
Chemical Applications of Group Theory 

 



• We have learnt the point group theory of molecular 
symmetry.  We shall learn how to use this theory in 
our chemical research.  



1.  Representation of  groups 

 

1.1   Matrix representation and reducible representation 



1.2  Reducing of representations 

• Suppose that we have a set of n-dimensional matrices,  A, B, 

C, … , which form a representation of a group. These n-D 

matrices themselves constitute a matrix group. 

• If we make the same similarity transformation on each matrix, 

we obtain a new set of matrices, 

 

• This new set of matrices is also a representation of the group. 

• If A’ is a blocked-factored matrix, then it is easy to prove that 

B’,C’… also are blocked-factored matrices.  
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A1,A2,A3… are n1,n2,n3…-D submatrices with n= n1 + n2 + n3 + …. 



• Furthermore, it is also provable that the various sets of  

submatrices  

   {A1,B1,C1…}, {A2,B2,C2…}, {A3,B3,C3…}, {A4,B4,C4…},  

   are in themselves representations of the group.  

• We then call the set of matrices A,B,C, … a reducible 

representation of the group. 

• If it is not possible to find a similarity transformation to reduce 

a representation in the above manner, the representation is 

said to be irreducible. 

• The irreducible representations of a group is of fundamental 

importance. 

 



2.  Character Tables of Point Groups 

Bases 



2.1  Construction of Character Table 

 



 



 

These translation vectors constitute a set of bases of C2v group. 



 



 



2.2 symmetry species:  Mulliken symbols 

• All 1-D irreducible reps. are labeled by either A or B, 2-D 
irreducible rep. by E, 3-D irreducible rep. by T  and so on. 

• A:  symmetric with respect to Cn rotation, i.e., (Cn)=1. 

• B: asymmetric with respect to Cn rotation, i.e., (Cn)=-1. 

• Subscriptions 1 or 2 designates those symmetric or asymmetric 
with respect to a C2 or  a sv . 

• Subscripts g or u for universal parity or disparity. 

• Superscripts ‘ or ‘’  designates those symmetric or asymmetric with 
respect to sh 



2.3  Symmetry of molecular properties 

 



 



 



 



 



• This formula was derived from the “Great orthorgonality theorem”. 



 



 



 



 



 



 



 



3. Symmetry adapted Linear Combinations of AOs– 

A convenient way to construct MOs 

Symmetry of wavefunctions of a molecule 

Symmetry Operation on Schrödinger Eq. 

Ĥy = Ey RĤy = REy 
R 

RĤR-1Ry = ERy 

ĤRy = ERy 
Ry is also an eigenvector of 

Ĥ, with the same eigenvalue 

E as y  corresponds to.  



 

Symmetry of wavefunctions 

If eigenvalue E is not degenerate, then  

Ry = cy 

Which means y  is a basis for some 1-D I.R..  



 

Symmetry of wavefunctions 

If eigenstate E  is l-fold degenerate, then  

Which means set {y1, y2, …, yl} is a basis for this l-D I.R. 
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Symmetry of wavefunctions 

In LCAO approach of MO theory, we have  

 

 

So we need to solve the secular equation 
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Symmetry of wavefunctions 

We can transform the original bases of AO’s into Linear 

Combinations of AO’s which have the same properties of 

some I.R.s  (Symmetry Adapted Linear Combination), 

therefore the Secular Equation is block diagonalized.  
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Symmetry of wavefunctions 

H-ES 

1 

2 

... 

... 

0 

0 

Block Diagonalized 

AO SALC 

n  n 

n2  n2 

n1  n1 

 

1 1 2 2n n     



 

Symmetry of wavefunctions 

Step 1  Reduce the REP spanned by the AO basis. 

Obtain the ni’s for each I.R. 

Step 2  Construct  ni SALCs for each I.R.. 

Step 3  Transform the hamiltonian matrix into block 

 diagonalized form, and solve it. 



Example 1:    

• Neglecting the O 1s orbital/electrons.  

H2O 
LCAO with the following atomic orbitals 

O:        2s;   2px, 2py, 2pz 

2H:        1sa, 1sb 

Symmetry: C2v 



 

H2O 

C2v       I      C2        sv        sv' 

A1 

A2 

B1 

B2 

    z  

xy 

x,xz 

y,yz 

   1         1        1         1 

   1         1       -1       -1 

   1        -1        1       -1 

   1        -1       -1        1 

Character Table 

Symmetry of AOs 

from Oxygen  

A1 : 2s, 2pz 

B1 : 2px 

B2 : 2py 



 

Symmetry Reduction of 2-D Bases Set {1sa, 1sb}  

C2v       I      C2        sv        sv' 

