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Introduction 

A User's Guide to 
Chemical Kinetics 
and Reaction 
Dynamics 

Chemistry is the study of the composition, structure, and properties of substances; 
of the transformation between various substances by reaction; and of the energy 
changes that accompany reaction. In these broad terms, physical chemistry is then 
the subbranch of the discipline that seeks to understand chemistry in quantitative 
and theoretical terms; it uses the tools of physics and mathematics to predict and 
explain macroscopic behavior on a microscopic level. 

Physical chemistry can, in turn, be described by its subfields. Thermodynamics 
deals primarily with macroscopic manifestations of chemistry: the transformations 
between work and heat, the stability of compounds, and the equilibrium properties 
of reactions. Quantum mechanics and spectroscopy, on the other hand, deal prima- 
rily with microscopic manifestations of chemistry: the structure of matter, its energy 
levels, and the transitions between these levels. The subfield of statistical mechanics 
relates the microscopic properties of matter to the macroscopic observables such as 
energy, entropy, pressure, and temperature. 

At their introductory level, however, all of these fields emphasize properties at 
equilibrium. Thermodynamics can be used to calculate an equilibrium constant, but 
it cannot be used to predict the rate at which equilibrium will be approached. For 
example, a stoichiometric mixture of hydrogen and oxygen is predicted by thermo- 
dynamics to react to water, but kinetics can be used to calculate that the reaction will 
take on the order of years (= 3 X S) at room temperature, though only 
lop6 s in the presence of a flame. Similarly, quantum mechanics can do a good job 
at predicting the spacing of energy levels, but it does not do very well, at least at the 
elementary level, in providing simple reasons why population of some energy levels 
will be preferred over others following a reaction. Many reactions produce products 
in a Maxwell-Boltzmann distribution, but some, such as those responsible for chem- 
ical lasers, produce an "inverted" distribution that, over a specified energy range, is 
characterized by a negative temperature. We would like to have an understanding of 
why the rate for a reaction can be changed by 38 orders of magnitude, or why a reac- 
tion yields products in very specific, nonequilibrium distributions over energy levels. 

Questions about the rates of processes and about how reactions take place are 
the purview of chemical kinetics and reaction dynamics. Because this subfield of 
physical chemistry is the one most concerned with the "how, why, and when" of chem- 
ical reaction, it is a central intellectual cornerstone to the discipline of chemistry. 
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And yet it is of enormous practical importance as well. Chemical reactions control 
our environment, our life processes, our food production, and our energy utiliza- 
tion. Understanding of and possible influence over the rates of chemical reactions 
could provide a healthier environment and a better life, with adequate food and 
more efficient resource management. 

Thus, chemical kinetics is both an exciting intellectual frontier and a field that 
addresses societal needs as well. At the present time both the intellectual and practi- 
cal forefronts of chemical kinetics are linked to a rapidly developing new set of 
instrumental techniques, including lasers that can push our time resolution to 10-l5 s 
or detect concentrations at sensitivities approaching one part in 1016, microscopes that 
can see individual atoms, and computers that can calculate some rate constants more 
accurately than they can be measured. These techniques are being applied to rate 
processes in all phases of matter, to reactions in solids, liquids, gases, plasmas, and 
even at the narrow interfaces between such phases. Never before have we been in 
such a good position to answer the fundamental question "how do molecules react?" 

We begin our answer to this question by examining the motions of gas-phase 
molecules. What are their velocities, and what controls the rate of collisions among 
them? In Chapter 1, "Kinetic Theory of Gases," we will see that at equilibrium the 
molecular velocities can be described by the Boltzmann distribution and that fac- 
tors such as the size, relative velocity, and molecular density influence the number 
of collisions per unit time. We will also develop an understanding of one of the cen- 
tral tools of physical chemistry, the distribution function. 

We then examine the rates of chemical reactions in Chapter 2, first concentrat- 
ing on the macroscopic observables such as the order of a reaction and its rate con- 
stant, but then examining how the overall rate of a reaction can be broken down into 
a series of elementary, molecular steps. Along the way we will develop some pow- 
erful tools for analyzing chemical rates, tools for determining the order of a reac- 
tion, tools for making useful approximations (such as the "steady-state" approxi- 
mation), and tools for analyzing more complex reaction mechanisms. 

In Chapter 3, "Theories of Chemical Reactions," we look at reaction rates from 
a more microscopic point of view, drawing on quantum mechanics, statistical mechan- 
ics, and thermodynamics to help us understand the magnitude of chemical rates and 
how they vary both with macroscopic parameters like temperature and with micro- 
scopic parameters like molecular size, structure, and energy spacing. 

Chapter 4, "Transport Properties," uses the velocity distribution developed in 
Chapter 1 to provide a coherent description of thermal conductivity, viscosity, and dif- 
fusion, that is, a description of the movement of such properties as energy, momentum, 
or concentration through a gas. We will see that these properties are passed from one 
molecule to another upon collision, and that the mean distance between collisions, the 
"mean free path," is an important parameter governing the rate of such transport. 

Armed with the fundamental material of the first four chapters, we move to 
four exciting areas of modern research: "Reactions in Liquid Solutions" (Chapter 
5), "Reactions at Solid Surfaces" (Chapter 6), "Photochemistry" (Chapter 7), and 
"Molecular Reaction Dynamics" (Chapter 8). 

The material of the text can be presented in several different formats depend- 
ing on the amount of time available. The complete text can be covered in 12-14 
weeks assuming 3 hours of lecture per week. In this format, the text might form the 
basis of an advanced undergraduate or beginning graduate level course. A more 
likely scenario, given the pressures of current instruction in physical chemistry, is 
one in which only the very fundamental topics are covered in detail. Table 1 shows 
a flow chart giving the order of presentation and the number of lectures required for 
the fundamental material; the total number of lectures ranges between 11 and 17. 
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Of course, if more time is available, the instructor can supplement the funda- 
mental material with selected topics from later chapters. Several suggestions, includ- 
ing the number of lectures required, are given in Table 2 through Table 5. 

Fundamental Sections for a Course in Kinetics 

Most Important Sections (Lectures) Supplemental (Lectures) 

1.1-1.6 (3) 
1.7 (1) 4.14.8 (3) 
2.1-2.5 (4) 2.6 (2) 
3.1-3.5 (3) 5.1-5.2 (1) 
Total Lectures: 11 Total Lectures: 6 

Reactions in Liquid Solutions 

Fundamental (Lectures) Supplemental (Lectures) Advanced (Lectures) 

5.1-5.3 (2) 5.4 (1) 

An Introduction to Surface Kinetics 

Fundamental (Lectures) Supplemental (Lectures) Advanced (Lectures) 

6.1-6.3, 6.6 (2) 6.4 (1) 6.5 (1) 

Photochemistry and Atmospheric Chemistry 

Fundamental (Lectures) Supplemental (Lectures) Advanced (Lectures) 

7.1,7.2 (1 ) 
7.3.1,7.3.4 (1 ) 
7.4 (1 ) 
Total Lectures: 3 

7.3.2, 7.3.3 (1 ) 
7.5 (2 ) 

Total Lectures: 2 Total Lectures: 2 

Fundamental (Lectures) Supplemental (Lectures) Advanced (Lectures) 

8.1, 8.2, 8.3 (2 ) 8.4 (1 ) 
8.5 (2 ) 8.6 (1) 8.7 (1) 
Total Lectures: 4 Total Lectures: 2 Total Lectures: 1 



Preface 
Chemical Kinetics and Reaction Dynamics is a textbook in modern chemical kinet- 
ics. There are two operative words here, textbook and modern. It is a textbook, not a 
reference book. While the principal aim of a reference book is to cover as many top- 
ics as possible, the principal aim of a textbook is to teach. In my view, a serious prob- 
lem with modern "textbooks" is that they have lost the distinction. As a consequence 
of incorporating too many topics, these books confuse their audience; students have 
a difficult time seeing the forest through the trees. This textbook first aims to teach, 
and to teach as well as possible, the underlying principles of kinetics and dynamics. 
Encyclopedic completeness is sacrificed for an emphasis on these principles. I aim 
to present them in as clear a fashion as possible, using several examples to enhance 
basic understanding rather than racing immediately to more specialized applications. 
The more technical applications are not totally neglected; many are included as sep- 
arate sections or appendices, and many are covered in sets of problems that follow 
each chapter. But the emphasis is on making this a textbook. 

The second operative word is modern. Even recently written texts often use quite 
dated examples. Important aims of this textbook are first to demonstrate that the basic 
kinetic principles are essential to the solution of modem chemical problems and sec- 
ond to show how the underlying question, "how do chemical reactions occur," leads 
to exciting, vibrant fields of modern research. The first aim is achieved by using rel- 
evant examples in presenting the basic material, while the second is attained by inclu- 
sion of chapters on surface processes, photochemistry, and reaction dynamics. 

Chemical Kinetics and Reaction Dynamics provides, then, a modern textbook. 
In addition to teaching and showing modern relevance, any textbook should be flex- 
ible enough so that individual instructors may choose their own sequence of topics. 
In as much as possible, the chapters of this text are self-contained; when needed, 
material from other sections is clearly referenced. An introduction to each chapter 
identifies the basic goals, their importance, and the general plan for achieving those 
goals. The text is designed for several possible formats. Chapters 1, 2, and 3 form 
a basic package for a partial semester introduction to kinetics. The basic material 
can be expanded by inclusion of Chapter 4. Chapters 5 through 8 can be included 
for a full semester course. Taken in its entirety, the text is suitable for a one-semester 
course at the third-year undergraduate level or above. I have used it for many years 
in a first-year graduate course. 

