

(The Shape and Structure of Molecule) Part II--原子与分子的电子结构与化学反应 (The Electronic Structures of Atoms and Molecules, and Chemical Reactions)

II-A-2

Prof. Dr. Xin Lu (吕鑫)

Email: xinlu@xmu.edu.cn

http://pcossgroup.xmu.edu.cn/old/users/xlu/group/ http://pcossgroup.xmu.edu.cn/old/users/xlu/group/courses/fchem1/

1.3.2 氢原子薛定谔方程

 $-\frac{\hbar^2}{2m_e}\left(\frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2}\right) - \frac{\mathbf{z}e^2\psi}{4\pi\varepsilon_0 r} = E\psi$

$$\hbar = 约化普朗克常数, h/(2\pi)$$

 $m_e = 电子质量 \& e = 单位电量$ $\varepsilon_0 = 真空介电常数$

$$r =$$
 电子-核间距= $\sqrt{x^2 + y^2 + z^2}$

▶可精确求解,得到一系列由三个量子数(n,l,m)来定义的解: Ψn,l,m(x,y,z) (量子数以及各量子数间的关联与范围由此得来!核电荷为Z的类氢离子亦有相似解)

➢ 波函数对应的能量
$$E_n$$
: $E_n = -\frac{m_e e^4}{8\epsilon_0^2 h^2} \times \frac{Z^2}{n^2}$ ← 核电荷数 (Z=1 for H)

可简写为: $E_n = -R_H \times \frac{Z^2}{n^2}$ $R_H = \frac{m_e e^4}{8\epsilon_0^2 h^2}$ ~ 里德堡(Rydberg)常数 (13.61 eV)

(与早期根据氢原子光谱所提出经验公式—里德堡公式关联! Atkins的physical chemistry, 第11版, p305)

1.3.3 H原子轨道能级分布与原子光谱								
E 0-	$n = \infty$	电子电离 … <i>E _ = −R</i> -/16	$E_n = -R_H \times \frac{Z^2}{n^2}$ $\psi_{n,l,m_l}(x, y, z)$ ◆氢原子(或类氢离子)原子轨道能量仅与主量子数相关					
	n = 3 $3s$	$E_4 = R_{\rm H}/10$ $3p 3d E_3 = -R_{\rm H}/9$	•各能级能量为负值(<mark>物理意义?</mark>)					
	n =2 25	$- \frac{1}{2p} \qquad E_2 = -R_{\rm H}/4$	• <mark>基态</mark> :电子处于主量子数 n=1 的原子轨道时,体系能量 最低,基态能量为 E₁					
	•	· <u>原子吸收光谱</u> : 电子	• 主量子数越大, 能量越高, 最终趋近于零!					
		受光激发跃迁到高能 级轨道	• 同一主量子层 (n>1) 各轨道简并 (简并度 =?)					
		<u>原子发射光谱</u> :电子 受激后由高能级轨道 跃迁至较低能级轨道	拓展阅读 :现代量子力学在上世纪二三十年代的飞速发展的一个关键驱动力是追求对氢原子光谱的准确理论解释!					
-	$n = 1$ $\frac{1}{Is}$	$\boldsymbol{E}_1 = -\boldsymbol{R}_{\mathrm{H}}$						

	北学	
	1587	游音
Lage of Chamber	1921	State Contraction
	Chemical Enginez	

1.3.4 H原子轨道的各种表示

- A CONTRACTOR OF THE CONTRACTOR
- •精确求解薛定谔方程得到的氢原子或类氢离子AO波函数,其数学形式相对复杂!
- •为便于解薛定谔方程及更容易理解波函数,一般采用<mark>球极坐标系</mark>:

接下来将了解1s-3d 等常见AOs的波函数特征!

* · · · · · · · · · · · · ·	-H原子轨ì	首函数(/ =	Zr/a_0	(无须记忆!)	The second secon
type	n=1	n=2	玻尔半径	n=3	
S	$e^{- ho}$	$(2-\rho)e^{-\rho/2}$		$(27 - 18\rho + 2\rho^2)e^{-\rho/3}$	与角度变 量无关!
p_z	ſ	$-\rho e^{-\rho/2} cos \theta$		$-\rho(6-\rho)e^{-\rho/3}cos\theta$	
$p_{\rm x}$	径向函数 R _n (r)相同	<mark>ρe^{-ρ/2}sinθcos</mark> ¢	,相同 R. (r)	$\rho(6-\rho)e^{-\rho/3}sin\theta cos\phi$	
py		– <mark>ρe^{–ρ/2}sinθsin</mark> φ		$\rho(6-\rho)e^{-\rho/3}sin\theta sin\phi$	
d_{z^2}			ſ	$- \rho^2 e^{-\rho/3} (3 \cos^2 \theta - 1)$	
$d_{_{XZ}}$				$\rho^2 e^{-\rho/3} sin 2\theta cos\phi$	
d_{yz}			相同 P (r)	$\rho^2 e^{-\rho/3} sin 2\theta sin \phi$	
$d_{x^2-v^2}$			$\mathbf{n}_{n,t}$	$\rho^2 e^{-\rho/3} sin^2 \theta cos 2\phi$	
d_{xy}				$\rho^2 e^{-\rho/3} sin^2 \theta sin^2 \phi$	

 $ψ_{ns}(r, θ, φ) = R_{n,0}(r) × Y_{0,0}(θ, φ) & ψ_{1s} = A R_{1,0}(r) ∝ e^{-r} i.e., #径增大函数值变小!$

Y_{0,0}为常数,

<u>与</u>θ、 φ 无关!