A1 

A2 

B1 

B2 

    z  

xy 

x,xz 

y,yz 

(R)       2          0        0        2 

   1         1        1         1 

   1         1       -1       -1 

   1        -1        1       -1 

   1        -1       -1        1 
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1
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4
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1 2A B   Two 1-D REPs 



SALC - Symmetry Adapted Linear Combination of AOs 

For this trivial problem, it is very simple, we 

intuitively determined the new basis as  

 

  A1: 
 

 

 

 A B

1
1s  + 1s  

2

 A B

1
1s  -  1s  

2

+ + 

+ -   B2:  



H2O 

A1 symmetry AOs or SALCs for LCAO 

A1 : 
         O2s,               O2pz 

1A

Too complicated for analysis! 



H2O- Hybridization of Oxygen’s 2s and 2pz 

+ 

- 

2s 

2pz 

h 

h´ 
Hybridization 



H2O- Hybridization of Oxygen’s 2s and 2pz 

h h´ 
1A

1

*' Ah d  Small,  not effective bonding 

1

*

Ah d  Large,  effective bonding 



H2O- Chemical Bonding in A1  REP 

h 

h´ 

1A
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1 1A Ah 

1 1A Ah 
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Non-bonding 



H2O- Chemical Bonding in B2  REP 

2py 
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H2O- Summary on Chemical Bonding 

1a

O 2H H2O 

1s 

2s 

2p 

h, h´ 

b1, b2 1s(a,b) 2b
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H2O- Summary on Molecular Energy Level Sequences 
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Use Projection operator to construct SALCs 

• Definition: 

 

 

 for j-th  ir. rep. of the point group.  This equation was 
derived from the “great orthogonality theorem”. 

 

• A non-normalized SALC can be constructed from 
bases set by the formula:  
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Example:  p-MOs of C3H3 (D3h) 

•  = A2
" + E" 

• However, it is more convenient to 

reduce its symmetry to D3.  Then we 

have  

            = A2 + E 
 

 

 
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Another way to derive the third MO: 
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1. Find an operation to covert the second wavefunction into an 

nonequivalent one (not +/- of the original one).  A C3 operation 

works well.  Then we have 

2. A linear combination of this new one and the original one gives 

rise to  
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A general simplification 
• Reducing the symmetry to C3 subgroup. 

p    3   0     0                           p = A + E 
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Example 2:    C6H6     D6h    C6 

 p     6    0       0      0      0      0 p = A + B + E1 + E2 
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C6H6     D6h    C6 

      6    0       0      0      0      0  = A + B + E1 + E2 
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Similarly, we have  
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CO2 has 3 modes of vibration 

Vibrational spectroscopy 

O=C=O O=C=O O=C=O 

Infra-red inactive - 

no dipole change IR active IR active 

H2O has 3 modes of vibration 

IR 

active 

IR active IR active 

H 
O 

H H 
O 

H H 
O 

H 

Number of active modes tells us about symmetry 



Molecular vibrations - number of modes 

4 atoms - can move independently in x, y, z directions 

x 

y 
z 

x 

y 
z 

x 

y 
z 

x 

y 
z 

3N degrees of freedom for a N-atom molecule. 