While rigorous mathematical treatment of the topic cannot and should not be 
avoided if we are to give precision to the basic principles, the greatest problem stu- 
dents have with physical chemistry is keeping sight of the chemistry while wading 
through the mathematics. This text endeavors to emphasize the chemistry by two 
techniques. First, the chemical objectives and the reasons for undertaking the math- 
ematical routes to those objectives are clearly stated; the mathematics is treated as 
a means to an end rather than an end in itself. Second, the text includes several "con- 
ceptual" problems in addition to the traditional "method" problems. Recent research 
on the teaching of physics has shown that, while students can frequently memorize 
the recipe for solving particular types of problems, they often fail to develop con- 
ceptual intuition." The first few problems at the end of each chapter are designed 
as a conceptual self-test for the student. 

*I. A. Halloun and D. Hestenes, Am. J. Phys. 53, 1043 (1985); 53, 1056 (1985); 55,455 (1987); 
D. Hestenes, Am. J. Phys. 55,440 (1987); E. Mazur, Opt. Photon. News 2,38 (1992). 
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The text assumes some familiarity with elementary kinetics at the level of high- 
school or freshman chemistry, physics at the freshman level, and mathematics 
through calculus. Each chapter then builds upon this basis using observations, der- 
ivations, examples, and instructive figures to reach clearly identified objectives. 

I am grateful to Professor T. Michael Duncan for providing some of the prob- 
lems used in Chapters 2 and 3, to Brian Bocknack and Julie Mueller for assistance 
with the problems and solutions, to Jeffrey Steinfeld and Joseph Francisco for help- 
ful suggestions, to many outside reviewers of the text, especially Laurie Butler, for 
good suggestions, and to my wife, Barbara Lynch, for support and tolerance during 
the long periods when I disappeared to work on the text. 

Paul Houston 
Zthaca. New York 
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1 .I INTRODUCTION 
The overall objective of this chapter is to understand macroscopic properties such 
as pressure and temperature on a microscopic level. We will find that the pressure 
of an ideal gas can be understood by applying Newton's law to the microscopic 
motion of the molecules making up the gas and that a comparison between the 
Newtonian prediction and the ideal gas law can provide a function that describes 
the distribution of molecular velocities. This distribution function can in turn be 
used to learn about the frequency of molecular collisions. Since molecules can react 
only as fast as they collide with one another, the collision frequency provides an 
upper limit on the reaction rate. 

The outline of the discussion is as follows. By applying Newton's laws to the 
molecular motion we will find that the product of the pressure and the volume is 
proportional to the average of the square of the molecular velocity, <v2>, or equiv- 
alently to the average molecular translational energy E. In order for this result to be 
consistent with the observed ideal gas law, the temperature T of the gas must also 
be proportional to <v2> or <E>. We will then consider in detail how to determine 
the average of the square of the velocity from a distribution of velocities, and we 
will use the proportionality of T with <v2> to determine the Maxwell-Boltzmann 
distribution of speeds. This distribution, F(v) dv, tells us the number of molecules 
with speeds between v and u + dv. The speed distribution is closely related to the dis- 
tribution of molecular energies, G(E) d ~ .  Finally, we will use the velocity distribution 
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to calculate the number of collisions Z that a molecule makes with other molecules 
in the gas per unit time. Since in later chapters we will argue that a reaction between 
two molecules requires that they collide, the collision rate Z provides an upper limit 
to the rate of a reaction. A related quantity A is the average distance a molecule 
travels between collisions or the mean free path. 

The history of the kinetic theory of gases is a checkered one, and serves to dis- 
pel the impression that science always proceeds along a straight and logical path." In 
1662 Boyle found that for a specified quantity of gas held at a fixed temperature the 
product of the pressure and the volume was a constant. Daniel Bernoulli derived this 
law in 1738 by applying Newton's equations of motion to the molecules comprising 
the gas, but his work appears to have been ignored for more than a ~entu1-y.~ A school 
teacher in Bombay, India, named John James Waterston submitted a paper to the 
Royal Society in 1845 outlining many of the concepts that underlie our current 
understanding of gases. His paper was rejected as "nothing but nonsense, unfit even 
for reading before the Society." Bernoulli's contribution was rediscovered in 1859, 
and several decades later in 1892, after Joule (1848) and Clausius (1857) had put 
forth similar ideas, Lord Rayleigh found Waterston's manuscript in the Royal Soci- 
ety archives. It was subsequently published in Philosophical Transactions. Maxwell 
(Illustrations of Dynamical Theory of Gases, 1859-1860) and Boltzmann (Vor- 
lesungen iiber Gastheorie, 1896-1898) expanded the theory into its current form. 

1.2 PRESSURE OF AN IDEAL GAS 
We start with the basic premise that the pressure exerted by a gas on the wall of a con- 
tainer is due to collisions of molecules with the wall. Since the number of molecules 
in the container is large, the number colliding with the wall per unit time is large 
enough so that fluctuations in the pressure due to the individual collisions are irnrnea- 
surably small in comparison to the total pressure. The first step in the calculation is to 
apply Newton's laws to the molecules to show that the product of the pressure and the 
volume is proportional to the average of the square of the molecular velocity, <u2>. 

Consider molecules with a velocity component u, in the x direction and a mass 
m. Let the molecules strike a wall of area A located in the z-y plane, as shown in 
Figure 1.1. We would first like to know how many molecules strike the wall in a 
time At, where At is short compared to the time between molecular collisions. The 
distance along the x axis that a molecule travels in the time At is simply v,At, so 
that all molecules located in the volume Av,At and moving toward the wall will 
strike it. Let n* be the number of molecules per unit volume. Since one half of the 
molecules will be moving toward the wall in the +x direction while the other half 
will be moving in the -x direction, the number of molecules which will strike the 
wall in the time At is $~"Av,A~.  

The force on the wall due to the collision of a molecule with the wall is given 
by Newton's law: F = ma = m dvldt = d(mv)ldt, and integration yields FAt = 

A(mu). If a molecule rebounds elastically (without losing energy) when it hits the 
wall, its momentum is changed from +mu, to -mu,, so that the total momentum 
change is A(mu) = 2mux. Consequently, FAt = 2mvx for one molecular collision, 
and FAt = ($n*~u,~t) (2mu,)  for the total number of collisions. Canceling At 
from both sides and recognizing that the pressure is the force per unit area, p = FIA, 
we obtain p = n*mu,2. 

aThe history of the kinetic theory of gases is outlined by E. Mendoza, Physics Today 14,36-39 (1961). 
bA translation of this paper has appeared in The World of Mathematics, J. R. Newman, Ed., Vol. 2 

(Simon and Schuster, New York, 1956), p. 774. 
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Figure 1.1 

All the molecules in the box that are moving toward the z-y plane will strike the wall. 

Of course, not all molecules will be traveling with the same velocity v,. We will 
learn below how to characterize the distribution of molecular velocities, but for now 
let us simply assume that the pressure will be proportional to the average of the 
square of the velocity in the x direction, p = n * m < ~ : > . ~  The total velocity of an 
indivicual molecul_e most likelyA c9ntain: other components along y and z. Since 
v = iv,  + jvy + kuz,* where i, j ,  and k are unit vectors in the x, y, and z direc- 
tions, respectively, v2 = v: + v; + v: and <v2> = <v:> + <v;> + <v:>. In 
an isotropic gas the motion of the molecules is random, so there is no reason for the 
velocity in one particular direction to differ from that in any other direction. Con- 
sequently, <u:> = <v;> = <v:> = <v2>/3. When we combine this result with 
the calculation above for the pressure, we obtain 

1 
p = -n*m<v2>. 

3 (1.1) 

Of course, n* in equation 1.1 is the number of molecules per unit volume and can 
be rewritten as nNAlv where NA is Avogadro's number and n is the number of 
moles. The result is 

Since the average kinetic energy of the molecules is <E> = irn<v2>, 
another way to write equation 1.2 is 

2 
p v  = -PINA<€>. 

3 (1.3) 

Equations 1.2 and 1.3 bear a close resemblance to the ideal gas law, pV = nRT. 
The ideal gas law tells us that the product of p and V will be constant if the tem- 
perature is constant, while equations 1.2 and 1.3 tell us that the product will be 
constant if <v2> or <E> is constant. The physical basis for the constancy of pV 
with <v2> or <E> is clear from our previous discussion. If the volume is 

CIn this text, as in many others, we will use the notation <x> or F to mean "the average value of x." 
dThroughout the text we will use boldface symbols to indicate vector quantities and normal weight 

symbols to indicate scalar quantities. Thus, v = Ivl. Note that v2 = v . v = vZ. 
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increased while the number, energy, and velocity of the molecules remain constant, 
then a longer time will be required for the molecules to reach the walls; there will 
thus be fewer collisions in a given time, and the pressure will decrease. To identify 
equation 1.3 with the ideal gas law, we need to consider in more detail the rela- 
tionship between temperature and energy. 

1.3 TEMPERATURE AND ENERGY 
Consider two types of molecule in contact with one another. Let the average energy 
of the first type be <E>,  and that of the second type be <E>,.  If <E>,  is greater 
than < E > ~ ,  then when molecules of type 1 collide with those of type 2, energy will 
be transferred from the former to the latter. This energy transfer is a form of heat 
flow. From a macroscopic point of view, as heat flows the temperature of a system of 
the type 1 molecules will decrease, while that of the type 2 molecules will increase. 
Only when < E > ,  = <E>, will the temperatures of the two macroscopic systems be 
the same. In mathematical terms, we see that Tl = T2 when = < E > ~  and that 
T,  > T2 when < E > ,  > < E > ~ .  Consequently, there must be a correspondence 
between <e> and T so that the latter is some function of the former: T = T ( < E > ) .  

