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¢ The symmetry of molecules and solids 1s a very powertul tool for
developing an understanding of bonding and physical properties

Used to predict the nature of molecular orbitals

Used to predict if electronic and vibration spectroscopic transitions can be
observed

¢ We will cover the following material:

Identification/classification of symmetry elements and symmetry operations
Assignment of point groups

» The point group of a molecule uniquely and fully describes the molecules symmetry
Identifying polarity and chirality using point groups

Introduction to what a “Character Table™ 1s

Assigning symmetry labels to “Symmetry adapted linear combination or
orbitals™

Assigning symmetry labels to of vibration modes
Determining the IR and Raman activity of vibrational modes

We have learnt the point group theory of molecular

symmetry. We shall learn how to use this theory In
our chemical research.




1. Representation of groups

1.1 Matrix representation and reducible representation
Total Representation for C,,

Individually block diagonalized matrices

E C> O Oy
0 0 — 0 0 INO O -~ 0 0
0 0 0 | 0 0 N 0 0
0 0% [0 oN| [0 0N |0 0N
Reduced to 1D matrices irreducible representation
x [T 1] 1] .= 1 -1 1 -1
y (1111 - ro=1 1 1 1
z [11[11[1]1[ 1] T, = 1 1 1 1
A e 'R, = 1 1 -1 -1 9 | 3



1.2 Reducing of representations

e Suppose that we have a set of n-dimensional matrices, A, B,
C, ... , which form a representation of a group. These n-D
matrices themselves constitute a matrix group.

« If we make the same similarity transformation on each matrix,
we obtain a new set of matrices,

A=TA'" B'=IBI"':C'=TCr

« This new set of matrices is also a representation of the group.

« If A’is a blocked-factored matrix, then it is easy to prove that
B',C'... also are blocked-factored matrices.

A A, A;... are ng,n,,N,...-D submatrices withn=n; + n, + ng + ...



* Furthermore, it is also provable that the various sets of
submatrices

{A;,B;,C,...}, {A,,B,,C,...}, {A;,B;5,Cs.. .}, {A,,BL.Cy.. ]
are in themselves representations of the group.

« We then call the set of matrices A,B,C, ... a reducible
representation of the group.

 If it is not possible to find a similarity transformation to reduce
a representation in the above manner, the representation is
said to be irreducible.

« The Irreducible representations of a group is of fundamental
Importance.




2. Character Tables of Point Groups

Example - point group C,,

E C, o,/(x2) o,(yz) h=4
+1 +1 +1 +1 y Yo, Z4 )
+1 +1 -1 -1
+1 -1 +1 -1
+1 -1 -1 +1 L —

-l

= — | Bases

—h

w o > >

%]

Top line: point group
symmetry operations

order of group, h, = number of symmetry operations




2.1 Construction of Character Table

0

Total Representation for C,,
Individually block diagonalized matrices

P
0 0]

0
0

C>

Reduced to 1D matrices

x [T D[]

y [T

z [0 0[]
N

N

—)

Irreducible representation

1

-1




Translations

Movements of whole molecule — represent by vectors

e.g.y vector E operation y’ (after operation) =y

C, y=-y (L,e.y =-1XxYy)
o,(x2) y =-y
o,(y2) y=y

z vector all operations z' =z

X vector E operation X =X
C, X ==X /O\
c,(Xx2) X =X H H
c,(y2) X' =-X




Translations

Consider effect of symmetry operation on the vector
Write +1 for no change, -1 for reversal

E C> o(xz) o,y2)
z vector +1 +1 +1 +1 A,
y +1 -1 -1 +1 B,
X +1 -1 +1 -1 B,

E C, ofx2o/(y2) | Labels A, etc. are
A, +1 +1 +1 +1 symmetry species;
A, +#1 o+ -1 -1 they summarise the
effects of symmetry
B, +1 -1 +1 -1 o)

operations on the 2

B, +1 -1 -1 +1 vectors.

