves

Thermodynamics and statistical physics



1.1.1  Black-body radiation
• An object that absorbs all radiation falling on it, at all wavelengths, 

is called a black body. 

Device for experimenting 
black-body radiation. 

The radiation represents a conversion 

of a body's thermal energy into 

electromagnetic energy, and is 

therefore called thermal radiation.

In classical physics, atomic oscillators 

were supposed to have continuously 

distributed vibrational energy and 

therefore radiate energy continuously.  

• When a black body is at a uniform temperature, its emission has a 
characteristic frequency distribution that depends on the 
temperature. Its emission is called black-body radiation.



Black-Body Radiation Experiments

Wave length / m

A large number of experiments 
revealed the temperature-
dependence of lmax (or max) of 
blackbody radiation and its 
independence on the substance 
made of the black-body device!

Prior explanations based on 
statistical mechanics & Maxwell’s 
theory of electromagnetic waves are 
not satisfying at all, especially in 
the high-frequency portion!

Note that according to classical theory, atomic oscillators 
radiate energy continuously!  



Classical solution I: Stefan-Boltzmann law and Wien’s 
law  (high energy, low T)
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（2）Wien’s approximation

M

Spectral 
energy 
density

lmax



Classical solution II:  Rayleigh-Jeans Law  
(low energy, high T)

M
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Rayleigh-Jeans law

Ultraviolet Disaster 

at low T!



Quantized energy levels of atomic vibrations 
-- The dawn of quantum mechanics!

won 1918 Nobel Prize in Physics.

Key point!



M

M

M

To make this equation rationally 
approachable, the atomic 
oscillators could only gain or lose 
energy in chunks, En = nh !

Hypothesis!



1.1.2 The photoelectric effect



The photoelectric effect

photoelectron



The Photoelectric Effect

1. The kinetic energy of the ejected electrons depends exclusively

and linearly on the frequency of the light.

2. There is a particular threshold frequency for each metal.

3. The increase of the light intensity results in the increase of the

number of photoelectrons (current intensity).



Classical physics: The energy of light wave should be directly 

proportional to  intensity, but not affected by  frequency, which 

unfortunately is unable to account for the phenomena of 

photoelectric effects.



Explaining the Photoelectric Effect
• Albert Einstein 

– Proposed a corpuscular theory of light in 1905. 

– won the Nobel prize in 1921

1. Light is consisted of a stream of photons. The energy of 
a photon is proportional to its frequency. 

 = h (h -- Planck’s constant)

2. A photon has energy as well as mass. Mass-energy 
relationship:  = mc2  mass-frequency rel.: m = h/c2

3. A photon has a definite momentum. p=mc= h /c = h/l.

4. The intensity of light depends on the photon density.



Therefore, the photon’s energy is the sum of the
photoelectron’s kinetic energy (Ek) and the binding 
energy (Eb) of the electron in metal.

Ephoton = Ebinding + EKinetic energy

h = W + Ek (work function of metal: W = Ebinding)

Explaining the Photoelectric Effect

However，it should be mentioned that the particulate nature of light 

had long been proposed by I. Newton et al. in later 1600s, while C. 

Huyghens et al. noticed the wave nature of light!  



Example I:  Calculation Energy from Frequency

Problem:  1) What is the energy of a photon of electromagnetic 
radiation emitted by an FM radio station at 97.3 x 108 cycles/sec?
2) What is the energy of a gamma ray emitted by Cs137 if it has a 
frequency of 1.60 x 1020/s?

Ephoton =h = (6.626 x 10 -34Js)(9.73 x 109/s) = 6.447098 x 10 -24J

Ephoton = 6.45 x 10 - 24 J

Egamma ray =h = ( 6.626 x 10-34Js )( 1.60 x 1020/s ) = 1.06 x 10 -13J

Egamma ray = 1.06 x 10 - 13J

Solution:

Plan: Use the relationship between energy and frequency to obtain 
the energy of the electromagnetic radiation (E = h).



Example II: Calculation of Energy from Wavelength

Problem: What is the photon energy of  electromagnetic radiation
that is used in microwave ovens for cooking, if the wavelength of the
radiation is 122 mm ?

l = 122 mm = 1.22 x 10 -1m

Plan: Convert the wavelength into meters, then the frequency can be
calculated using the relationship;wavelength x frequency = c (where c
is the speed of light), then using E=h to calculate the energy.
Solution: 



Example III: Photoelectric Effect 

• The energy to remove an electron from potassium metal is 

3.7 x 10 -19J. Will photons of frequencies of 4.3 x 1014/s (red 

light) and 7.5 x 1014 /s (blue light) trigger the photoelectric 

effect?

• E red = h = (6.626 x10 - 34Js)(4.3 x1014 /s)

E red = 2.8 x 10 - 19 J

• E blue = h = (6.626 x10 - 34Js)(7.5x1014 /s)

E blue = 5.0 x 10 - 19 J



• The binding energy of potassium is   =   3.7 x 10 - 19 J    

• The red light will not have enough energy to knock an 

electron out of the potassium, but the blue light will eject 

an electron !