The functional form of the dependence of T on < E >  cannot be determined 
solely from kinetic theory, since the temperature scale can be chosen in many pos- 
sible ways. In fact, one way to define the temperature is through the ideal gas law: 
T = pVl(nR). Experimentally, this corresponds to measuring the temperature either 
by measuring the volume of an ideal gas held at constant pressure or by measuring 
the pressure of an ideal gas held at constant volume. Division of both sides of equa- 
tion 1.3 by nR and use of the ideal gas relation gives us the result 

where k, known as Boltzmann's constant, is defined as RIN,. Note that since 
< E >  = $m<v2>, 

example 1.1 
Calculation of Average Energies and Squared Velocities 
Objective Calculate the average molecular energy, < E > ,  and the average 

squared velocity, <v2>, for a nitrogen molecule at T = 300 K. 

Method Use equations 1.5 and 1.6 with m = (28 g/mole)(l kg11000 g)l 
(NA moleculelmole) and k = 1.38 X JIK. 

I solution <E> = 3kTl2 = 3(1.38 x J/K)(300 K)/2 = 6.21 X J. 
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To summarize the discussion so far, we have seen from equation 1.2 that p V  is 
proportional to <v2> and that the ideal gas law is obtained if we take the defini- 
tion of temperature to be that embodied in equation 1.5. Since <E> = $rn<v2>, 
both temperature and p V  are proportional to the average of the square of the veloc- 
ity. The use of an average recognizes that not all the molecules will be moving with 
the same velocity. In the next few sections we consider the distribution of molecu- 
lar speeds. But first we must consider what we mean by a distribution. 

1.4 DISTRIBUTIONS, MEAN VALUES, AND 
DISTRIBUTION FUNCTIONS 

Suppose that five students take a chemistry examination for which the possible 
grades are integers in the range from 0 to 100. Let their scores be S ,  = 68, S, = 76, 
S, = 83, S, = 91, and S, = 97. The average score for the examination is then 

where NT = 5 is the number of students. In this case, the average is easily calcu- 
lated to be 83. 

Now suppose that the class had 500 students rather than 5. Of course, the aver- 
age grade could be calculated in a manner similar to that in equation 1.7 with an 
index i running from 1 to N, = 500. However, another method will be instructive. 
Clearly, if the examination is still graded to one-point accuracy, it is certain that 
more than one student will receive the same score. Suppose that, instead of sum- 
ming over the students, represented by the index i in equation 1.7, we form the 
average by summing over the scores themselves, which range in integer possibili- 
ties from j = 0 to 100. In this case, to obtain the average, we must weight each score 
Sj by the number of students who obtained that score, Nj: 

Note that the definition of N, requires that ZNj  = NT. The factor l/NT in equation 
1.8 is included for normalization, since, for example, if all the students happened 
to get the same score Sj = S then 

Now let us define the probability of obtaining score Sj as the fraction of stu- 
dents receiving that score: 
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Then another way to write equation 1.8 is 

where C .P. = 1 from normalization. 
1 1. Equation 1.11 provides an alternative to equation 1.7 for finding the average 

score for the class. Furthermore, we can generalize equation 1.11 to provide a 
method for finding the average of any quantity, 

where Pi is the probability of finding the jth result. 

example 1.2 
Calculating Averages from Probabilities 
Objective Find the average throw for a pair of dice. 

Method Each die is independent, so the average of the sum of the throws 
will be twice the average of the throw for one die. Use equation 

I 
1.12 to find the average throw for one die. 

Solution The probability for each of the six outcomes, 1-6, is the same, 
namely, 116. Factoring this out of the sum gives <T> = (116) 2 
Ti, where Ti = 1,2,3,4,5,6 for i = 1-6. The sum is 21, so that the 
average throw for one die is <T> = 2116 = 3.5. For the sum of 
two dice, the average would thus be 7. 

The method can be extended to calculate more complicated averages. Let f(Qj) 
be some arbitrary function of the observation Qj. Then the average value of the 
functionflQ) is given by 

For example, if Q were the square of a score, then 

Suppose now that the examination is a very good one, indeed, and that the tal- 
ented instructor can grade it not just to one-point accuracy (a remarkable achieve- 
ment in itself!) but to an accuracy of dS, where dS is a very small fraction of a point. 
Let P(S) dS be the probability that a score will fall in the range between S and S + 
dS, and let dS become infinitesimally small. The fundamental theorems of calculus 
tell us that we can convert the sum in equation 1.11 to the integral 
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or, more generally for any observable quantity, 

Equation 1.16 will form the basis for much of our further work. The probabil- 
ity function P(Q) is sometimes called a distribution function, and the range of the 
integral is over all values of Q where the probability is nonzero. Note that normal- 
ization of the probability requires 

The quantity 1+(x)I2 dx is simply a specific example of a distribution function. 
Although knowledge of quantum mechanics is not necessary to solve it, you may 
recognize a connection to the particle in the box in Problem 1.7, which like Exam- 
ple 1.3 is an exercise with distribution functions. 

example 1.3 
- 

Determining Distribution Functions 

Objective Bees like honey. A sphere of radius ro is coated with honey and 
hanging in a tree. Bees are attracted to the honey such that the 
average number of bees per unit volume is given by Kr-5, where 
K is a constant and r is the distance from the center of the sphere. 
Derive the normalized distribution function for the bees. They can 
be at any distance from the honey, but they cannot be inside the 
sphere. Using this distribution, calculate the average distance of a 
bee from the center of the sphere. 

Method First we need to find the normalization constant K by applying 
equation 1.17, recalling that we have a three-dimensional problem 
and that in spherical coordinates the volume element for a problem 
that does not depend on the angles is 45-9 dr: Then, to evaluate the 
average, we apply equation 1.16. 

Solution Recall that, by hypothesis, there is no probability for the bees 
being at r < ro, so that the range of integration is from ro to 
infinity. To determine K we require 

so that 
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Having determined the normalization constant, we now calculate the 
average distance: 

1.5 THE MAXWELL DISTRIBUTION OF SPEEDS 
We turn now to the distribution of molecular speeds. We will denote the probabil- 
ity of finding v, in the range from u, to v, + dux, u, in the range from v, to v, + 
dv,, and v, in the range from v, to u, + du, by F(v,,v,,v,) dux dv, dv,. The object of 
this section is to determine the function F(v,,v,,u,). There are four main points in 
the derivation: 

1. In each direction, the velocity distribution must be an even function of u. 
2. The velocity distribution in any particular direction is independent from and 

uncorrelated with the distributions in orthogonal directions. 
3. The average of the square of the velocity <v2> obtained using the distribution 

function should agree with the value required by the ideal gas law: <u2> = 

3kTlm. 
4. The three-dimensional velocity distribution depends only on the magnitude of 

u (i.e., the speed) and not on the direction. 

We now examine these four points in detail. 

1.5.1 The Velocity Distribution Must Be an Even Function of v 

Consider the velocities u, of molecules contained in a box. The number of mole- 
cules moving in the positive x direction must be equal to the number of molecules 
moving in the negative x direction. This conclusion is easily seen by examining the 
consequences of the contrary assumption. If the number of molecules moving in 
each direction were not the same, then the pressure on one side of the box would 
be greater than on the other. Aside from violating experimental evidence that the 
pressure is the same wherever it is measured in a closed system, our common obser- 
vation is that the box does not spontaneously move in either the positive or nega- 
tive x direction, as would be likely if the pressures were substantially different. We 
conclude that the distribution function for the velocity in the x direction, or more 
generally in any arbitrary direction, must be symmetric; i.e., F(v,) = F(-v,). Func- 
tions possessing the property that Ax) = A-x) are called even functions, while 
those having the property that f(x) = -f(-x) are called odd functions. We can 
ensure that F(v,) be an even function by requiring that the distribution function 
depend on the square of the velocity: F(v,) = f(v,2). As shown in Section 1.5.3, this 
condition is also in accord with the Boltzmann distribution law.e 

eOther even functions, for example, F =flu:) would be mathematically acceptable, but would not sat- 
isfy the requirement of Section 1.5.3. 
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1.5.2 The Velocity Distributions Are Independent and Uncorrelated 

We now consider the relationship between the distribution of x-axis velocities and 
y- or z-axis velocities. In short, there should be no relationship. The three compo- 
nents of the velocity are independent of one another since the velocities are uncor- 
related. An analogy might be helpful. Consider the probability of tossing three hon- 
est coins and getting "heads" on each. Because the tosses ti are independent, 
uncorrelated events, the joint probability for a throw of three heads, P(tl = heads, 
t, = heads, t3 = heads), is simply equal to the product of the probabilities for the 
three individual events, P(tl = heads) X P(t2 = heads) X P(t3 = heads) = 
$ X $ X $ . In a similar way, because the x-, y-, and z-axis velocities are independent 
and uncorrelated, we can write that 

F(ux7uy9uz) = F(ux)F(vy)F(uz). (1.21) 

We can now use the conclusion of the previous section. We can write, for exam- 
ple, that F(v,) = f(u2) and similarly for the other directions. Consequently, 

What functional form has the property that f(a + b + c) = f(a)f(b)f(c)? A lit- 
tle thought leads to the exponential form, since exp(a + b + c) = eaebec. It can be 
shown, in fact, that the exponential is the only form having this property (see 
Appendix 1.1), so that we can write 

F(vx) = f(u;) = K exp(?~u:), (1.23) 

where K and K are constants to be determined. Note that although K can appear 
mathematically with either a plus or a minus sign, we must require the minus sign 
on physical grounds because we know from common experience that the probabil- 
ity of very high velocities should be small. 