These translation vectors constitute a set of bases of C,,, grou



Rotations

Similarly for rotations of the molecules

E C, ou(xz) o,(y2)
z vector +1 +1 +1 +1 A,
y +1 -1 -1 +1 B,
X +1 -1 +1 -1 B,
R, +1 +1 -1 -1 A,
R, +1 -1 +1 -1 B,
R, +1 -1 -1 +1 B,
PR




Characters

The numbers +1 and -1 are called characters.

The character table has all possible symmetry species for
the point group. It is the same for all molecules belonging to
the point group - e.g. C,, for H,0, SiH,Cl,, Fe(CO),Cl,, etc.

Note: the character table
lists the symmetry E C,
species for translations
and rotations.

o(xz) o(yz) h=4
] +1 +1 +1 +1 4
+1 +1 -1 -1 R
+1 -1 +1 -1
+1 -1 -1 +1

A,B show symmetry with
respect to rotation.

1,2 distinguish symmetry
with respect to reflections

=,

W o > >
N

%]




2.2 symmetry species: Mulliken symbols

« All 1-D irreducible reps. are labeled by either A or B, 2-D
irreducible rep. by E, 3-D irreducible rep. by T and so on.

« A: symmetric with respect to C, rotation, i.e., x(C,)=1.
« B: asymmetric with respect to C, rotation, i.e., x(C,)=-1.

« Subscriptions 1 or 2 designates those symmetric or asymmetric
with respectto a C,L or a o, .

« Subscripts g or u for universal parity or disparity.
« Superscripts ‘or © designates those symmetric or asymmetric with

respect to o, "




2.3 Symmetry of molecular properties

Translations and rotations can be assighed to symmetry
species — and so can other molecular properties

e.g. p, orbital on O

atom of H,0 E C, o,(x2) o,(y2)

Unchanged by all +1 +1 +1 +1 A,

operations H H

Py orbital ” s1 1 -1 +1 B,
H H

symmetric O

stretch of O-H / \ +1 1 -1 +1 B

bonds H H 2

This set of characters is the representation of the symmetric stretch




Characters for more than one object
or action

We can make representations of several things

e.g. H 1s orbitals O
in H,O

orbital 1 orbital 2

E operation orbital 1’ = orbital 1
orbital 2’ = orbital 2

Each is unchanged (= 1 x itself), so the character is 2

Strictly speaking the character is 1 0
the trace (sum of diagonal terms)
of the transformation matrix. 0 1




Characters for more than one object
or action

Representations of several things

e.g. H 1s orbitals O
in H,0

orbital 1 orbital 2
C, operation orbital 1’ = orbital 2

orbital 2’ = orbital 1

There is no contribution from the old orbital 1 to the new one (= 0 x itself),
so the character is 0

The trace of the transformation 0 1
matrix is zero. 10




Characters for more than one object
or action

Representations of several things

e.g. H 1s orbitals @)
in H,O

orbital 1 orbital 2

E operation character is +2

C2 0

c,(x2) 0

c,(y2) +2 = C, o(x2)o,y2)
so overall: 2 0 0 +2

This the reducible representation of the set of 2 orbitals.




Reducible representations

This set of characters does not appear in the character table

- but it can always be expressed as a sum of lines

E C, o/(x2)o(yz) h=4 Mustbean AandaB
A, +1 1 +1 #1 : to make the second

A, 41 o = P number =0

B, +1 -1 41 - R Must then be A, + B, to
make final number =2

00
A, is the symmetric combination B, is the asymmetric combination

B, +1 -1 -1 +1

A, + B, is the irreducible representation of the two orbitals




Reducing representations

The hard way — solve a set of simultaneous equations

The easy way — use the formula provided

Formulais

is the number of ‘things’ (orbitals etc.) of symmetry species |
Is the order of the group
Is the order of class R (the number of operations of that type)

¥4¥\9] is the character for operation R in the reducible representation

ll is the character for operation R in the character table for symmetry

species |

e This formula was derived from the “Great orthorgonality theorem”.




Reducing representations

e.g. s orbitals on F atoms of XeOF, O

Point group ?