• 所有ns轨道都呈球形对称。

1s orbital

1s orbital

• 密度分布图 (density plot)

俗称"电子云图"

- ψ² ~ 电子的几率密度分布函数或电子
 在空间某处出现的几率!
- 根据ψ²的值作图,值愈大,颜色愈深!
- 颜色越深, 电子出现几率越高!

♦ 径向分布函数 (RDF) vs. 几率密度分布函数 ψ^2

RDF定义了电子在半径为r、厚 度为δr的薄球壳上出现的几率

ψ²定义了(x,y,z)处体积微元中出

现电子的几率

- ψ² 在 r=0 处有极大值
- RDF在波尔半径处 (r=a₀) 有极大值
- RDF在r=0处值为0

2s orbital

 $(2 - \rho)e^{-\rho/2}$ ($\rho = Zr/a_0$)

- 所有s型原子轨道都是球形,均可用球型三维轮廓图描述! (波函数均不含角度变量θ、φ,只与径向变量**/**相关)
- 但不同主量子数的s型AO波函数并不相同;
- 2s轨道波函数值有 + 、- (即+、-相)

--函数值+、-变化处ψ=0,称为节点(面)。

2p orbitals

- 2p轨道径向函数与磁量子数 m_l 无关, p_x 、 p_y 、 p_z 轨道的径向函数相同, 径向分布函数(RDF)亦相同。
- 2p轨道角度函数与磁量子数 m_i 相关,决定了 p_x 、 p_y 、 p_z 轨道的 取向,波函数符号(相位+/-)取决于角度函数值。

3s orbital $(27 - 18\rho + 2\rho^2)e^{-\rho/3}$ $(\rho = Zr/a_0)$

- 球形对称~波函数值仅于r有关
- 径向函数值随着r的增大出现 +、-、+值变化 (即相位+、-、+)
- 径向函数有两个节点
 - → 波函数有两个径向节面(球面)
- RDF有两个节点,三个局域极大值点
- 几率密度分布也有两个径向节面。

3p orbitals

- 角度函数与2p轨道的相同, 3p_x、3p_y, 3p_z各有一 个角度节面;
- 径向函数有一个节面,有+、-值;
- RDF有一个节点,两个局域极大值
- 几率密度分布也有一个(球形)径向节面和一个角 度节面

径向节面(球面)

角度节面(平面)

几率密度分布图

3d orbitals

- 3d原子轨道的径向函数相同, RDF有极值点;
- 角度函数的方向取决于*m_i*值;

3d orbitals

3d orbitals

• 几率密度分布

节面/节点 (nodes)

- H原子轨道的节面数仅取决于其主量子数_n.
 - 总节面数 = n-1 = 径向函数节面数 + 角度函数节面数

Q:

角度函数节面数 = 1.

s轨道角度函数节面数 = 0.

- **p**轨道角度函数节面数 = 1.
 - **d**轨道角度函数节面数 = 2.

f轨道角度函数节面数 = 3.

→ 径向函数节面数 = *n-l-1*.

- 1) 试判断量子数(6,0,0)所定义原子轨道的节面 数,试用二维素描图勾勒出该AO的节面及 相位变化情况。
- 2) 试判断原子轨道4p_z的节面数,试用二维素 描图勾勒出该轨道的节面及相位变化情况

1.4多电子原子结构—借用氢原子轨道构筑

- ◆ 多电子原子的薛定谔方程难以精确求解(因其势能项中电子-电子相互作用的复杂性)。
- ◆ 获取多电子原子中电子能量的合理近似方法: 轨道近似 (orbital approximation)

假设每个电子所受其余电子的总作用势可以平均地看成是以核为中心的球对称势场 (中心力场),每 个电子的波函数因此与氢的原子波函数形式相同。亦称为中心力场近似 (单电子近似)。

e.g., Li atom

• 不同AO上电子所受其它电子的屏蔽效应 σ 不同,有效核 电荷 $x^+=Z_{eff}$ 亦不同: $Z_{eff}=Z-\sigma$

- i) Li原子中,每个1s电子感受的Z_{eff}=+2.7:即1s电子互相之间屏蔽核电荷量为0.3,假设不受2s电子的屏蔽;

ii) 2s电子受两个1s电子屏蔽, Z_{eff}(2s) = +1.3 (>+1)。

• 对外层电子,每个内层电子对核电荷的屏蔽均<1。

1.4.1 多电子体系原子 轨道能级与穿透效应

- ◆ 氢原子中相同主量子数的原子轨道能量相同;
- ◆ 多电子原子中, 主量子数相同、轨道角动量 量子数不同的轨道不再简并。例: Li原子
 - 各原子轨道因核电荷增多而明显收缩;
 - 1s轨道收缩尤甚;
 - 穿透效应 (penetration effect, 钻穿效应):