The constant K can be determined from normalization since, using equation 
1.17, the total probability that u, lies somewhere in the range from -m to +w 

should be unity: 
00 

J-/(ux)dux = 1. (1.24) 

Substitution of equation 1.23 into equation 1.24 leads to the equation 

where the integral was evaluated using Table 1.1. The solution is then K = (~l.rr)l". 

1.5.3 <v2> Should Agree with the Ideal Gas Law 

The constant K is determined by requiring <u2> to be equal to 3kTlm, as in equa- 
tion 1.6. From equation 1.16 we find 

The integral is a standard one listed in Table 1.1, and using its value we find that 
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As a consequence, the average of the square of the total speed, <v2> = <v:> 
+ <v;> + <u:> = 3<v:>, is simply 

From equation 1.6 we have that <v2> = 3kTlm for agreement with the ideal gas 
law, so that 3kTlm = 3/(2~),  or K = ml(2kT). The complete one-dimensional dis- 
tribution function is thus 

du , .  

This equation is known as the one-dimensional Maxwell-Boltzmann distribution for 
molecular velocities. Plots of F(v,) are shown in Figure 1.2. 

Note that equation 1.29 is consistent with the Boltzmann distribution law, 
which states that the probability of finding a system with energy E is proportional 
to exp(--~lkT). Since E, = kmu: is equal to the translational energy of the mole- 
cule in the x direction, the probability of finding a molecule with an energy E, 

should be proportional to exp(-~,lkT), as it is in equation 1.29. In Section 1.5.1 
we ensured F(v,) to be even by choosing it to depend on the square of the velocity, 
F(v,) =flu:). Had we chosen some other even function, say F(u,) =flu:), the final 
expression for the one-dimensional distribution would not have agreed with the 
Boltzmann distribution law. 

Equation 1.29 provides the distribution of velocities in one dimension. In three 
dimensions, because F(u,,u,,v,) = F(v,)F(v,)F(u,), and because v2 = v: + u; + v;, 
we find that the probability that the velocity will have components v, between v, and 
vx + dv,, v, between v, and v, + dv,, and u, between u, and v, + dv, is given by 

F(vx, u,, vZ) dv, dv, du, = F(v,) F(vy)F(vZ) dv, dv, dv, 
(1.30) 

= ( ~ y e x ~ ( - ~ )  2rrkT 2kT dv,dv,dv,. 
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II Figure 1.2 

One-dimensional velocity distribution for a mass of 28 amu and two temperatures. 

1.5.4 The Distribution Depends Only on the Speed 

Note that the right-hand side of equation 1.30 depends on v2 and not on the direc- 
tional property of v. When we have a function that depends only on the length of the 
velocity vector, v = Ivl, and not on its direction, we can be more precise by saying 
that the function depends on the speed and not on the velocity. Since F(v,,v,,v,) = 
f(v2) depends on the speed, it is often more convenient to know the probability that 
molecules have a speed in a particular range than to know the probability that their 
velocity vectors will terminate in a particular volume. As shown in Figure 1.3, the 
probability that the speed will be between v and u + dv is simply the probability 
that velocity vectors will terminate within the volume of a spherical shell between the 
radius v and the radius v + dv. The volume of this shell is dux dv, dv, = 4.rrv2 dv, so 
that the probability that speed will be in the desired range isf 

'An alternate method for obtaining equation 1.31 is to note that dux du, du, can be written as uZsinO 
dB d+ du in spherical coordinates (see Appendix 1.2) and then to integrate over the angular coordinates. Since 
the distribution does not depend on the angular coordinates, the integrals over dO and d+ simply give 4.rr and 
we are left with the factor u2 du. 

F(u)du = I T  IT ( exp ( - - mu2)sinOdudOd+ 
+=, ,=, 2 ~ k T  2kT 

A more complete description of spherical coordinates is found in Appendix 1.2. 
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z 
4 Area = 4  n u 2  

II Figure 1.3 

The shell between u and v + dv has a volume of 4rrv2 dv. The thickness of the shell here is 
exaggerated for clarity. 

Figure 1.4 

Maxwell-Boltzmann speed distribution as a function of temperature for a mass of 28 amu. 

( m ) - e x p (  mu2) 
F(u) du = 471-u2 - -- du. 

2 r k T  2kT 

By analogy to equation 1.29, we will call equation 1.31 the Maxwell-Boltzmann 
speed distribution. Speed distributions as a function of temperature are shown in 
Figure 1.4. 

We often characterize the speed distribution by a single parameter, for exam- 
ple, the temperature. Equivalently, we could specify one of several types of 
"average" speed, each of which is related to the temperature. One such average is 
called the root-mean-squared (rms) speed and can be calculated from equation 
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1.6: c,, = <v2>lR = (3kTlm)'". Another speed is the mean speed defined by 
using equation 1.16 to calculate <v>: 

where the integral was evaluated using Table 1.1 as described in detail in Example 
1.4. Finally, the distribution might also be characterized by the mostprobable speed, 
c*, the speed at which the distribution function has a maximum (Problem 1.8): 

example 1.4 
Using the Speed Distribution 

Objective The speed distribution can be used to determine averages. For 
example, find the average speed, <v>. 

Method Once one has the normalized distribution function, equation 1.16 
gives the method for finding the average of any quantity. Identifying 
Q as the velocity and P(Q) dQ as the velocity distribution function 
given in equation 1.31, we see that we need to integrate vF(v) dv 
from limits v = 0 to v = m. 

Solution <v> = Ipuqv)  dv = dv 

where a = (m/2kT)1'2. We now transform variables by letting x = 
av. The limits will remain unchanged, and dv = dxla. Thus the 
integral in equation 1.34 becomes 

where we have used Table 1.1 to evaluate the integral. 

The molecular speed is related to the speed of sound, since sound vibrations 
cannot travel faster than the molecules causing the pressure waves. For example, in 
Example 1.5 we find that the most probable speed for 0, is 322 rnls, while the 
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II Figure 1.5 

Maxwell-Boltzmann speed distribution for a mass of 28 amu and a temperature of 300 K. The 
vertical lines mark ?, <u>, and c,,,. 

speed of sound in 0, is measured to be 330 m/s. For an ideal gas the speed of sound 
can be shown to be (ykTlm)l", where y is the ratio of heat capacities, y = CdC, 
The Mach number is defined as the ratio of the speed of an object in a medium to 
the speed of sound through the same medium, so that when an aircraft "breaks the 
sound barrier" (or exceeds "Mach 1") it is actually traveling faster than the speed 
of the molecules in the medium. 

Figure 1.5 shows the shape of the distribution function for T = 300 K and the 
locations of the variously defined speeds. 

example 1.5 
Comparison of the Most Probable Speeds for Oxygen and Helium 
Objective Compare the most probable speed for 0, to that for He at 200 K. 

Method Use equation 1.33 with T = 200 K and rn = 2 amu or m = 32 
m u .  Note that the relative speeds should be proportional to m-'I2. 

Solution c*(He) = (2kTlm)lD = [2(1.38 x J KP1)(200 K)(6.02 X 
amu/g)(1000 g/kg)/(2 amu)l1" = 1290 mls. A similar cal- 

culation substituting 32 amu for 2 amu gives ~'(0,) = 322 mls. 

Comment The escape velocity from the Earth's gravitational field is roughly 
u, = 1.1 X lo4 mls, only about 10 times the most probable speed 
for helium. Because the velocity distribution shifts so strongly 
toward high velocities as the mass decreases, the fraction of helium 
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Mass (amu), 

Mass (amu) 

II Figure 1.6 

Various average speeds as a function of mass for T = 300 K. 

atoms having speeds in excess of v,, while minuscule (about 
1OP3l), is still times larger than the fraction of oxygen 
molecules having speeds in excess of v,! As a consequence, the 
composition of the atmosphere is changing; much of the helium 
released during the lifetime of the planet has already escaped into 
space. A plot of various speeds as a function of mass for T = 300 
K is shown in Figure 1.6. 

1.5.5 Experimental Measurement of the Maxwell Distribution of Speeds 

Experimental verification of the Maxwell-Boltzmann speed distribution can be 
made by direct measurement using the apparatus of Figure 1.7. Two versions of the 
measurement are shown. In Figure 1.7a, slits (S) define a beam of molecules mov- 
ing in a particular direction after effusing from an oven (0). Those that reach the 
detector (D) must successfully have traversed a slotted, multiwheel chopper by trav- 
eling a distance d while the chopper rotated through an angle 4. In effect, the chop- 
per selects a small slice from the velocity distribution and passes it to the detector. 
The speed distribution is then measured by recording the integrated detector signal 
for each cycle of the chopper as a function of the angular speed of the chopper. 

A somewhat more modern technique, illustrated in Figure 1.7b, clocks the time 
it takes for molecules to travel a fixed distance. A very short pulse of molecules leaves 
the chopper at time t = 0. Because these molecules have a distribution of speeds, they 
spread out in space as they travel toward the detector, which records as a function of 
time the signal due to molecules arriving a distance L from the chopper. 
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II Figure 1.7 

Two methods for measuring the Maxwell-Boltzmann speed distribution. 