Point group algorithm — XeOF,

Start here os

es D..
linear ? s infinite groups i? "
nol no Cu

yes yo3 I,
6 C. axes ? icosahedral groups i?
no} no |
o yes
3 C,axes ? L octahedral groups i? On
nol no o)
4 C, axes ? YeS.  tetrahedral groups i ? Tn
yes T,
- 3S,?
nol 4 no T
rotation axis no low-symmetry o? yes C,
order, n, 22 ? groups iy - yes C,
i 2
yesl os no C,
nC,axes lto y D groups o, ? - D
the C_ axis ?
0 1 no J yes Dra
i h’ no D,
‘ ‘ _ F2 CandSgroups —* 0,7 \ N i
no no,? ——— C,

Fi— Xe —F
1 e S no vyes Son

F
4 Son ? no Ca




Reducing representations

e.g. s orbitals on F atoms of XeOF, O

Point group C,,
Symmetry operations

E all unchanged

C, allmove

C, allmove

26, 2 move, 2 unchanged
206,

 all move

Reducible representation is

- now reduce it!

E 2C, C, 20, 20,
character is +4 (+1 for each orbital)
character is 0

0

2
0




1 E\ 2C, 1C, 2, 20, h=8
A, +1 +1 +1 +1 +1 Z

A, +1\ +1 +1 -1 -1 R,
B, +1 -1 +1 +1 -1

B, +1 -1 +1 -1 +1

E +2 0 -2 0 0 (x, y) (R, R)

No. of A, motions = 1/8 [1.4.1 + 2.0.1 + 1.0.1 + 2.2.1 + 2.0.1] =1

</ \\

12
]
w



Reducible representation 4 0 0 2 0
1E 2 1C, 26, 26, h=8
1 +1 +1 +1 +1 +1 Z

> +1 +1 +1 -1 -1 R,

] +1 -1 \ +1 +1 -1

B
B, +1 -1 +1 -1 +1
E +2 0 -2 0 0 (x,y) (R, R)

No. of A, motions = 1/8 [1.4.1 + 2.0.1 + 1.0.1 + 2.2.1 + 2.0.1] =1
No. of A, motions = 1/8 [1.4.1 + 2.0.1 + 1.0.1 + 2.2.(-1) + 2.0.(-1)] =0

s \\




1 - -
Formulais @ =/_—1 gr- ¥(R). 7. (R)
~ ﬁl

Reducible representation 4 0 0 2 0
1E 2C, 1C, 26, 26, h=8
A, +1 +1 +1 +1 +1 Z
A, +1 +1 +1 -1 -1 R,
B, +1 -1 +1 +1 -1
B, +1 -1 +1 -1 +1
E +2 0 -2 0 0 (x,y) (R, R)

No. of A, motions = 1/8 [1.4.1 + 2.0.1 + 1.0.1 + 2.2.1 + 2.0.1 ] =1
No. of A, motions = 1/8 [1.4.1 + 2.0.1 + 1.0.1 + 2.2.(-1) + 2.0.(-1)] =
No. of B, motions = 1/8 [1.4.1 + 2.0.(-1) + 1.0.1 + 2.2.1 + 2.0.(-1)] =1
No. of B, motions = 1/8 [1.4.1 + 2.0.(-1) + 1.0.1 + 2.2.(-1) + 2.0.1] =

No. of E motions =1/8[1.4.2 + 2.0.0 + 1.0.(-2) + 2.2.0 + 2.0.0] =




1E 2C, 1C, 20, 20,

Reducible representation - 0 0 p. 0

Irreducible representation A, +B,+E

Note: E is doubly degenerate — accounts for two equivalent
combinations of orbitals

%m% et 2




3. Symmetry adapted Linear Combinations of AOs—
A convenient way to construct MOs

Symmetry Operation on Schrdalinger Eq.

Hy=Ey —R>RHWZ N=V

!

RHR'Ry=ERy

Ry Is also an eigenvector of P !
A, with the same eigenvalue | *==HR = ER
E as w corresponds to.