• E photon = E Binding Energy + EKinetic Energy of Electron

• E Electron = Ephoton  - E Binding Energy

• E Electron = 5.0 x 10 - 19J   - 3.7 x 10 - 19 J

= 1.3 x 10 - 19Joules



思考题：

• 光电效应在化学研究中有哪些用途？



• An atom can emit lights of discrete & specific frequencies 
upon electric/photo-excitation. 

spectrum of H

spectrum of S

1.1.3 Atomic and molecular spectra



• First proposed by Rutherford in 1911. 

• The electrons are like planets of the solar system --- orbit the 
nucleus (the Sun).

• Light of energy E given off when electrons change orbits of  
different energies.

Why do the electrons not fall into the nucleus?

Why are they in discrete energies? 

Planetary model:

Based on classical physics, the electrons would be attracted by 
the nucleus and eventually fall into the nucleus by continuously 
emitting energy/light!! 



Bohr’s atomic model 
• Niels Bohr, a Danish physicist, combined the Plank’s quanta 

idea, Einstein’s photon theory and Rutherford’s Planetary 
model, and first introduced the idea of electronic energy level 
into atomic model.  (Proposed in 1913)

• Quantum Theory of Energy.

• The energy levels in atoms can be pictured 
as orbits in which electrons travel at 
definite distances from the nucleus.

• These he called “quantized energy levels”, 
also known as principal energy levels. n : principal 

quantum 
number

(Proposed in 1913, won 1922 Nobel Prize in Physics)



The electron in H atom can be promoted to higher energy levels by 
photons or electricity.



The Energy States of Hydrogen-like Atom/Ions

Bohr derived the energy for a system consisting of a nucleus plus 
a single electron (H and H-like ions),

e.g.

and predicted a set of quantized energy levels given by :

- R is called the Rydberg constant (2.18 x 10-18 J)
- n is a quantum number
- Z is the nuclear charge

Rydberg Equation



Problem: Find the energy change when an electron changes from the
n=4 level to the n=2 level in the hydrogen atom? What is the wavelength
of this photon?

Plan: Use the Rydberg equation to calculate the energy change, then 
calculate the wavelength using the relationship of the speed of light.

Solution:



1.1.1  Black-Body Radiation

Planck’s quanta idea   E = nh for atomic vibrations 

Summary  of Class 1
1.1 The failures of classical physics

1.1.2  The photoelectric effect
A corpuscular theory of light (photons)

 = h =mc2 h = Planck’s constant

p=h/l (particle nature of light !)        

1.1.3 Atomic and molecular spectra
Planetary model:  orbits of electrons around the nucleus
Bohr’s atomic model:  quantized energy levels of orbits

Qualitative model 

Quantitative model For H-like atom/ions



1.2 The characteristic of the motion of 
microscopic particles

The aforementioned experiments implied, for the first 

time, distinctive quantum effects pertaining to the 

behaviors of such microscopic particles as atomic 

oscillator, photon, and electron (within atoms) . 

Wave-particle duality  &   The uncertainty principle



1.2.1 The wave-particle duality 
of microscopic particles

In classical physics, waves and particles behave differently 

and  can be described by rather different theories. 



Einstein’s Corpuscular Theory of Lights for the first time 

introduced the wave-particle duality of photon:

1929 Nobel prize!

 In 1924, de Broglie suggested that microscopic 

particles such as electron and proton might also have 

wave properties in addition to their particle properties.

E = mc2 = h &    p = h/l (Wave-particle relationship) 

E = h (1)

p = h/l (2)

p -particle momentum 

l -de Broglie wavelength

• The wavelength of a particle:     

l = h/p = h/mv           (v: velocity,   m: mass)



Example: Calculate the de Broglie wavelength of an 
electron with speed 3.00 x 106 m/s.

l = =                                                              h
meve

6.626 x 10 -34J  s
( 9.11 x 10 - 31kg )( 1.00 x 106 m/s )

Wavelength of the electron:    l = 2.42 x 10 -10 m = 0.242 nm

1 J = 1 kgm2

s2
hence

Its momentum can be expressed as:   p = mv &  p = h/l
Thus its wavelength can be expressed as, 

Q： How to make use of the wave nature of electrons?

me = 9.11 x 10 -31 kg ve = 3.00 x 106 m/s

The mass and speed of an electron are: 



The moving speed of an electron is determined by the 

potential difference of the electric field (V)

If the unit of V is volt, then the wavelength is:

1 eV=1.602x1019 J

An moving electron accelerated by an electric field:

(If ve,0 = 0 )



The de Broglie Wavelengths 
of Several particles

Particles           Mass (g)         Speed (m/s)           l (m)

Slow electron        9 x 10 -28 1.0                        7 x 104

Fast electron         9 x 10 -28 5.9 x 106 1 x 1010

Alpha particle      6.6 x 10 -24 1.5 x 107 7 x 10 -15

One-gram mass     1.0                           0.01                         7 x 10 -29

Baseball                142                          25.0                           2 x 10 -34

Earth                     6.0 x 1027 3.0 x 104 4 x 10 -63



Si Crystal

Electron beam (50eV ~ le= 1.73 Å)

The diffraction of electrons

STM image of 
Si(111) 7x7 

surface
Pattern of 

electron diffraction

--Evidence of wave-like behavior

(Si-Si = 2.35 Å)



Spatial image of the confined electron states of a quantum corral. 
The corral was built by arranging 48 Fe atoms on the Cu(111) 
surface by means of the STM tip. Rep. Prog. Phys. 59(1996) 1737

Electron as waves



• Wave (e.g., light)

- can be wave-like (diffraction)

- can be particle-like  (p = h/l)

• Particles (e.g., electron)

- can be wave-like (l =h/p)

- can be particle-like  (classical, p = mv)

The wave-particle duality

• A wave of microscopic particles is a probability wave, 
neither like the macroscopic mechanical wave nor like the 
normal electromagnetic wave!