Analysis of the detector signal from this second experiment is instructive, since 
it introduces the concept offlux. Recall that the distribution F(v) dv gives the fraction 
of molecules with speeds in the range from v to v + dv; it is dimensionless. If the 
number density of molecules is n", then n*F(v) dv will be the number of molecules 
per unit volume with speeds in the specified range. The flux of molecules is defined 
as the number of molecules crossing a unit area per unit time. It is equal to the den- 
sity of molecules times their velocity: flux (number/m2/s) = density (number/m3) X 
velocity (m/s).g Thus, the flux J of molecules with speeds between v and u + dv is 

J dv = un*~(u)  du. (1.36) 

We will consider the flux in more detail in Section 4.3.2 and make extensive use of 
it in Chapter 4. 

We now return to the speed measurement. Most detectors actually measure the 
number of molecules in a particular volume during a particular time duration. For 
example, the detector might measure current after ionizing those molecules that 
enter a volume defined by a cross-sectional area of A and a length t .  Because mol- 
ecules with high velocity traverse the distance t in less time than molecules with 
low velocity, the detection sensitivity is proportional to llv. The detector signal S(t) 
is thus proportional to JAC dvlv, or to n*AtF(v) dv, where n* is the number density 
of molecules in the oven. Assuming that a very narrow pulse of molecules is emitted 
from the chopper, the speed measured at a particular time t is simply v = Llt. We 
must now transform the velocity distribution from a speed distribution to a time 
distribution. Note that dv = d(L/t) = -L dt/t2, and recall from equation 1.31 that 
F(v) dv cc v2exp(-pv2) dv = (llt2)exp(-pL2/t2)(L/t2). We thus find that S(t) tP4 
exp(-PL2/t2). Figure 1.8 displays an arrival time distribution of helium measured 

gstrictly speaking, the flux, J, is a vector, since the magnitude of the flux may be different in different 
directions. Here, since the direction of the flux is clear, we will use just its magnitude, J. 
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II Figure 1.8 

Time-of-flight measurements: intensity as a function of flight time. 
From J. F. C. Wang and H. Y. Wachman, as illustrated in F. 0. Goodman and H. Y. Wachman, Dynamics of Gas- 
Surjiace Scattering (Academic Press, New York, 1976). Figure from "Molecular Beams" in DYNAMICS OF 
GAS-SURFACE SCArnRING by F. 0. Goodman and H. Y. Wachmann, copyright O 1976 by Academic 
Press, reproduced by permission of the publisher. All rights or reproduction in any form reserved. 

using this "time-of-flight" technique. The open circles are the detector signal, while 
the smooth line is a fit to the data of a function of the form expected for S(t). The 
best fit parameter gives a temperature of 300 K. 

1.6 ENERGY DISTRIBUTIONS 
It is sometimes interesting to know the distribution of molecular energies rather 
than velocities. Of course, these two distributions must be related since the molec- 
ular translational energy E is equal to ;mu2. Noting that this factor occurs in the 
exponent of equation 1.31 and that d~ = mv dv = (2me)lJ2 dv, we can convert 
velocities to energies in equation 1.31 to obtain 

The function G(E) d~ tells us the fraction of molecules which have energies in the 
range between E and E + d ~ .  Plots of G(E) are shown in Figure 1.9. 

The distribution function G(E) can be used to calculate the average of any func- 
tion of E using the relationship of equation 1.16. In particular, it can be shown as 
expected that <E> = 3kTl2 (see Problem 1.9). 

Let us pause here to make a connection with thermodynamics. In the case of 
an ideal monatomic gas, there are no contributions to the energy of the gas from 
internal degrees of freedom such as rotation or vibration, and there is normally very 
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Figure 1.9 

Energy distributions for two different temperatures. The fraction of molecules for the 300 K 
distribution having energy in excess of E* is shown in the shaded region. 

little contribution to the energy from excitation of electronic degrees of freedom. 
Consequently, the average energy U of n moles of a monatomic gas is simply nN, 
times the average energy of one molecule of the gas, or 

Note that the heat capacity at constant volume is defined as C ,  = (dUIdT), so that 
for an ideal monatomic gas we find that 

This result is an example of the equipartition principle, which states that each term 
in the expression of the molecular energy that is quadratic in a particular coordinate 
contributes i kT to the average kinetic energy and i R to the molar heat capacity. 
Since there are three quadratic terms in the three-dimensional translational energy 
expression, the molar heat capacity of a monatomic gas should be 3Rl2. 

It is sometimes useful to know what fraction of molecules has an energy greater 
than or equal to a certain value E". In principle, the energy distribution G(E) should 
be able to provide this information, since the fraction of molecules having energy in 
the desired range is simply the integral of G(E) d~ from E* to infinity, as shown by 
the hatched region in Figure 1.9. In practice, the mathematics are somewhat cum- 
bersome, but the result is reasonable. Let A€*) be the fraction of molecules with 
kinetic energy equal to or greater than E*. This fraction is given by the integral 
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II Figure 1.10 

The fraction of molecules having energy in excess of E* as a function of ~ * l k l :  

Problem 1.10 shows that this integral is given by 

where a = (~*lkT)"~ and erfc(a) is the co-error function defined in Appendix 1.3. A 
plot off(€*) as a function of ~ * l k T  is shown in Figure 1.10. Note that for 
E* > 3kT the function fie*) is nearly equal to the first term in equation 1.41, 
2 m e x p ( - e * / k ~ ) ,  shown by the dashed line in the figure. Thus, the frac- 
tion of molecules with energy greater than E* falls off as V? exp(-e*/k~), provided 
that E* > 3kT. 

1.7 COLLISIONS: MEAN FREE PATH 
AND COLLISION NUMBER 

One of the goals of this chapter is to derive an expression for the number of colli- 
sions that molecules of type 1 make with molecules of type 2 in a given time. We 
will argue later that this collision rate provides an upper limit to the reaction rate, 
since the two species must have a close encounter to react. 

The principal properties of the collision rate can be easily appreciated by any- 
one who has ice skated at a local rink. Imagine two groups of skaters, some rather 
sedate adults and some rambunctious 13-year-old kids. If there is only one kid and 
one adult in the rink, then the likelihood that they will collide is small, but as the num- 
ber of either adults or kids in the rink increases, so does the rate at which collisions 
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will occur. The collision rate is proportional to the number of possible kid-adult 
pairs, which is proportional to the number density of adults times the number den- 
sity of kids. 

But the collision rate depends on other factors as well. If all the skaters follow 
the rules and skate counterclockwise around the rink at the same speed, then there 
will be no collisions. More often, the kids will skate at much faster or slower 
speeds, and they will rarely move uniformly. The rate at which they collide with the 
adults is proportional to the relative speed between the adults and kids. 

Finally, consider the dependence of the collision rate on the size of the adults 
and kids. People are typically about 40 cm wide. What would be the effect of 
increasing or decreasing this diameter by a factor of lo? If the diameter were 
decreased to 4 cm, the number of collisions would go down dramatically; if the 
diameter were increased to 4 m, it would be difficult to move around the rink at all. 
Thus, simple considerations suggest that the collision rate between molecules 
should be proportional to the relative speed of the molecules, to their size, and to 
the number of possible collision pairs. 

Let us assume that the average of the magnitude of the relative velocity between 
molecules of types 1 and 2 is <u,> and that the molecules behave like hard spheres; 
there are no attractive forces between them, and they bounce off one another like bil- 
liard balls when they collide." Let the quantity b, shown in Figure 1.11, be defined 
as the distance of a line perpendicular to the each of the initial velocities of two col- 
liding molecules, one of type 1 and the other of type 2. This distance is often referred 
to as the impact parametel: If the radii of the two molecules are r, and r,, then, as 
shown in Figure 1.11, a "collision" will occur if the two molecules approach one 
another so that their centers are within the distance b,, = r, + r,. Thus, b,, is the 
maximum value of the impact parameter for which a collision can occur. From the 
point of view of one type of molecule striking a molecule of the other type, the tar- 
get area for a collision is then equal to ~ ( r ,  + r,), = rrb;,. 

Figure 1.11 

A collision will occur if the impact parameter is less than b,,,, the sum of the two molecular 
radii. 

hWe consider only the relative velocity between the molecules. Appendix 1.4 shows that the total veloc- 
ity of each molecule can be written as a vector sum of the velocity of the center of mass of the pair of mole- 
cules and the relative velocity of the molecule with respect to the center of mass. The forces between mole- 
cules depend on the relative distance between them and do not change the velocity of their center of mass, 
which must be conserved during the collision. 
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II Figure 1.12 

Molecule 1 sweeps out a cylinder of area rb2-. Any molecule of type 2 whose center is within 
the cylinder will be struck. 

Consider a molecule of type 1 moving through a gas with a speed equal to the 
average magnitude of the relative velocity Or>. Figure 1.12 shows that any mole- 
cule of type 2 located in a cylinder of volume .rrb2,,<ur>At will then be struck in the 
time At.' If the density of molecules of type 2 is n;, then the number of collisions one 
molecule of type 1 will experience with molecules of type 2 per unit time is 

Of course, for a molecule of type 1 moving through other molecules of the same type, 

where biax has been replaced by d2 since r, + r2 = 2r, = d. The quantity rb;, is 
known as the hard-sphere collision cross section. Cross sections are generally given 
the symbol a. 

Equation 1.42 gives the number of collisions per unit time of one molecule of 
type 1 with a density n; of molecules of type 2. The total number of collisions of 
molecules of type 1 with those of type 2 per unit time and per unit volume is found 
simply by multiplying by the density of type 1 molecules: 

Note that the product nyn,* is simply proportional to the total number of pairs of col- 
lision partners. 