If eigenvalue E is not degenerate, then

Ry =cCcy

Which means /4 IS a basis for some




Symmetry of wavefunctions

If eigenstate = Is |-fold degenerate, then

E <t=——> {l/jla Wys ey WI}

Which means set { v, v, ..., y;} IS a basis for this




Symmetry of wavefunctions

In LCAO approach of MO theory, we have

So we need to solve the secular equation




Symmetry of wavefunctions

We can transform the original bases of AO’s into Linear
Combinations of AO’s which have the same properties of
some |.R.s ( ),
therefore the Secular Equation is block diagonalized.

AO SALC




Symmetry of wavefunctions

Block Diagonalized

A ( A
r nlrxlnl 0
H-ES N R
N XxXnNn O
J \ J

AO




Symmetry of wavefunctions

Step 1 Reduce the REP spanned by the AO basis.

Obtain the n.’s for each

Step 2 Construct 1. SALCs for each

Step 3 Transform the hamiltonian matrix into block
diagonalized form, and solve it.




Example 1.

H,0 LCAO with the following atomic orbitals

O: 2s; 2Py, 2Py, 2p,

9 H:  1s, 1s,

i
Sy
i,
mn
/

Symmetry: C,,

Neglecting the O 1s orbital/electrons.




H,0

e.g. p, orbital on O

atom of H,0O E C, o,(x2) o,(yz)
Unchanged by all +1 +1 +1 +1 A,
operations = =
p, orbital ” M4 1 4 +1 B,
H H
Character Table
C,, |l C, o g Symmetry of AOs
from Oxygen
4 1 1 1 1 |2 | Y9
A, 1 1 1 1 Xy A;: 2s, 2p,
B, 1 1 1 1 X,XZ B,: 2P,
BZ 1 -1 -1 1 y,yZ BZ : 2py

|
9 3




Symmetry Reduction of 2-D Bases Set {1s_, 15}

Cov G o g

Aq 1 1 1 1 Z

A, 1 1 -1 -1 Xy

B, 1 -1 1 -1 X,XZ

B, 1 -1 -1 1 Y:yZ
v(R) 2 0 0 2

n, :l(1><2+1><0+1><0+1><2):1 n, :l(1><2+1><0—1><0—1><2)=0
4 24

N, :%(1><2—1><0+1><O—1><2)=O N, :%(1><2—1><0—1><0+1><2):O




SALG- s ymmetry Adapted Linear Combination of AOs

For this trivial problem, it is very simple, we
Intuitively determined the new basis as




H20

symmetry AOs or SALCs for LCAO

A

28,




LRI,
S
S

1N
i
bt

i,
ST

H20- Hybridization of Oxygen's 2s and 2p,




H20- Hybridization of Oxygen's 2s and 2p,




~

P
Pttt
............\

it
e

- ,
N
N
" —
PR T LI T TN
s> _
A
&AA...M,...( O PR aTatat ot

H20- Chemical Bond



H20- Chemical Bonding in




H20- Summary on Chemical Bonding

_2P_ 15(a,b)
28
1s
0 2H




H20- Summary on Molecular Energy Level Sequences




Use Projection operator to construct SALCs

Definition:

for J-th Ir. rep. of the point group. This equation was
derived from the “great orthogonality theorem”.

A non-normalized SALC can be constructed from
bases set by the formula:




Example: n-MOs of C;H, (D)

ﬂ]ﬂ E Ifa 3 c‘z Ty 13] 3 g i
—_— — - E— — - |_
Ay ! 1 | 1 | i x4t 2
As” I I =1 I 1 =1 R,
E 2 -1 0 2 -1 0| iy (x? = y2, xy)
A" ] 1 ! -1 -1 =l
As" : | -1 -1 —=1 —1 =
. 1 0 -2 I 0 (R:., Ry) (x=, ¥2)
Ca, Sy
-1 -3 0 1

* However, it is more convenient to
reduce its symmetry to D,. Then we
have

F=A,+E



11_1 + J?I’ Il

z, R,
| (x, YRz, Ry) k (x* — y?, xy)xz, yz)

) 1 N
PA2¢1 ZEZZ(R)AZ Re,
R

:%(E¢1+c;¢1+c§¢1—02¢1—cg¢1—62¢1>

_1
6

|5E¢1 :%ZZ(FA{)E I:\3¢1

(¢1+¢2+¢3+¢1+¢2+¢3)=§(¢1+¢2+¢3)

1
=—= 024 -9, - ¢
:§(2E¢1_C§¢1_C3’2¢1):%(2¢1_¢2_¢3) 6( ¢ ¢ ¢)

1 !
Using orthogonality and normalization, we have E&§ :ﬁ(% —#3)|.