Li原子2s轨道穿透到1s轨道的程度比2p轨道大得多,感受到更多有效核电荷Zeff,因而能量较低。

- 穿透效应相对强弱: ns > np > nd > nf
 - 同一能层亚层能级高低顺序: ns < np < nd < nf

多电子体系原子轨道能级与穿透效应

- ◆ 重原子中轨道穿透效应更加突出,能 级顺序因而更难预测。
- H原子中, 4s轨道RDF共有三个节面和 四个局域极大值, 电子在4s比在3d轨道 更远离原子核
- K原子中,因核电荷多导致轨道收缩, 4s比3d穿透到更内层轨道的程度更大,因而能量更低。

多电子体系原子轨道能级与穿透效应

- ◆ H原子轨道能级顺序: 1s < 2s=2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f ...
- ◆ Li原子轨道能级顺序: 1s << 2s < 2p << 3s < 3p <3d < 4s <4p < 4d <4f < 5s ...</p>
 亚层间的简并度消去: 能级主要取决于n, 也受尽响。
- ◆ Na原子轨道能级顺序: 1s << 2s < 2p << 3s < 3p < 4s < 3d < 4p < 5s ...
 4s < 3d (与周期表中填充顺序一致.)
- ♦ K原子轨道能级顺序: 1s << 2s < 2p << 3s < 3p < 4s < 4p < 5s < 3d...</p>
 4s, 4p, 5s 均低于 3d.
- Ca⁺: $1s \le 2s \le 2p \le 3s \le 3p \le 4s \le 3d \le 4p \le 5s \dots$
- Sc^{2+} : 1s << 2s < 2p << 3s < 3p < 3d < 4s < 4p < 5s ...

K, Ca⁺, 和 Sc²⁺ 等电子, 但很难预测能级顺序!

原子基态电子组态的构造原理 (aufbau principle):基于轨道能级 由低到高顺序填充核外电子!

- > 鲍林能级图的斜线表示(右图)-- 便于记忆!
- ▶ 历史上有过多种关于多电子原子能级的经验方法,例如 Q 徐光宪经验公式(1956): *n* + 0.7/
- 基态原子电子排布的构造原理(aufbau principle): 基于轨道能级由低到高顺序填充核外电子!
- 还需遵循Pauli不相容原理和洪特规则!
 例1: Ni (Z=28) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁸ 4s² → [Ar]3d⁸ 4s²
- · 过渡金属原子价层电子排布情况复杂
 例2: Cr(Z=24) [Ar]3d⁴4s² Obs. [Ar]3d⁵4s¹
 例3: Pd(Z=46) [Kr]4d⁸5s² Obs. [Kr]4d¹⁰5s⁰
 例4: Pt(Z=78) [Xe]4f¹⁴5d⁸6s² Obs. [Xe]4f¹⁴5d⁹6s¹

1.4.3 周期表内原子轨道能级分布规律

- ◆ 周期表中原子轨道的能量变化趋势:Z_{eff}变化趋势(结合同一能层AOs的穿透效应差异)!
 - 同一周期由左至右(同一亚层)原子轨道因电子有效核电荷增加而 能量降低;

1.4.3 周期表内原子轨道能级分布规律

First ionization energy (kJ/mol)

k 📕 p block

ck 📕 d block

- ◆ 第一电离能变化规律
 - 同一周期: 总体上由左至右逐渐升高, 突 变点位于ns²np¹、ns²np⁴、ns²(n-1)d¹⁰;
 - 同一族: 自上而下因原子半径增大而降低;
 - 总的趋势: 从左下角到右上角对角上升。

1.5 本章小结

- ◆ 原子的光电子能谱 → 核外电子能量状态分布特征—能级高低、分立分布
- ◆ 原子轨道(及能级)概念 →量子数集、电子自旋、Pauli不相容原理
- ◆ 原子轨道波函数概念与(氢)原子薛定谔方程 → 氢原子轨道能级与波函数组成
 - →氢AO波函数特征及其2-3维图示、几率密度分布函数与径向分布函数
- ◆ 多电子原子的中心力场近似与有效核电荷 → 借用氢原子轨道波函数描述多电子原子轨道
 - → 穿透效应、屏蔽效应及有效核电荷的周期性变化规律
 - → 轨道能量、电离能、电负性、原子半径等的周期律
 - → 与键的类型、相对强弱、相对键长和极性、分子反应性等直接关联!

- •复习: pp. 39-42, pp.46-77, PW&JK
- 预习: pp. 99-125, PW&JK
- 习题: 4-8