• It reflects the statistic probability of particle motion in 
space! 



For photon: 

p = mc  (c is a constant, variable m) 

E = h = h(c/l) = pc = mc2

The differences between photon and microscopic particles

For microscopic particles: 

p = mv (given m! velocity v )

E = mv2/2 = p2/(2m) = pv/2

l = u / v … what is the meaning of u?

 p2/2m = (1/2) mv2 

 pv

For photon:  v  c, l = h/p = h/(mc)   u = h/m  (variable)

For particles: l = h/p = h/(mv) u = h/m (given value!)

E = h

p = h/l

Wave-like

Particle-like



How can an electron be both a particle，which is a localized 
entity, and a wave, which is nonlocalized?  The answer is that an 
electron is neither a wave nor a particle, but something else. An 
accurate pictorial description of an electron’s behavior is impossible 
using the wave or particle concept of classical physics. The 
concepts of classical physics have been developed from experience 
in the macroscopic world and do not properly describe the 
microscopic world. Evolution has shaped human brain to allow it to 
understand and deal effectively with macroscopic phenomena. The 
human nervous system was not developed to deal with phenomena 
at the atomic and molecular level, so it is not surprising if we 
cannot fully understand such phenomena. 

I. N. Levine, Quantum Chemistry (5th ed.).  

Ira N. Levine’s words regarding “wave-particle duality”



1.2.2 The uncertainty principle
• In classical Physics, the position and momentum of a 
macroscopic particle (a body) can be certainly determined at a 
given time. 

• This is not the case for a microscopic particle!  

• In the diffraction experiments that imply the wave nature of 

electrons, the observed wave pattern is just a statistic 

distribution of electron motion. The exact position and 

momentum of an electron at a given time remain uncertain.    

In 1925, Heisenberg developed the matrix formulation of quantum 
mechanics and noticed the uncertainty in position of electrons in an 
atom.   



CsI film

e-beam

Image of electron diffraction of CsI

The CsI film works as a (atomic-level) slit! 



• The experiments of electron diffraction revealed: 
The narrower the slit is, the larger is the central area of 

the diffraction pattern.  

• What is behind such phenomena?  

1932 Nobel prize in Physics



The experiments of electron beam diffraction revealed that the 
narrower the slit is, the larger is the central area of the diffraction 
pattern.  What is behind this phenomenon?  

• The width of the slit:

How to prove the uncertainty principle?

• Thus, the phenomenon of electron diffraction illustrates that 

“the more precisely the position of electron is determined, the less 

precisely momentum is known…”  

• The central area of the diffraction pattern:

position uncertainty of electrons passing through the slit. 

The  1st–order diffraction area, which reflects the momentum 

uncertainty of electrons passing through the slit!



Electron diffraction vs. 
Uncertainty principle

Including higher-order diffractions,  

The electron “waves” reaching  the 
edge of the 1st-order diffraction area 
should be destructively interfered: 

Meanwhile, the electron deflected 
upward/downward by an angle 
has an x component of momentum: 

psin

A

O
C


P



A

O

P
A

O

P

y

B

BO

Intensity of 
diffraction

(position uncertainty!)

A quantitative version 



Example
The speed of an electron is measured to be 1000 m/s to
an accuracy of 0.001%. Please find the uncertainty in
the position of this electron.

Accuracy of speed:  = 0.001%

The uncertainty in its momentum: Dp = mev

The uncertainty in its position: Dx = h/Dp = h/(mev)

= (6.626 x 10-34)/[ (9.11 x 10-31)(1 x 103)x0.001%]

= 7.27 x 10-2 (m) = 7.27 cm



Example
The speed of a bullet of mass of 0.01 kg is measured to
be 1000 m/s to an accuracy of 0.001%. Find the
uncertainty in the position of this bullet.

Accuracy of speed:  = 0.001%

The uncertainty in its momentum: Dp = mv

The uncertainty in its position: Dx = h/Dp = h/(mv)

= 6.626 x 10-34 /[(0.01 kg) (1 x 103 m/s) x 0.001%]

= 6.626 x 10-30 (m)



Example
The average time that an electron exists in an excited state
is 10-8 s. What is the minimum uncertainty in energy of
that state?

Another form of the Uncertainty Principle!