By a similar argument, if there were only one type of molecule, the number of 
collisions per unit time per unit volume is given by 

1 1 
Z,, = l ~ l n ;  = - r b i ,  <u,> (n;)2. 

2 
(1.45) 

The factor of is introduced for the following reason. The collision rate should be 
proportional to the number of pairs of collision partners. If there are n molecules, 
then the number of pairs is n(n - 1)/2, since each molecule can pair with n - 1 
others and the factor of 2 in the denominator corrects for having counted each pair 
twice. If n is a large number, then we can approximate n(n - 1 )  as n2, and since the 
number of molecules is proportional to the number density, we see that the number 
of pairs goes as (12;)~/2. 

It remains for us to determine the value of the relative speed, averaged over the 
possible angles of collision and averaged over the speed distribution for each mole- 
cule. One way to arrive quickly at the answer for a very specific case is shown in 

'Because of the collisions, the molecule under consideration will actually travel along a zigzag path, but 
the volume swept out per unit time will be the same. 
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In a hypothetical collision where two molecules each have a speed equal to the average < v > ,  
the relative velocity between two molecules, averaged over all collision directions, is A<v>. 

Figure 1.13. Suppose that the two types of molecules have the same mass, m. Let us 
assume for the moment that we can accomplish the average of the speed distribution 
by assuming that the two molecules each have a speed equal to the average of their 
distribution. Since the two molecules are assumed to have the same mass (and tem- 
perature), they will also have the same average speed, <v>. We now consider the 
average over collision angles. If the molecules are traveling in the same direction, 
then the relative velocity between them will have zero magnitude, v,  = 0,  while if 
they are traveling in opposite directions along the same line the relative velocity will 
have a magnitude of v, = 2<v>. Suppose that they are traveling at right angles to 
one another. In that case, which is representative of the average angle of collision, 
the relative velocity will have a magnitude of u, = <u,> = %b <u>. Recalling 
from equation 1.32 that <v> = (8kTl~m)~ '~ ,  we find that 

(1.46) 
3 n-m 

where we have introduced the reduced mass, p, defined as p = m,ql(m, + q ) .  
When the masses m, and m, are the same, p = m2/2m = ml2. If the masses are dif- 
ferent, then the mean velocities will not be the same, and the simple analysis of Fig- 
ure 1.13 is not adequate. However, as shown for the general case in Appendix 1.4 and 
Problem 1.12, the result for <v,> is the same as that given in equation 1.46. The 
appendix also shows why the definition of p as mlql(ml + m,) is a useful one. 

example 1.6 
1 The Collision Rate of NO with O3 

Objective Find the collision rate of NO with O3 at 300 K if the abundances at 
1 atm total pressure are each 0.2 ppm and if the molecular diameters 
are 300 and 375 pm, respectively. Reactive collisions between these 
two species are important in photochemical smog formation. 
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Method Use equation 1.44, remembering to convert the abundances to 
number densities at 300 K and calculating the average relative 
velocity by use of equation 1.46. 

Solution First find the total number density n* at 1 atm: n* = (nIV)N, = 
(pIRT)N, = (1 atm)(6.02 X molec/mole)/[(0.082 L atm mol-l 
K-')(300 K)] = 2.45 X lo2, molecL. Next determine the number 
densities of NO and O,, each being the total density times 0.2 X 
lop6: n*(NO) = n*(03) = (0.2 X 1OV6)(2.45 X lo2,) = 4.9 X 1015 
molecL. The average relative velocity is <vr> = (8kTl~p)"~  = 
[8(1.38 X J K-l)(300 K)(6.02 X amu/g)(1000 g/kg)/ 
( ~ ( 4 8  X 30178) amu)l1/& 586 m/s. The average diameter is 
(300 + 375 pm)/2 = 337.5 pm. Then Z12 = ~(337.5 X 10-l2 rn), 
(586 m/s)(4.9 X 1015 m ~ l e c L ) ~ ( l  L/10p3 m3)2 = 5.0 X 1021 
collisions s-' m-3. If every collision resulted in a reaction, this 
would be the number of reactions per unit second per cubic meter. 

A quantity related to Z, is the mean free path, A. This is the average distance a 
molecule travels before colliding with another molecule. If we divide the average 
speed < v >  in meters per second by the collision number Z, in collisions per sec- 
ond, we obtain the mean free path in meters per collision: 

Note that the mean free path is inversely proportional to pressure. The mean free path 
will be important in Chapter 4, where we will see that the transport of heat, momen- 
tum, and matter are all proportional to the distance traveled between collisions. 

example 1.7 
- 

The Mean Free Path of Nitrogen 
Objective Find Z, and the mean free path of N, at 300 K and 1 atm given that 

the molecular diameter is 218 pm. 

Method Use equation 1.46 to calculate <vr>, equation 1.43 to calculate 
Z,, and equation 1.47 to calculate A. 

Solution We start by calculating <vr> = (8kTl~p)"~,  where p = 28 X 
28/(28 + 28) = 14 m u .  

8(1.38 X J ~ - ' ) ( 3 0 0  K)(6.02 X amu/g)(1000 g/kg) 
<vr> = 

(3.1415 X 14 amu) 

= 673 m/s. 
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I Next, we calculate 2, noting that the density 

* P (1 atm)(6.02 X molec/mole) 
n l = - =  RT (0.082 L atrn mole-' K - ' ) ( ~ o - ~  m3/~)(300 K) 

Then, 2, = ~ ( 2 1 8  X 10-l2 m)2(673 rn/s)(2.45 X molec/m3) = 
2.46 X lo9 collision/s. Finally, <u,>/( f iZ1)  = (673 m/s)/ 
(fi X 2.46 X lo9 collision/s) = 1.93 X lo-' m. 

1.8 SUMMARY 
By considering the pressure exerted by ideal gas molecules on a wall, we deter- 
mined that, for agreement with the observed ideal gas law, the average energy of a 
molecule must be given by 

3 
<e> = -kT. 

2 (1.5) 

To learn how to perform averages, we discussed distribution functions of a continu- 
ous variable. The average of some observable quantity Q was found to be given by 

where P(Q) is the distribution function for the quantity Q. We then made the fol- 
lowing observations about the molecular speed distribution: (1) the speed distribu- 
tion must be an even function of v, (2) the speed distribution in any particular direc- 
tion is independent from and uncorrelated with that in orthogonal directions, (3) the 
value of <v2> must be equal to 3kTlm to agree with the ideal gas law, and (4) the 
distribution depends only on the magnitude of u. These four considerations allowed 
us to determine the Maxwell-Boltzmann distribution of speeds: 

Calculations using this distribution gave us an equation for the average speed of a 
molecule, 

and the most probable speed, 

.* (x)'". 
A simple transformation of variables in the speed distribution led to the Maxwell- 
Boltzmann energy distribution: 

3/2 
G ( e ) d e = 2 ~ ( ~ )  T ~ T  

Finally, for molecules behaving as hard spheres, we determined the collision rate, 
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the relative velocity, 

and the mean free path, 

These concepts form the basis for further investigation into transport properties and 
chemical reaction kinetics. 

appendix 1.1 
The Functional Form of the Velocity Distribution 

We demonstrate in this appendix that the exponential form used in equation 1.23 
is the only function that satisfies the equation f(a + b + c) = f(a)f(b)f(c). Consider 
first the simpler equation 

where z = a + b. Taking the derivative of both sides of equation 1.50 with respect 
to a we obtain 

On the other hand, taking the derivative of both sides of equation 1.50 with respect 
to b, we obtain 

Since z = a + b, dzlda = dzldb = 1. Consequently, 

Division of both sides of the right-hand equality byf(a)f(b) yields 

f'(4 -- f 'o  
- 

f (a> f(b) 

Now the left-hand side of equation 1.54 depends only on a, while the right-hand 
side depends only on b. Since a and b are independent variables, the only way that 
equation 1.54 can be true is if each side of the equation is equal to a constant, t ~ ,  
where K is defined as nonnegative: 



Chapter 1 Kinetic Theory of Gases 

Solution of these differential equations using x to represent either a or b leads to 

f ' ( 4  -- df (4 
- - + K  or -- - +-K dx. 

f (4 f (4 
Integration shows that 

f ( x )  = KekKX, 

where K is related to the constant of integration. Equation 1.23 is obtained by 
replacing x with u,2. 

Spherical Coordinates 

Many problems in physical chemistry can be solved more easily using spherical 
rather than Cartesian coordinates. In this coordinate system, as shown in Figure 
1.14, a point P is located by its distance r from the origin, the angle 8 between the 
z axis and the line from the point to the origin, and the angle 4 between the x axis 
and the line between the origin and a projection of the point onto the x-y plane. Any 
point can be described by a value of r between 0 and m, a value of 8 between 0 and 
T, and a value of 4 between 0 and 2 ~ .  The Cartesian coordinates are related to the 
spherical ones by the following relationships: x = r sin 8 cos 4 ,  y = r sin 8 sin 4 ,  
and z = r cos 8. 