If atoms fixed, there are: 3 translational degrees 

      3 rotational degrees 

 and the rest (3N-6) are vibrational modes 



No. of modes of each symmetry species 

Example - SiH2Cl2   Point group C2v 

Character table 

C2v E C2 sv(xz) sv(yz)   h = 4 

A1 +1 +1 +1 +1   z    x2, y2, z2 

A2 +1 +1 -1 -1   Rz     xy 

B1 +1 -1 +1 -1   x, Ry    xz 

B2 +1 -1 -1 +1   y, Rx    yz Si 

Cl2 

H1 

Cl1 

H2 

z 

x 

y 

Draw x, y and z vectors on all atoms 

Count +1, -1, 0 if vector transforms to itself, minus 

itself, or moves 

Perform symmetry operations 



Character table 

C2v E C2 sv(xz) sv(yz)   h = 4 

A1 +1 +1 +1 +1   z    x2, y2, z2 

A2 +1 +1 -1 -1   Rz     xy 

B1 +1 -1 +1 -1   x, Ry    xz 

B2 +1 -1 -1 +1   y, Rx    yz 

Si 

Cl2 

H1 

Cl1 

H2 

z 

x 

y 

Operation E 

   Si atom x transforms into Si x count +1 

     y transforms into Si y count +1 

     z transforms into Si z count +1 

         total +3 

Same for other 4 atoms     grand total +15 



Character table 

C2v E C2 sv(xz) sv(yz)   h = 4 

A1 +1 +1 +1 +1   z    x2, y2, z2 

A2 +1 +1 -1 -1   Rz     xy 

B1 +1 -1 +1 -1   x, Ry    xz 

B2 +1 -1 -1 +1   y, Rx    yz 

Si 

Cl2 

H1 

Cl1 

H2 

z 

x 

y 

Operation C2 Si atom x transforms into Si -x count -1 

     y transforms into Si -y count -1 

     z transforms into Si z count +1 

         total -1 

H1 and H2 move - swap places     count 0 

Cl1 and Cl2 swap places      count 0 

        grand total -1 



Character table 

C2v E C2 sv(xz) sv(yz)   h = 4 

A1 +1 +1 +1 +1   z    x2, y2, z2 

A2 +1 +1 -1 -1   Rz     xy 

B1 +1 -1 +1 -1   x, Ry    xz 

B2 +1 -1 -1 +1   y, Rx    yz 

Si 

Cl2 

H1 

Cl1 

H2 

z 

x 

y 

Operation sv(xz)  Si atom x transforms into Si x count +1 

     y transforms into Si -y count -1 

     z transforms into Si z count +1 

         total +1 

H1 and H2 also lie in xz plane, and behave as Si  count +1 each 

Cl1 and Cl2 swap places      count 0 

        grand total +3 



Character table 

C2v E C2 sv(xz) sv(yz)   h = 4 

A1 +1 +1 +1 +1   z    x2, y2, z2 

A2 +1 +1 -1 -1   Rz     xy 

B1 +1 -1 +1 -1   x, Ry    xz 

B2 +1 -1 -1 +1   y, Rx    yz 

Si 

Cl2 

H1 

Cl1 

H2 

z 

x 

y 

Operation sv(yz)  Si atom x transforms into Si -x  count -1 

     y transforms into Si y count +1 

     z transforms into Si z count +1 

         total +1 

H1 and H2 swap places      count 0 

Cl1 and Cl2 also lie in yz plane, and behave as Si count +1 each 

        grand total +3 



No. of modes of each symmetry species 

Example - SiH2Cl2   Point group C2v 

Overall we have: 

E  C2  sv(xz) sv(yz) 

+15  -1  +3  +3 

This is the reducible representation of the set 

of 3N (=15) atomic displacement vectors 

We reduce it to the irreducible representations, 

using a formula 



Character table 

C2v 1E 1C2 1sv(xz) 1sv(yz)   h = 4 

A1 +1 +1 +1   +1   z    x2, y2, z2 

A2 +1 +1 -1   -1   Rz     xy 

B1 +1 -1 +1   -1   x, Ry    xz 

B2 +1 -1 -1   +1   y, Rx    yz 

Formula is )(.)(.
1

RRg
h

a
R

Ri 

Reducible representation 15 -1 3 3    

No. of A1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1] = 5 

Reduce the reducible representation 



Character table 

C2v 1E 1C2 1sv(xz) 1sv(yz)   h = 4 

A1 +1 +1 +1   +1   z    x2, y2, z2 

A2 +1 +1 -1   -1   Rz     xy 

B1 +1 -1 +1   -1   x, Ry    xz 

B2 +1 -1 -1   +1   y, Rx    yz 

Formula is )(.)(.
1

RRg
h

a
R

Ri 

Reducible representation 15 -1 3 3    

No. of A1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1]  = 5 

No. of A2 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2 



Character table 

C2v 1E 1C2 1sv(xz) 1sv(yz)   h = 4 

A1 +1 +1 +1   +1   z    x2, y2, z2 

A2 +1 +1 -1   -1   Rz     xy 

B1 +1 -1 +1   -1   x, Ry    xz 

B2 +1 -1 -1   +1   y, Rx    yz 

Formula is )(.)(.
1

RRg
h

a
R

Ri 

Reducible representation 15 -1 3 3    

No. of A1 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.1 + 1.3.1]  = 5 

No. of A2 motions = 1/4 [1.15.1 + 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] = 2 

No. of B1 motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.1 + 1.3.(-1)] = 4 

No. of B2 motions = 1/4 [1.15.1 + 1.(-1).(-1) + 1.3.(-1) + 1.3.1] = 4 



Symmetry species of all motions are:- 

5A1 + 2A2 + 4B1 + 4B2 - the irreducible representation 

Translations, rotations, vibrations 

3 of these are translations of the whole molecule 

3 are rotations  

Symmetry species of translations are given by 

vectors (x, y, z) in the character table 

Symmetry species of rotations are given by Rx, 

Ry and Rz in the character table 



 

Symmetry species of all motions are:- 

     5A1 + 2A2    + 4B1   + 4B2 

Character table 

C2v 1E 1C2 1sv(xz) 1sv(yz)   h = 4 

A1 +1 +1 +1   +1   z    x2, y2, z2 

A2 +1 +1 -1   -1   Rz     xy 

B1 +1 -1 +1   -1   x, Ry    xz 

B2 +1 -1 -1   +1   y, Rx    yz 

Translations are:-  A1      + B1     + B2 

Rotations are:-       A2    + B1     + B2 

- so vibrations are:-  4A1 +  A2    + 2B1   + 2B2 

Translations, rotations, vibrations 



Symmetry species of vibrations 

are:-  4A1 + A2 + 2B1 + 2B2 

Vibrational modes of SiH2Cl2 

What does each of these modes look like? 