课后思考一：

经过电场加速后的电子在自由空间高速“直线”

运动，看似未表现出波动特性，但通过原子级衍射光

栅（晶体）后在检测器上产生了衍射图样，是否可以

认为其波动特性是在通过光栅后才拥有？或可认为其

在到达衍射光栅前就不具备波动性？



课后思考二：

原子中的电子受核的静电束缚，一般被限制在距

离核<2Å的范围内运动，电子是否具有波动性？如果

有，如何理解其波动性？以氢原子基态为例，已知1s

轨道的平均半径为0.528Å,试由此估算1s电子的能量

和de Broglie波长。

(静电力常数 k = -9×109 N·m/C2，电子电量 e = 

1.6×10-19 C，普朗克常数 h = 6.63×10-34 J·s，真空中

光速c=3.00×108 m/s)



Measurement

•Classical: the error in the measurement depends

on the precision of the apparatus, could be

arbitrarily small.

•Quantum: it is physically impossible to

measure simultaneously the exact position and

the exact velocity of a particle.



CLASSICAL vs QUANTUM MECHANICS

Macroscopic matter - Matter is particulate, energy varies 

continuously. The motion of a group of particles can be 

predicted knowing their positions, their velocities and the 

forces acting between them.         

Microscopic particles - microscopic particles such as 

electrons exhibit a wave-particle “duality”, showing both 

particle-like and wave-like characteristics. The energy level 

is discrete. …

Description of the behavior of electron(s) in an atom 
requires a completely new theory-- “Quantum Theory”.



Quantum mechanical description of Electron 

• Quantum mechanics is basically statistical in 
nature.

• Quantum mechanics does not say that an 
electron is distributed over a large region of 
space as a wave is distributed.

• Rather it is the probability patterns used to 
describe the electron’s motion that behave like 
waves!



1.3 The basic assumptions 
(postulates) of quantum mechanics

• Wavefunction (r, t) of QM State

• Operator of Mechanical Quantity

• Time-dependent Schrödinger Equation

• Superposition Principle

• Pauli’s Principle   



Postulate 1. The state of a system

is described by a wave function of

the coordinates and the time.

(r, t)



CM (classical mechanics)：

The state of a system of N particles is specified totally by giving: 

QM(Quantum Mechanics):

The state of a system of N particles is described by

3N spatial coordinates (xi, yi, zi)
&
3N velocity coordinates (vxi, vyi, vzi).

Phase Space :      {(xi,yi,zi)}, {(pxi, pyi, pzi)} 

a wave function y(r, t) that depends on the coordinates of the 
particles and on time. 

Hilbert space 



• Thus, its wave function  can be derived as:

For example:

The wavefunction of plane monochromatic light:

Now let us consider the wave function for a microscopic particle of a 
1-D free motion. 
• Its particle-wave duality gives, 

E = hv & p = h/l v = E/h & 1/l = p/h.



A wave function must satisfy 3 mathematical conditions:

1. Single-value; 2.  Continuous; 3. Quadratically integrable.

a) The product of wave function (r,t) and its complex 
conjugate (r,t)* represents the probability distribution 
function of the system. (Physical meaning of wave function!)

probability density：

b)  The wave function (r,t) must be continuous in space. 
Otherwise its second derivative would not be attainable.

c)   The wave function of a system must be quadratically 
integrable so as to  evaluate the statistical average values of its 
physical properties. 



Thus the probability that the particle presents in the
volume element d (=dxdydz) around r at time t is

The probability distribution function is

To be generally normalized

• Wave functions of different states for a given system 
must be generally orthogonal:



Postulate 2. Each observable mechanical
quantity of a microscopic system is associated
respectively with a linear Hermitian operator.

To find this operator, write down the classical-mechanical

expression for the observable in terms of Cartesian

coordinates and corresponding linear-momentum, and then

replace each coordinate x by the operator x, and each

momentum component px by the operator –iћ/x.

In quantum mechanics, the coordinates p (momentum) and q(position)
of phase space normally become hermitian operators in a Hilbert 
space. 



An operator is a rule that transforms a given function into 
another function, e.g. d/dx, sin, log etc.

Operators obey the associative law of multiplication:

Definition of operator: 



• A linear operator means

• A Hermitian (自共轭 or 厄米) operator means

• A  Hermitian operator ensures its eigenvalue being 
a real number!   



Eigenfunction and Eigenvalue

Suppose that the effect of an operation on a function f(x)
by the operator Â is simply to multiply f(x) by a certain
constant k. We then say that f(x) is an eigenfunction of Â
with eigenvalue k.

Eigen is a German word meaning characteristic.

Hence, e2x is an eigenfunction of the operator d/dx
with an eigenvalue 2.



• To every physical observable there corresponds a linear

Hermitian operator.

• To find this operator, write down the classical-

mechanical expression for the observable in terms of

Cartesian coordinates and corresponding linear-

momentum components, and then replace each

coordinate x by the operator x and each momentum

component px by the operator iћ/x.

Mechanical quantities and their Operators



Position                   x

Momentum (x)        px

Angular 
Momentum (z)       Mz=xpy-ypx

Kinetic Energy       T=p2/2m

Potential Energy     V

Total Energy           E =T+V

Some Mechanical quantities and their Operators

Mechanical quantities           Mathematical Operator

Hamiltonian



If a system is in a state described by a normalized

wave function  , then the average value of the 

observable A corresponding to operator Â is given by –

The average value of a physical observable

General case:   Whether  is normalized or not, the average value 
of the observable A corresponding to operator Â is given by

(Please always use this formula!)