The volume element in spherical coordinates can be calculated with the help 
of Figure 1.15. As the variable 8 is increased for fixed l; the position of the point 
described by (r,8,+) moves along a longitudinal line on the surface of a sphere, 
while if 4 is increased at fixed l; the position of the point moves along a latitudi- 
nal line. Starting at a point located at (r,8,4), if r is increased by dl; 8 is increased 
by d8, and 4 is increased by d4, then the volume increase is the surface area on the 

X 

Figure 1.14 

Spherical coordinates. 
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I r s i n  B d 4  
r sin 0 1 

II Figure 1.15 

The volume element in spherical coordinates. 

sphere times the thickness dr  (for clarity, the thickness dr is not shown in the dia- 
gram). The surface area is given by the arc length on the longitude, r do, times the 
arc length on the latitude, r sin 0 d4.  Thus, the volume element is dV = r2sin 0 d0 
d 4  dr. 

appendix 1.3 
The Error Function and Co-Error Function 

It often occurs that we need to evaluate integrals of the form of those listed in 
Table 1.1 but for limits less than the range of 0 to infinity. For such evaluations it 
is useful to define the error function: 

erf(x) = - e-"- du. I "  Go 
From Table 1.1 we see that for x = m, the value of the integral is G / 2 ,  so that 
erf(m) = 1. Note that if we "complement" the error function by 2 / G  times the 
integral from x to m, we should get unity: 
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I Figure 1.16 

Values of the error function. 

Consequently, it is also useful to define the co-error function, erfc(x), as the com- 
plement to the error function: 

Tables of the error function and co-error function are available, but the pervasive 
use of computers has made them all but obsolete. For calculational purposes, the 
integrand in equation 1.58 or equation 1.60 can be expanded using a series, 

and then the integration can be performed term by term. Figure 1.16 plots erf(x) as 
a function of x. 

appendix 1.4 
The Center-of-Mass Frame 

We show in this appendix that the total kinetic energy of two particles of veloc- 
ities v, and v, is given by ipv; + ~MV:~,, where v, = v, - v,, and where v,,,, 
the vector describing the velocity of the center of mass, is defined by the equa- 
tion (m, + m2)vCom = m,v, + m,v2, and M = m, + m,. Figure 1.17 shows the 
vector relationships. 



Appendix 1.4 

II Figure 1.17 

Vector diagram for center-of-mass conversion. 

The virtue of this transformation is that the total momentum of the system p = 
mlvl  + m2v2 is also equal to the momentum of the center of mass, defined as Mv,,,. 
Because we assume that no external forces are acting on the system, F = Ma,,, = 
(dp,,,ldt) = 0, so that the momentum of the center of mass does not change dur- 
ing the interaction between the two particles. 

Note that since (mllM) + (m21M) = 1 we can write 

However, 

so that 

Consequently, 

In a similar way, we find that 

We now note an important point, that the velocities of the particles with respect to 
the center of mass are just given by the two pieces of the vector v,: u l  = -(m21M)v,, 
and u,  = (m,lM)v,, as shown in Figure 1.18. Note also that in the moving frame of 
the center of mass, there is no net momentum for the particles; that is, mlu, + m2u2 = 
0. This important property enables us to calculate the velocity of one particle in the 
center-of-mass frame given just the mass and the velocity of the other particle. 
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Is Figure 1.18 

Vector diagram for center-of-mass conversion, showing the relative velocities in the center-of- 
mass frame for the two particles. 

We can rearrange equations 1.64 and 1.65 to get 
m2 

Vcom - - Vr = V1, 
M 

The total energy is then 

- - 1 2m1m2 mlm; , 
z m l v L  - - 2M vr . vcom + - 2~~ vr 

1 2m2m1 + - m2v;,, + - m2m: 2 

2 2M 2~~ vr vr . vcom + - (1.67) 

It will often be useful to consider collisions in the center-of-mass frame. For 
example, we will make extensive use of this view in talking about molecular scat- 
tering in Section 8.4. Problem 1.12 shows how this result can be used to calculate 
the average relative velocity. 
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Problems 

problems 
Molecules all of mass m and speed v exert a pressure p on the walls of a ves- 
sel. If half the molecules are replaced by ones of another type all with mass 
i m  and speed 2v, will the pressure (a) increase, (b) decrease, (c) remain 
constant? 

Suppose the probability of obtaining a score between 0 and 100 on an exam 
increases monotonically between 0 and 1.00. Is the average score on the 
exam (a) greater than 50, (b) equal to 50, (c) less than 50? 

Suppose some property q of a gas is proportional to (0.326 s3 m-3)v,3 + (.rr 
s9 m-9)v,9. What is the average value of q? 

Without referring to any formula, decide whether at constant density the 
mean free path (a) increases, (b) decreases, or (c) stays constant with 
increasing temperature and explain your answer. 

Consider a deck of cards. With aces valued at one and jacks, queens, and 
kings valued at 11, 12, and 13, respectively, calculate the average value of 
a card drawn at random from a full deck. 

The distribution of the grades S (where 0 5 S 5 100) for a class contain- 
ing a large number of students is given by the continuous function P(S) = 
K(50 - IS - 501), where 1x1 is the absolute value of x and K is a normaliza- 
tion constant. Determine the normalization constant and find out what frac- 
tion of the students received grades greater than or equal to 90. 

A pair of dancers is waltzing on a one-dimensional dance floor of length L. 
Since they tend to avoid the walls, the probability of finding them at a posi- 
tion x between walls at x = 0 and x = L is proportional to sin2(.rrxlL). What 
is the normalized distribution function for the position of the waltzers? 
Using this distribution function, calculate the most probable position for the 
waltzers. Calculate the average position of the waltzers. (Hint: The integral 
of y sin2y dy is [y2/4] - [0, sin 2y)/4] - [(cos 2y)/8]; this is also the proba- 
bility for finding a particle in a box at a particular position.) 

By setting the derivative of the formula for the Maxwell-Boltzmann speed 
distribution equal to zero, show that the speed at which the distribution has 
its maximum is given by equation 1.33. 

Show using equations 1.16 and 1.37 that the average molecular energy is 
3kTl2. 

Prove equation 1.41 from equation 1.40. Integration can be accomplished 
by making the following change of variable. Let e = kTx2, so that de = 

kT d(x2) and ell2 = (kT)lI2x. Substitute these into equation 1.40 and inte- 
grate by parts, recalling that since d(uv) = u dv + v du, then Jd(uv) = 
Judv + Jvdu, SO that Judv = (uv) 1 ,i,,s - Jvdu, where the notation 

llimitS indicates that the product (uv) should be evaluated at the limits used 
for the integrals. 

The Maxwell-Boltzmann distribution may not be quite valid! Calculate the 
fraction of N, molecules having speeds in excess of the speed of light. 

The object of this problem is to show more rigorously that <v,> = 

(8kTl.rrp)lI2, where p, the reduced mass, is defined as p = mlm21(m, + m,). 
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We have already learned in Appendix 1.4 that the total kinetic energy of two 
particles is given by pv; +  MU^^, , where v ,  = v2 - v ,  and vcom, the 
center-of-mass velocity vector, is defined by the equation (m,  + m2)vCom = 
mlv,  + m2v2, and M = m, + m,. 

a. Consider the probability of finding two molecules, one with velocity v, 
and one with velocity v,. Using equation 1.30, we see that this proba- 
bility is given by 

Use the result from Appendix 1.4 to show that this probability can also 
be written as 

F(v,)F(v,)F(v,)F(vcom)F(vcomy)F(~co,) 

- ( )112 ( m2 YR exp ( -- ~ v b ~ )  exp ( -- P V ; )  

2rkT 2rkT 2kT 2kT 

b. Now transform the Cartesian coordinates to spherical ones and show by 
integration over all coordinates that the average relative velocity <v,> 
is given by ( 8 k T I ~ p ) ' ~ ~ .  

1.13 What is the ratio of the probability of finding a molecule moving with the 
average speed to the probability of finding a molecule moving with three 
times the average speed? How does this ratio depend on the temperature? 

1.14 You are caught without an umbrella in the rain and wish to get to your dorm, 
1 km away, in the driest possible condition. Should you walk or run? To 
answer this question, calculate the ratio of the rain drop collisions with your 
body under the two conditions. Assume that the cross section is independent 
of direction (i.e., that you are spherical), that you run at 8 d s ,  you walk at 
3 d s ,  and that the rainfall is constant with a velocity of, say, 15 d s .  

1.15 Calculate the root-mean-squared deviation of the speed from its mean value: 
[<(v  - <v>)~>]'". 

1.16 Find <v4> for a gas of molecular weight M at temperature T 

1.17 A very expensive gas is sold by the molecule, and the price is proportional 
to the velocity of the individual molecule: price in $ = vl<u>. If I buy a 
bulb of these gaseous molecules, what is the average price per molecule, and 
does the price depend on the temperature of the bulb? 
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1.18 In a group of molecules all traveling in the positive z direction, what is the 
probability that a molecule will be found with a z-component speed between 
400 and 401 mls if ml(2kT) = 5.62 X s2/m2? (Hint: You need to find 
and normalize a one-dimensional distribution function first!) 