Another way to derive the third MO:

1. Find an operation to covert the second wavefunction into an
nonequivalent one (not +/- of the original one). A C, operation
works well. Then we have

e _ 1 e
Gty = \%(2% ¢~ 4)

2. A linear combination of this new one and the original one gives
rise to

CIPE + AoWE = (24, — §,— ) + (%)(2@ - 4)

3
— E(¢2 _¢3)

c_ L4
¥, _\E(¢2 #3)




A general simplification
 Reducing the symmetry to C, subgroup.

£ = exp (2mif3)

z, R; x4 2 2

{."T'l J}}{Rt ’ R,} {-II — .]"':-r I_]J"M__PE', II)

IL=A+E

p* ¢ = ZZ(IQ)AIQ@ =E¢ +Cit +Cidh = ¢ + ¢, + ¢,

|55(1)¢1 ~ ZZ(Q)E(D |Q¢1 =, +5C31>¢1 +g*C§¢l =@ tap, +e> o,
R

PEOG ~ D X (R)TIRG =+ 4, + 3,
R



¥ = AP%g,

=A(¢1+¢2+¢3)=%(¢1+¢2+¢3>

LIJlE _ A(|5E(1)¢1+ |5E(2)¢1)

= A(2¢, +2 cos(2?7z)¢2 +2 cos(%z)%) = % (20, — ¢, — ¢,)

\PZE _ A(ISE(1)¢1 . ISE(2)¢1)

= Al (Zsin(%z)@ - 2sin(%”)¢3) = %(% =)




Exam H
xample 2: C
6" "6

£ = exp (2wi[6)

2, R
. I1+ 52
yi, z*

(x, »)
(R., R,) (xz, yz)

; (x* — y?, xy)
"=A+B+E,+E
2

:@+%+¢+
: ¢4+¢5+¢6:\PA=%(¢
(G o+
byt s+ )

P4 =3
i ZﬁBA
R (R)°R¢, =Eg¢, —Cig, +C;
671 o
6¢1 Cg¢1+Cg¢1—C5¢
671




£ = exp (2wi/6)

I! + J_,I* II

(xz, yz)

{II - }’11 I_}')

F:A+B+E1+E2

PEOg ~ 2 H(R)“ORey =By +£Coh —£*C —Cogy - eCidh + 2 *Ciy
R

=P +ap, —E P~ — s +ET

|5E1(2)¢1 ~ ZZ('Q)EI(Z) |§¢1 = E¢1 + E*Cé¢1 _‘5C(52¢1 _C63¢1 —8*C§¢1 t 5C§¢1
R

=Rt ET G~y =y —ET s + 8o




W) = AP+ PEOg) = 2A(, +008( ), ~00(7 )~ ~COS( )k +COS()dh)

1
—E(2¢1+¢2 — ¢y =20, — 5 + &)
PE(2) = A(PEOg, ~ PEOR) = 2 (=sin( ), = in(Z)ds +5in()ds +5in()dh)

:%(¢2+¢3_¢5_¢6)

Similarly, we have

W (1) = A(¢5+¢6>=%(2¢1—¢2—¢3+2¢4—¢5+¢6)

TEZ<2)=A(¢5—¢6>H:§<—¢2+¢3—¢5+¢6>




Vibrational spectroscopy

CO, has 3 modes of vibration
O=C=0 O=C=0 O=C=0

Infra-red inactive -

no dipole change IR active IR active

H,O has 3 modes of vibration

H/O\H H/O\H H/O\H
= IR active IR active
active

Number of active modes tells us about symmetry




Molecular vibrations - number of modes

4 atoms - can move independently in X, y, z directions
3N degrees of freedom for a N-atom molecule.