(normalized 
function!)



Thus the only value we measure for Â is the value an.

If the wave function n is an eigenfunction of Â, with eigenvalue 

an, then a measurement of the observable corresponding to Â will 

give the value an with certainty.



Scattering 
difference



• When two operators are commutable, their 

corresponding mechanical quantities can be measured 

simultaneously. 

Commuted operators (对易算符)

Poisson bracket



Example: What is the value of                     ?  Are the two operators 
commutable? 

The two operators are not commutable!  How about                 ? 



Postulate 3: The wave-function of a system
evolves in time according to the time-
dependent Schrödinger equation

Let’s consider a free particle of 1D-motion. Its wavefunction is

Potential-energy 
function

(This concept was first discovered in 1926 by the Austrian physicist 
Erwin Schrödinger (1887-1961), who won the 1933 Nobel Prize.)  

Time-dependent Schrödinger equation 
for a free particle of 1D-motion.



-- wavefunction of stationary state

divided by y(r) f(t)

Time-independent Schrödinger Equation!

In case the Hamiltonian H is time-independent,  the variables in 
this equation are separable, i.e.,  

or simply using  



For the states defined by equation (1), the probability density is 

solely given by |y(r)|2 , being time-independent! 

These so-called stationary states have constant E and time-

independent distribution of probability density.

Its probability density can be expressed as,

Time-independent!

wavefunction of stationary state



Time-independent  Schrödinger’s Equation 

one-particle Eigenequation

Laplacian

For a one-particle QM system, its wave function  fulfills the 

Dirac constant



Spherical polar coordinates

Laplacian

For the electron in a H-like ion:



Example :  For a particle moving around a circle of r = a with V = 0, 

please derive its Schrödinger equation and wavefunction(s).  

a


(p.21, 1.28)

There exist two degenerate states for each energy level, except for 
n=0! 

x

y

Boundary condition



The Schrödinger’s Equation is an eigenequation.

In any measurement of the observable associated with the 
operator Â, the only values that will ever be observed are the 
eigenvalues a, which satisfy the eigenequation.

• For a QM system, an eigenfunction of the Schrödinger equation 

describes a pure quantum state, namely eigenstate.  

• A system in a linear combination of multiple different eigenstates 

(i.e., a mixed quantum state) does in general have quantum 

uncertainty for the given observable.



I. The eigenvalue of a Hermitian operator is a real number.

Proof:

Quantum mechanical operators have to have real eigenvalues.

II. The eigenfunctions of Hermitian operators are orthogonal



II. The eigenfunctions of an Hermitian operator are orthogonal

Consider two eigenequations of a system

• Multiply the left of the 1st eqn. by ym* and integrate, then 
take the complex conjugate of eqn. 2, multiply by yn and 
integrate

which corresponds to two different states of the system concerned. 



There are 2 cases, n = m, or n  m.

Substracting the two equations gives

i) If n = m, by normalization, the equation becomes

As  Â is Hermitian, it gives

The eigenvalue is a real number!



ii) If n  m,  and the two states of the system are nondegenerate (i.e. 
different eigenfunctions do not have the same eigenvalues, 
an  am ), then 

The eigenfunctions of an Hermitian operator are orthogonal.

demands



Example: The 1s and 2s orbitals of H atom.



Postulate 4 : Superposition Principle 
(态叠加原理)

1) The coefficient ci reflects the contribution of yi to.

• If y1, y2,… yn are the possible states of a microscopic 
system (a complete set), then the linear combination of 
these states is also a possible state of the system.

2)  If {yi} are eigenstates fulfilling the eigenequations {Âyi = Aiyi}, a 
system in such a mixed quantum state () does in general have 
quantum uncertainty for the given observable A, the average value of 
which  can be derived as, 



ci
2 is the probability of the particle (described by ) presenting 

the eigenstate yi.

=1,   Ψ is  
normalized!

≠1,  Ψ  is not 
normalized yet!

no
rm

al
iz

in
g



Example:   

When l = 1,  atomic p orbitals in complex form have three 
components (p0, p+1 and p-1). The real forms of atomic p
orbitals can be constructed as, 

The px (or py) is not an eigenfunction, having 50% p+1 and 50% p-1.



Example:   CH4 has four valence MO’s (canonical MO’s  or 
delocalized MO’s) i of different energies, i.e., a lower-energy MO 
of a1 symmetry, and three higher-energy MOs of t1 symmetry.  The 
four localized MO’s of this molecule can be constructed as, 

On the contrary, if we know 
the localized MO’s of this 
molecule, its canonical MO’s  
can be derived as



CMOs of  CH4

LMOs of  CH4

Generally, the CMO’s of a molecule are expressed in the form of linear 
combination of all atomic orbitals (LCAOs) of its constituent atoms. 
Thus, CMOs are delocalized in nature.

Are the four LMOs 
equal in energy? 
Pls prove!



Postulate 5 : Pauli’s principle(泡利不相容原理). 