2 rules 

(i) there is 1 stretching vibration per bond 

(ii) must treat symmetry-related atoms together 



Vibrational modes of SiH2Cl2 

2 rules 

(i) there is 1 stretching vibration per bond 

(ii) we must treat symmetry-related atoms together 

We therefore have:- 

 two stretching modes of the SiCl2 group 

 two of the SiH2 group 

The remaining five modes must be deformations 

(angle bending vibrations) 



Vibrational modes of SiH2Cl2 

We therefore have:- 

 two stretching modes of the SiCl2 group 

We can stretch the two Si-Cl bonds 

 together in phase 

 or together out of phase 



Is vibration symmetrical with 

respect to each symmetry 

operation? 

- if yes +1, if no -1 

From the character table, 

this belongs to the symmetry 

species A1 

We call the mode of vibration 

sym SiCl2  

 E C2 sxz syz 

  +1 +1 +1 +1 

x 

z 

y 



Is vibration symmetrical 

with respect to each 

symmetry operation? 

- if yes +1, if no -1 

 E C2 sxz syz 

 

From the character table, 

this belongs to the 

symmetry species B2 

We call the mode of 

vibration asym SiCl2  

 +1 -1 -1 +1 

x 

z 

y 



Vibrational modes of SiH2Cl2 

We therefore have:- 

 two stretching modes of the SiCl2 group 

We can stretch the two Si-H bonds 

 together in phase 

 or together out of phase 

 and two stretching modes of the SiH2 group 



x 

z 

y 

From the character table, this 

belongs to the symmetry 

species A1 

We call the mode of vibration 

sym SiH2  

 E C2 sxz syz 

  +1 +1 +1 +1 



From the character table, this 

belongs to the symmetry 

species B1 

We call the mode of vibration 

asym SiH2  

 E C2 sxz syz 

  +1 -1 +1 -1 

x 

z 

y 



Vibrational modes of SiH2Cl2 

We now have:- 

 two stretching modes of the SiCl2 group 

 two of the SiH2 group 

The remaining five modes must be deformations 

(angle bending vibrations) 

As with stretches, we must treat symmetry-

related atoms together 



From the character table, this 

belongs to the symmetry 

species A1 

We call the mode of vibration 

sym SiCl2 (or SiCl2 scissors)  

 E C2 sxz syz 

  +1 +1 +1 +1 

x 

z 

y 



From the character table, this 

belongs to the symmetry 

species A1 

We call the mode of vibration 

sym SiH2 (or SiH2 scissors) 

 +1 +1 +1 +1 

 E C2 sxz syz 

 

x 

z 

y 



From the character table, this 

belongs to the symmetry 

species B1 

We call the mode of vibration  

SiH2 (or SiH2 wag) 

 E C2 sxz syz 

  +1 -1 +1 -1 

x 

z 

y 



From the character table, this 

belongs to the symmetry 

species B2 

We call the mode of vibration  

SiH2 (or SiH2 rock) 

 +1 -1 -1 +1 

 E C2 sxz syz 

 

x 

z 

y 



y 

x 

From the character table, this 

belongs to the symmetry 

species A2 

We call the mode of vibration  

SiH2 (or SiH2 twist) 

 E C2 sxz syz 

  +1 +1 -1 -1 



Vibrational modes of SiH2Cl2 

Overall, we now have:- 

 two stretching modes of the SiCl2 group 

   A1   + B2 

 two of the SiH2 group     

   A1  + B1 

 five deformation modes    

   2A1 + A2 + B1 + B2 

Together, these account for all the modes we 

expect: 

   4A1 + A2 + 2B1 + 2B2 



 



 



 



 



 



 



Good Luck In the Final Exam!  

 



Final Exam 

• Content:   Chapters  5-9    

• Time:     June 13,  8:00-10:00 

• Venue:    群贤二-102 

• Tools:    科学计算器、笔等普通文具 

• 考前答疑:   June 10-12,   

                      嘉锡楼316(圆弧形办公室) 