If atoms fixed, there are: 3 translational degrees
3 rotational degrees

and the rest (3N-6) are vibrational modes




No. of modes of each symmetry species

Example - SiH,ClI, Point group C,,

= C, c,(xz) o,(yz) h=4

V4 A, +1 +1 +1 +1 y4 X2, y?, Z°
| | A VT R e R,  xy
NS "B, +1 -1 +1 -1 xR, x
Si B, +1 i | i | +1 Y, R, Yz
/ Draw X, y and z vectors on all atoms

Cl—Cl -
1 2 Perform symmetry operations

Count +1, -1, O if vector transforms to itself, minus
Iitself, or moves




H, H, {( E C, c,(xz) o,(yz) h=4
N\ Bo ol L al el
S A, +1  +1 -1 -1 R,

B, +1 -1 +1 -1 X, R,

é|1 Cl5 B, +1 -1 -1 +1  yR

Operation E

Si atom X transforms into Si x  count +1

y transforms into Siy  count +1

z transforms into Si z count +1

total +3

Same for other 4 atoms grand total +15

X2, y2, 72
Xy
XZ

N4




H, H, {( E C, o,x2)o,(yz) h=4
\ / A, +1 +1 +1 +1 p X2, y?, z2
S| A, +1  +1 -1 -1 R, Xy
B, +1 -1 +1 -1 X, R, Xz
éll Cls B, +1 -1 -1 +1 Yy, R, Yz
Operation C, Si atom X transforms into Si -x  count -1
y transforms into Si -y count -1
z transforms into Si z count +1
total -1
H, and H, move - swap places count O
Cl; and Cl, swap places count O

grand total -1




Operation o,(xz) Si atom x transforms into Si X

H, and H, also lie in xz plane, and behave as Si

Cl, and CI, swap places

=

UJHUJNZDZD

\)

+1
+1
+1
+1

6,(x2) 6,(yz) h=4

+1
Sl
+1
i |

+1 Z X2, y?, 72
-1 R, Xy
-1 X, Ry XZ

+1 Y, R, Yz

count +1

y transforms into Si -y count -1

z transforms into Si z count +1

total +1
count +1 each

count O

grand total +3



H, H, {( E C, o,x2)o,(yz) h=4
\ / A, +1 +1 +1 +1 Z X2, y?, 72
S A, +1  +1 -1 -1 R, Xy
B, +1 -1 +1 -1 X, Ry XZ
éll Cls B, +1 -1 -1 +1 Y, R, yz
Operation o,(yz) Si atom x transforms into Si -x count -1
y transforms into Siy count +1
z transforms into Si z count +1
total +1
H, and H, swap places count O

Cl, and Cl, also liein yz plane, and behave as Si count +1 each

grand total +3




No. of modes of each symmetry species

Example - SiH,Cl, Point group C,,

Overall we have:
E C, o,(xz) o,(yz)
+15 -1 +3 +3

This iIs the reducible representation of the set
of 3N (=15) atomic displacement vectors

We reduce it to the irreducible representations,
using a formula




Reduce the reducible representation

Formulais ZQR (R). 2.(R)

Reducible representation 15 -1 3 3

1E 1C, 1lo,(X2)1lo,(y2z) h=4
A, /+ +1 41 +1  Z X2, ), 22
A, +1K +1 -1 -1 R, Xy
B, +1 -1 ik} -1 X, Ry XZ
= +1 -1 -1 +1 Y, R, Yz

No. of A, motions =1/4[1.151+1.(-1).1+13.1+1.31] =5

7/ W\




Formula is Z(R). z.(R)

Reducible representation 15 -1 3 3

\

1 1C, 1o0,(x2)1lo,(yz) h=4
A, +1 /7+1 +1 +1  Z h Z2
A, +1 +1 il il R, Xy
B, +1 }\ ik} -1 X, Ry XZ
B, +1 -1 -1 +1 Y, R, Yz
No. of A, motions =1/4[1.15.1+1.(-1).1+1.3.1 + 1.3.1] =5
No. of A, motions =1/4[1.15.1+ 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] =2

i \ \




1
Formulais E :HZQR'Z(R)'Zz(R)
R

Reducible representation 15 -1 3 3

1E 1C, 1o0,(x2)1lo,(yz) h=4
A, +1 +1 41 +1  Z X2, y?, z°
A, +1 +1 -1 -1 R, Xy
B, +1 -1 +1 -1 X, R, Xz