Every atomic or molecular orbital can only 
contain a maximum of two electrons with 
opposite spins.



Energy level diagram for He.  Electron configuration: 1s2

H
paramagnetic – one (more) unpaired electrons

He

diamagnetic – all paired electrons

E
ne

rg
y

1

2

3

0 1 2

n

l

1s1

1s2



ms = spin magnetic quantum number  electron spin

ms = ±½    (-½ = )  (+½ = )

The complete wavefunction for the description of electronic motion 
should include a spin parameter in addition to its spatial coordinates.

•Two electrons in the same orbital must have opposite spins.

•Electron spin is purely a quantum mechanical concept.

Pauli exclusion principle:

Each electron must have a unique set of quantum numbers.



The complete wavefunction for description of electronic motion 
should include a spin parameter in addition to its spatial coordinates.

• Fermions (e.g., electron)   obey the Pauli Exclusion Principle.

• Bosons  (e.g., photon) do not obey the Pauli Exclusion Principle

+ symmetry (Bosons)

- Antisymmetry (Fermions)

Note:  Electrons within a many-electron molecule/atom are 

fermions!  Thus, the wavefunction to describe any of the states 

of such a many-electron system should be antisymmetric! 



Permutation operator

Orbital part 
Symmetric

Spin part 
anti-symmetric

which is a linear combination of the possible microstates of the 
very electronic configuration!

e.g., the wavefunction of two electrons in the ground state of He (1s2) 
should be antisymmetric upon permutation (i.e. fermionic)!   



1.4 Solution of free particle in a box –
a simple application of Quantum Mechanics



1.4.1 The free particle in a 1-dimensional box

1. The Schrödinger’s Equation 
and its solution 

In I & III: (1D potential trap)

 The probability of the particle presenting in either area I or III is 0.  
That is, the particle is completely trapped in area II. 



Area II: V=0

Considering the boundary conditions: y(0)=0, y(l)=0

We have y(0) =Acos0+Bsin0  =  A  +  0  =  0    A =0

 y(x)  = Bsinx (B0)

y (l) = Bsinl = 0 sinl = 0 l = n,    = n/l (n=1,2,…)  

Now set

with

The equation becomes 

with



Now normalizing  it, 



c. The existence of zero-point energy (minimum energy). 

(Emin = h2/8ml2)

2. Properties of the solutions

a. The particle can exist in many pure quantum states (eigenstates).

n=1

n=2

n=3

d. There is no trajectory but only 
probability distribution!

e. The presence of nodes.

b. Quantization of energy. Ground-state energy



E2

E3

E4

E1

n=2

• In the ground state (n=1), the highest probability of the particle 
occurs at the location a/2. 

• In the first excited state (n=2), the highest probability of the particle 
occurs at the locations a/4 and 3a/4, the lowest probability at the 
location a/2. 

node
node



Discussion:

i. Normalization and orthogonality

ii. Average value

Differing from  <p>! 



iii. Uncertainty

iv. Wave-particle duality

i.e., de Broglie wavelength of the 
particle in the 1D potential box!



a. Obtain the potential energy functions followed by 
deriving the Hamiltonian operator and Schrödinger 
equation.

b. Solve the Schrödinger equation. (obtain yn and En)

c. Study the characteristics of the distributions of yn

(e.g., boundary conditions)

d. Deduce the values of the various physical quantities 
of each state.

The general steps in the quantum mechanical 
treatment:



Remarks on the 1-D system with an infinite potential well

• The aforementioned 1-D (or even 3-D) system with an 

infinite potential well is just an ideal system that can never 

be found in reality.

• In reality, we always encounter such microscopic systems 

that have finite potential wells/barriers. The probability for a 

microscopic particle to present out of a finite potential well 

is not zero. It is difficult to imprison microscopic particles 

exclusively within a finite potential well. 

 Quantum leak/tunneling!



3. Quantum leaks --- tunneling

VII > 0

x0 l

I II III

E

VI = 0 VIII = 0

When  E<V,  

• In classical mechanics, all particles with E > V can pass through the 
barrier of potential V, whereas the particles with E<V can not pass 
through the potential barrier.

• This is not the case in quantum mechanics.  

The probability for  
particles to penetrate the 
barrier is not zero!!!!



• The probability of penetration is given by

(  E<V  )

P decreases exponentially with increasing V and its width l and m!!



Quantum Tunneling

CLASSICAL MECHANICS

QUANTUM MECHANICS



Tunneling in the “real world”

• Tunneling is widely exploited:

- for the operation of many microelectronic devices 

(tunneling diodes, flash memory, …)

- for advanced analytical techniques (scanning tunneling 

microscope, STM)

• Responsible for radioactivity (e.g. alpha particles)



Tip

Piezo-Tube

STM System

Mode: Constant Current mode, Constant height mode

C28H58
8

Free electrons of metals can tunnel between the surfaces of two metals 
of atomic distances (~ 1 nm) driven by a suitable bias voltage.  



1.4.2   The free particle 

in a three-dimension box



Let y(x, y, z)= X (x)·Y (y)·Z (z)

and substitute into the Schrödinger equation.

Out of the box, V(x, y, z) = ∞ y(x,y,z) = 0

In the box, V(x, y, z) = 0

Particle in a 3-D box of dimensions a, b, c

a

b

c

x

y

z

Separation 

of variables



(separation of variables)

E=Ex+Ey+Ez

Let Ex = E – (Ez+Ey)

Divided by XYZ



The three equations separately give:

( nx= 1, 2, ……)

Then

(ny= 1, 2, ……)

(nz= 1, 2, ……)

A pure quantum state (eigenstate) of the particle in a 3-D box is 
defined by a unique set of quantum numbers, (nx,ny,nz)!



When the box is cubic, degenerate energy levels present. 

(i.e., a = b = c)

i. The ground state:   nx=ny=nz=1

ii. The first excited states: ni=nj=1, nk=2

• This energy level is triply degenerate!

• Degeneracy = 3

E

(111)

(112) (121) (211)

(122) (212) (221)
(113) (131) (311)

(222)

nx ny nz

Is there an energy level with higher degeneracy?  



m-dimensional box (m=1-3)
• Wave functions

• Energy

Quantum number:  ni = 1,2,………



1.4.3 Simple applications of 
potential-box model



Example 1: The delocalization effect of 1,3-butadiene

Four  electrons form 
two localized -bonds

Four  electrons form a 
delocalized 4

4 bond.

＞El = 2×2×E1 = 4Ea EII = 2×E1 + 2×E2 = (10/9)Ea  

Edeloc = EII – EI = (10/9)Ea – 4Ea= –(26/9)Ea

Localized  model I Delocalized  model II

( Suppose  l = C-C bond length )

3l         

E1 =Ea/9

E2 =4Ea/9

l       l       l



Example 2: The adsorption spectrum of cyanines

R2N-(CH=CH-)m-CH=NR2

+..

• The  bond has a total of 2m+4 -electrons.

The general formula of cyanines:

E

n=1
n=2

n=m+2
n=m+3

• Ground state: the lowest m+2 -MOs occupied

• The longest-wavelength absorption corresponds to
photo-excitation of an electron from the highest
occupied MO (HOMO, n=m+2) to the lowest
unoccupied MO (LUMO, n=m+3).

• 1D-box model of their -bond:

The nth -molecular orbital (MO)



Table 1. The absorption spectrum of the cyanine dye

R2N-(CH=CH-)mCH=NR2

+..

m          lmax (calc) / nm    lmax (expt) /nm

1                311.6                        309.0

2                412.8                        409.0

3                514.6                        511.0



More Examples
1.  Are eim and  cos(m) eigenfunctions of operator id/d ?   

If so, please determine the eigenvalue. 

So eim is an eigenfunction of operator id/d with an 
eigenvalue of –m. 

So cosm is not an eigenfunction of operator id/d. 



2. For the -conjugate molecule CH2(CH)6CH2, its UV-vis 
spectrum shows the first long-wavelength absorption at 460 
nm. Please estimate the length of its carbon chain using the 
1-D box model.

In the ground state of this delocalized 8
8 bond, MOs 1-4 are 

doubly occupied. The energy of the first excitation is given by 
the energy difference between the 5th and 4th MOs.

Ans:  The energies of -MOs given by 1-D box model are 

l: the length of carbon chain. 



3. Does the following function represent a state of a particle in a 
1-dimensional box? 

If yes, does it have a certain value of energy and what is the energy 
of this state? If not, determine the average energy.

Ans:   The wavefunctions and energy levels of a particle in a 1-d 
box of length a are given by  

So (x) represents a possible state of a 1-D-box particle, according 
to the superposition principle. However, 

So (x) is not an eigenfunction of Hamiltonian and has not a 
certain energy. 

Thus, the first two lowest-energy eigenstates are,   



To evaluate <E>, (x) must be normalized.

Define , then

i.e., the normalized form of (x).

Note:  1 and 2 are eigenstates, being normalized and mutually 
orthogonal!



Complex and its conjugate

Suppose there is a complex A = a + ib, its conjugate should be in 
the form of  A* = a-ib. 

The absolute value of A:

Relationship between A and its complex conjugate A*:

or

Complementary Concepts



1.1.1  Black-Body Radiation

Planck’s quanta idea   E = nh for atomic vibrations 

Summary  of Chapter 1
1.1 The failures of classical physics

1.1.2  The photoelectric effect
A corpuscular theory of light (photons)

 = h =mc2 h = Planck’s constant

p=h/l (particle nature of light !)        

1.1.3 Atomic and molecular spectra
Planetary model:  orbits of electrons around the nucleus
Bohr’s atomic model:  quantized energy levels of orbits

Qualitative model 

Quantitative model For H-like atom/ions



1.2.1  wave-particle duality (e.g., electrons)

1.2 The characteristic of the motion of microscopic particles

1.2.2  The uncertainty Principle

• A wave of microscopic particles is a probability wave. 

• The wave pattern is the statistic distribution of particle motion.

E = h ,  p = h/l (de Broglie wavelength of particle)



1.3  Basic assumptions of quantum mechanics

Postulate 1 -- The state of a system is described by a wave 
function of the coordinates and the time.

(r,t): single-value,  continuous, quadratically integrable.