B, +1 -1 -1 +1 Y,R, Yz

No. of A, motions =1/4[1.15.1+1.(-1).1+1.3.1 + 1.3.1] =5
No. of A, motions =1/4[1.15.1+ 1.(-1).1 + 1.3.(-1) + 1.3.(-1)] =2
No. of B, motions =1/4 [1.15.1 + 1.(-1).(-1) + 1.3.1 + 1.3.(-1)] =4
No. of B, motions =1/4[1.15.1 + 1.(-1).(-1) + 1.3.(-1) + 1.3.1] =4




Translations, rotations, vibrations

Symmetry species of all motions are:-

5A; + 2A, + 4B, + 4B, - the irreducible representation

3 of these are translations of the whole molecule

3 are rotations

Symmetry species of translations are given by
vectors (X, Y, z) in the character table

Symmetry species of rotations are given by R,,
R, and R, In the character table 'f




Translations, rotations, vibrations
Symmetry species of all motions are:-

Translations are:-
Rotations are:-

5A, +2A, +4B, +4B,

Y e A,

- SO Vibrations are:-

=
A, +1
A, +1
B, +1
B, +1

A, + A, £2B, 252
1C, 1lo,(x2) lo,(yz) h=4
+1 +1 +1 7 X2, y?, 72
+1 1 -1 R, Xy
1+ 1 xR.xz
1 -1 +L Y, Ry«.YZ




Vibrational modes of SiH,CI,

Symmetry species of vibrations
are: - 4A, + A, + 2B, + 2B,

What does each of these modes look like?

2 rules
(1) thereis 1 stretching vibration per bond

(1) must treat symmetry-related atoms together




Vibrational modes of SiH,CI,

2 rules
() thereis 1 stretching vibration per bond

(1) we must treat symmetry-related atoms together

We therefore have:-
two stretching modes of the SICl, group
two of the SiH, group

The remaining five modes must be deformations
(angle bending vibrations)




Vibrational modes of SiH,CI,

We therefore have:-

two stretching modes of the SiCl, group

We can stretch the two Si-Cl bonds
together in phase

or together out of phase




Is vibration symmetrical with
respect to each symmetry
operation?

-ifyes +1,if no -1

E C, o, Oy,

+1 +1 +1 +1

From the character table,
this belongs to the symmetry
species A; 4

We call the mode of vibration
Veym SICI,




Is vibration symmetrical
with respect to each
symmetry operation?

-ifyes +1,if no -1

E C2 Gy 0-yz

+1 -1 -1 +1

From the character table,
this belongs to the
symmetry species B,

We call the mode of
vibration v, SICl,

/ 8




Vibrational modes of SiH,CI,

We therefore have:-

two stretching modes of the SICl, group

and two stretching modes of the SiH, group

We can stretch the two Si-H bonds
together in phase

or together out of phase




E C, o, Oy, /

+1 +1 +1 +1 o

From the character table, this
belongs to the symmetry
species A; 4

We call the mode of vibration

Ve SiH,




E C, o, Oy,

+1 -1 +1 -1

From the character table, this
belongs to the symmetry
Species B,

We call the mode of vibration

Ve SiH,




Vibrational modes of SiH,CI,

We now have:-
two stretching modes of the SiCl, group
two of the SiH, group

The remaining five modes must be deformations
(angle bending vibrations)

As with stretches, we must treat symmetry-
related atoms together




E C, o, Oy,

+1 +1 +1 +1

From the character table, this
belongs to the symmetry
species A,

We call the mode of vibration
0sym SICI, (or SICI, scissors)

/ v




E C, o, Oy,

+1 +1 +1 +1

From the character table, this
belongs to the symmetry
species A,

We call the mode of vibration
Osym SIH, (Or SiH, scissors)

/ "




E C, o, Oy,

+1 -1 +1 -1

From the character table, this
belongs to the symmetry
Species B,

We call the mode of vibration ®
SiH, (or SiH, wag)

.




E C, o, Oy,

+1 -1 -1 +1

From the character table, this
belongs to the symmetry
Species B,

We call the mode of vibration p
SiH, (or SiH, rock)

i




E C2 GXZ GyZ ‘. e ‘e

+1 +1 -1 -1 ‘

From the character table, this
belongs to the symmetry
Species A,

We call the mode of vibration =
SiH, (or SiH, twist)




Vibrational modes of SiH,CI,

Overall, we now have:-

two stretching modes of the SiCl, group
A, + B,

two of the SiH, group

filve deformation modes
2A, +A,+B;+B,

Together, these account for all the modes we
expect:

4A,+ A, + 2B, + 2B,




Observing vibrations

Infra-red spectroscopy

Process — quantum of energy is absorbed by exciting a vibration

— may also increase or decrease rotational energy

IR
radiation

11
absorbed

Activity — absorption possible if and only if the vibration
involves a dipole change

12
i ]
o



Observing vibrations

Infra-red spectroscopy

Consider symmetry properties E C, o,xz)oyz) h=4
of dipoles and R
P Hx Hy M- A, #1114+ 4
e.g. SiH,Cl, Ha A, +1 o+ 1 -1 R,
Si
[-'-'.,-':_ B, +1 -1 +1 -1 X, H},
cl Cl B, +1 -1 -1 +1  yRA,

Dipoles are vectors, with same symmetry properties as x, y, z
In this case, y, has A; symmetry

Therefore A, vibrations involve dipole changes along the z axis,
and so all A, modes must be infra-red active.




Observing vibrations

Infra-red spectroscopy

Consider symmetry properties E

of dipoles p,, y,and p, A 41

e.g. SiH,Cl, Ha A, 4+
=

[-'-I'._::_ B, +1

cr ¢ B, +

o.(xz) o,(yz) h=4

+1
-1
+1

-1

+1
-1
-1

+1

b 4
R,
X, Hy

y. B,

Similarly B, and B, modes involve dipole changes along x and y

axes, and so must be infra-red active.

A, modes cannot involve dipole changes, and are infra-red inactive.

For any point group, ho more than 3 IR-active symmetry species.

12
i ]
3



Observing vibrations

Infra-red spectroscopy

Our examples

SinCIz rvib -_— 4A1 == A2 == 2B1 + 2B2
B +2 + 2 active modes
8 absorption bands in IR spectrum

XeOF, T

Vv

i, =3A; +2B, + B, + 3E
3 + 3 active modes
6 absorption bands in IR spectrum

E 2C, C, 20, 20, =8

1 +1 +1 +1 +1 +1
+1 +1 +1 -1 -1
+1 -1 +1 +1 -1
+1 -1 +1 -1 +1
+2 0 -2 0 0 (x,y) (R, R)

[,
N

[\ *]

mwm> >

X2+ y?, 22

X2 o y2
Xy
(xz, yz)




Observing vibrations

Raman spectroscopy

Process — large quantum of energy E is scattered with energy E - hv

radiation E
sample Sample usually liquid,
occasionally solid or gas
scattered
radiation
E - hv

Activity — vibrational mode active if and only if it
involves a polarisability change




Observing vibrations

Raman spectroscopy

Dipoles are vectors - u, etc. — symmetry properties as x, y, z

Polarisabilities are tensors — a,,, a,, etc. — properties as xx, xy

- listed in final column of character table

all symmetry species are Raman-active
9 bands in Raman spectrum

E C, ofxdoly2 h=4

+1 +1 +1 +1 b 4 X2, y2, 22
+1 +1 -1 -1 R, Xy

+1 -1 +1 -1 X, Fa’y Xz

+1 -1 -1 +1 y; B, yz ;«..

ke

-k

o wP> >

L]



Good Luck In the Final Exam!




Final Exam

Content: Chapters 5-9

Time: June 13, 8:00-10:00

Venue: FEWE-102

Tools: Fl2EitE s, L& LE A

ERTASE: June 10-12,
FE316(JA I I =)