Probability density distribution function.

Normalization!

Orthogonality!

For a given state, 

For different states of a QM system, 



Postulate 2: Each observable mechanical quantity of a
microscopic system is associated respectively with a
linear Hermitian operator.

To find this operator, write down the classical-mechanical

expression for the observable in terms of Cartesian coordinates and

corresponding linear-momentum, and then replace each coordinate

x by the operator x, and each momentum component px by the

operator –iћ/x.

• A Hermitian operator means



Position                   x

Momentum (x)        px

Angular 
Momentum (z)       Mz=xpy-ypx

Kinetic Energy       T=p2/2m

Potential Energy     V

Total Energy           E =T+V

Some Mechanical quantities and their Operators

Mechanical quantities                   Mathematical Operator

Hamiltonian



If a system is in a state described by a normalized wave function 

y, then the average value of the observable A corresponding to 

operator Â is given by –

The average value of a physical observable

• When two operators  are commutable, their 
corresponding mechanical quantities can be measured 
simultaneously. 

Commuted operators



Assumption 3: The wave-function of a system evolves 
in time according to the time-dependent Schrödinger 
equation -

In general the Hamiltonian H is not a function of t, so we can
apply the method of separation of variables.  Thus we have



Time-independent  Schrödinger’s Equation 

e.g. H atom or H-like ions

Eigenvalue equation

Laplace operator



Time-independent  Schrödinger’s Equation 

e.g. H atom or H-like ions

Eigenvalue equation

Laplace operator



Postulate 4 : Superposition Principle 
(态叠加原理)

1) The coefficient ci reflects the contribution of wavefunction yi to.

2) In case the system has

• If y1, y2,… yn are the possible states of a microscopic 
system (a complete set), then the linear combination of 
these states is also a possible state of the system.

the average value of       of this state () can be derived as, 



Postulate 5 : Pauli’s principle(泡利不相容原理). 
Every atomic or molecular orbital can only 
contain a maximum of two electrons with 
opposite spins. ms = spin magnetic  electron spin

ms = ±½    (-½ = )  (+½ = )

• The complete wavefunction for the description of 
electronic motion should include a spin parameter in 
addition to its spatial coordinates.

•Two electrons in the same orbital must have opposite spins.

•Electron spin is a purely quantum mechanical concept.

Pauli exclusion principle:

Each electron must have a unique set of quantum numbers.



1.4.1 The free particle in a 1D box

1. The Schrödinger’s Equation 
and its solution 

In area I, III:

1D box 

(i.e., the probability of particle 
presenting in area I and III is 0).

1.4 Solution of free particle in a box –
a simple application of Quantum Mechanics



2. The properties of the solutions

a. The particle can exist in 
many states.

b. quantization of energy

c. The existence of zero-point 
energy. minimum energy 
(h2/8ml2)

d. There is no trajectory but 
only probability distribution

e. The presence of nodes

n=1

n=2

n=3

Area II: V =0

(n =1,2,3,…) 



Let y = y(x, y, z)= X (x) Y (y) Z (z) (separation of variables)
Substituting into 3-D Schrödinger equation:

Out of the box, V(x, y, z) = ∞
In the box, V(x, y, z) =0

1.4.2  Particle in a 3-D box of dimensions a, b, c

E=Ex+Ey+Ez



The solution is:

( nx= 1, 2, ……)

Then

(ny= 1, 2, ……)

(nz= 1, 2, ……)

Each state of a 3-D box system is defined by a unique set of 
quantum numbers, (nx,ny,nz)!



Multiply degenerate energy level when the box is cubic

(a = b = c)

The ground state:   nx=ny=nz=1

The first excited state: ni=nj=1, nk=2

The wave-functions are degenerate 
(triply degenerate)

E



Brief Summary of Chapter 1

微观粒子波动性--运动

粒子在空间出现的几率

分布呈现波的特征--几

率波！

简单体系 : i维势箱

量子力学的统计学本质

量子力学体系的状态函

数--波函数(r,t)

A. 能量量子化

B. 测不准原理：DxDp or DEDt  ħ 

1. 几率密度分布函数 ||2

2. 正交归一性： i*jd = ij

(i=j, ij=1; ij, ij=0)

3. 本征函数/方程： Â = a

4. Schrödinger方程：Ĥ(r) = E(r)

5. 态叠加原理: = ciyi , Âyi = Aiyi

求平均值: <A> = *Âd /*d

= ci
2Ai/ ci

2



What is Quantum Mechanics?

• QM is the theory of the behavior of very small objects (e.g. 

molecules, atoms, nuclei, elementary particles, quantum 

fields, etc.)

• One of the essential differences between classical and 

quantum mechanics is that physical variables that can take on 

continuous values in classical mechanics (e.g. energy, angular 

momentum)  can only take on discrete (or quantized) values 

in quantum mechanics (e.g. the energy levels of electrons in 

atoms, or the spins of elementary particles, etc).



• 数理基础（微积分）需要复习

• 算符运算的理解欠佳

• 势箱模型： 1）量子态（能级）的理解欠佳；2）未掌握多

电子体系电子排布的能量最低原则。

第一章作业完成情况总结：