1.19 We will see in Chapter 3, equation 3.4, that the rate constant for a reaction as 
a function of temperature is given by the average of a ( ~ , ) v ,  over the thermal 
energy distribution G(E,), where E, = mu: and a(€ , )  is the energy-depend- 
ent cross section for the reaction. The thermal relative kinetic energy distri- 
bution G(E,) has the same functional form as the kinetic energy distribution 
G(E) given in equation 1.37, except that all energies E = ;mu2 are replaced 
by relative kinetic energies E, = iPv,2. 

a. Suppose that for a particular reaction ~ ( € 3  = ce:, where c is a constant. 
Calculate k(T). 

b. Suppose that for another reaction a(€ , )  = ck,; calculate k(T). 
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2.1 INTRODUCTION 
The objective of this chapter is to obtain an empirical description of the rates of 
chemical reactions on a macroscopic level and to relate the laws describing those 
rates to mechanisms for reaction on the microscopic level. Experimentally, it is 
found that the rate of a reaction depends on a variety of factors: on the temperature, 
pressure, and volume of the reaction vessel; on the concentrations of the reactants 
and products; and on whether or not a catalyst is present. By observing how the rate 
changes with such parameters, an intelligent chemist can learn what might be hap- 
pening at the molecular level. The goal, then, is to describe in as much detail as pos- 
sible the reaction mechanism. This goal is achieved in several steps. First, in this 
chapter, we will learn how an overall mechanism can be described in terms of a 
series of elementary steps. In later chapters, we will continue our pursuit of a 
detailed description (1) by examining how to predict and interpret values for the 
rate constants in these elementary steps and (2) by examining how the elementary 
steps might depend on the type and distribution of energy among the available 
degrees of freedom. In addition to these lofty intellectual pursuits, of course, there 
are very good practical reasons for understanding how reactions take place, reasons 
ranging from the desire for control of synthetic pathways to the need for under- 
standing of the chemistry of the Earth's atmosphere. 
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2.2 EMPIRICAL OBSERVATIONS: 
MEASUREMENT OF REACTION RATES 

One of the most fundamental empirical observations that a chemist can make is 
how the concentrations of reactants and products vary with time. The first substan- 
tial quantitative study of the rate of a reaction was performed by L. Wilhelmy, who 
in 1850 studied the inversion of sucrose in acid solution with a polarimeter. There 
are many methods for making such observations: one might monitor the concen- 
trations spectroscopically, through absorption, fluorescence, or light scattering; one 
might measure concentrations electrochemically, for example, by potentiometric 
determination of the pH; or one might monitor the total volume or pressure if these 
are related in a simple way to the concentrations. Whatever the method, the result 
is usually something like that illustrated in Figure 2.1. 

In general, as is true in this figure, the reactant concentrations will decrease 
as time goes on, while the product concentrations will increase. There may also 
be "intermediates" in the reaction, species whose concentrations first grow and 
then decay with time. How can we describe these changes in quantitative mathe- 
matical terms? 

2.3 RATES OF REACTIONS: DIFFERENTIAL AND 
INTEGRATED RATE LAWS 

We define the rate law for a reaction in terms of the time rate of change in con- 
centration of one of the reactants or products. In general, the rate of change of the 
chosen species will be a function of the concentrations of the reactant and product 
species as well as of external parameters such as the temperature. For example, in 
Figure 2.1 the rate of change for a species at any time is proportional to the slope 

0 1 2 3 4 
Time 

I) Figure 2.1 

Concentration of reactant and product as a function of time. 
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of its concentration curve. The slope varies with time and generally approaches 
zero as the reaction approaches equilibrium. The stoichiometry of the reaction 
determines the proportionality constant. Consider the general reaction 

aA + bB = cC + dD. (2.1) 

We will define the rate of change of [C] as rate = (llc) d[C]ldt. This rate varies with 
time and is equal to some function of the concentrations: (llc) d[C] dt = f([A], 
[B],[C],[D]). Of course, the time rates of change for the concentrations of the other 
species in the reaction are related to that of the first species by the stoichiometry of 
the reaction. For the example presented above, we find that 

By convention, since we would like the rate to be positive if the reaction proceeds 
from left to right, we choose positive derivatives for the products and negative ones 
for the reactants. 

The equation (llc) d[C]ldt = f([A],[B],[C],[D]) is called the rate law for the 
reaction. Whilef([A],[B],[C],[D]) might in general be a complicated function of the 
concentrations, it often occurs that f can be expressed as a simple product of a rate 
constant, k, and the concentrations each raised to some power:a 

When the rate law can be written in this simple way, we define the overall order of 
the reaction as the sum of the powers, i.e., overall order q = m + n + o + p, and 
we define the order of the reaction with respect to a particular species as the power 
to which its concentration is raised in the rate law, e.g., order with respect to [A] = 
m. Note that since the left-hand side of the above equation has units of concentra- 
tion per time, the rate constant will have units of time-' concentration-(4.'). As we 
will see below, the form of the rate law and the order with respect to each species 
give us a clue to the mechanism of the reaction. In addition, of course, the rate 
law enables us to predict how the concentrations of the various species change 
with time. 

An important distinction should be made from the outset: the overall order of 
a reaction cannot be obtained simply by looking at the overall reaction. For exam- 
ple, one might think (mistakenly) that the reaction 

H2 + Br2 + 2 HBr (2.4) 

should be second order simply because the reaction consumes one molecule of H, 
and one molecule of Br,. In fact, the rate law for this reaction is quite different: 

aNote that both the rate constant and the Boltzmann constant have the same symbol, k. Nonnally, the 
context of the equation will make the meaning of k clear. 
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Thus the order of a reaction is not necessarily related to the stoichiometry of the 
reaction; it can be determined only by experiment. 

Given a method for monitoring the concentrations of the reactants and prod- 
ucts, how might one experimentally determine the order of the reaction? One 
technique is called the method of initial slopes. If we were to keep [Br,] fixed 
while monitoring how the initial rate of [HBr] production depended on the H, 
starting concentration, [H,],, we would find, for example, that if we doubled 
[H,],, the rate of HBr production would increase by a factor of 2. By contrast, 
were we to fix the starting concentration of H, and monitor how the initial rate of 
HBr appearance rate depended on the Br, starting concentration, [Br,],, we 
would find that if we doubled [Br2lo, the HBr production rate would increase not 
by a factor of 2, but only by a factor of lh. Experiments such as these would 
thus show the reaction to be first order with respect to H, and half order with 
respect to Br,. 

While the rate law in its differential form describes in the simplest terms how 
the rate of the reaction depends on the concentrations, it will often be useful to 
determine how the concentrations themselves vary in time. Of course, if we know 
d[C]/dt, in principle we can find [C] as a function of time by integration. In prac- 
tice, the equations are sometimes complicated, but it is useful to consider the dif- 
ferential and integrated rate laws for some of the simpler and more common reac- 
tion orders. 

2.3.1 First-Order Reactions 

Let us start by considering first-order reactions, A + products, for which the dif- 
ferential form of the rate law is 

Rearrangement of this equation yields 

Let [A(O)] be the initial concentration of A and let [A(t)] be the concentration at 
time t. Then integration yields 

or, exponentiating both sides of the equation, 

Equation 2.8 is the integrated rate law corresponding to the diferential rate law 
given in equation 2.6. While the differential rate law describes the rate of the reac- 
tion, the integrated rate law describes the concentrations. 
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II Figure 2.2 

Decay of [A(t)] for a first-order reaction. 

Figure 2.2 plots the [A(t)]I[A(O)] in the upper panel and the natural log of 
[A(t)]I[A(O)] in the lower panel as a function of time for a first-order reaction. Note 
that the slope of the line in the lower panel is -k  and that the concentration falls to 
lle of its initial value after a time T = llk, often called the lifetime of the reactant. 
A related quantity is the time it takes for the concentration to fall to half of its value, 
obtained from 

= 7112)l 1 
- - - 

[A@) 1 2 

The quantity T I ,  is known as the half-life of the reactant. 
An example of a first-order process is the radiative decay of an electronically 

excited species. Figure 2.3 shows the time dependence of the fluorescence intensity 
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Time (ms) 

II Figure 2.3 

I* fluorescence intensity as a function of time on linear (upper) and logarithmic (lower) scales. 

for iodine atoms excited to their *PI,  electronic state, denoted here as I*. The chem- 
ical equation is 

1' 4 1 + hv, (2.10) 

where vlc = 7603 cm-l. The deactivation of I* is important because this level is the 
emitting level of the iodine laser. Since the reaction is first order, -d[I*]ldt = 
krad[Ie]. From the stoichiometry of the photon production, -d[I*]ldt is also equal to 
d(hv)ldt, so that d(hv)ldt = k,,,[I*]. Finally, the fluorescence intensity, I, is defined 
as the number of photons detected per unit time, I = d(hv)ldt, so that the intensity 
is directly proportional to the instantaneous concentration of I*: I = krtd[1*]. The top 
panel plots I as a function of t, while the lower panel plots ln(I) against the same 
time axis. It is clear that the fluorescence decay obeys first-order kinetics. The 
lifetime derived from these data is 126 ms, and the half-life is 87 ms as calculated 
in Example 2.1. The measurement of the radiative decay for I* is actually quite 
difficult, and the data in Figure 2.3 represent only a lower limit on the lifetime. 
The experimental problem is to keep the I* from being deactivated by a method 
other than radiation, for example, by a collision with some other species. This 
process will be discussed in more detail later, after we have considered second- 
order reactions. 
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example 2.1 
A 

The Lifetime and Half-Life of I* Emission 
I Objective Find the lifetime and half-life of I' from the data given in Figure 

Method First determine the rate constant k,,. Then the lifetime is simply T = 
llk,,, while the half-life, given in equation 2.9, is T , ,  = ln(2)lkd. 

Solution The slope of the line in the bottom half of Figure 2.3 can be 
determined to be -7.94 s-l. Thus, the lifetime is ll(7.94 s-') = 

126 ms, and the half-life is 1n(2)/(7.94 s-l) = 87 ms. 

2.3.2 Second-Order Reactions 

Second-order reactions are of two types, those that are second order in a single 
reactant and those that are first order in each of two reactants. Consider first the for- 
mer case, for which the simplest overall reaction is 

2 A +products, 

with the differential rate lawb 

Of course, a simple method for obtaining the integrated rate law would be to 
rearrange the differential law as 

-d[Al 

P I 2  
= kdt 

and to integrate from t = 0 when [A] = [A(O)] to the final time when [A] = [A(t)]. 
We would obtain 

1 I 

[A(t) I [A(O) I 
- kt. 

However, to prepare the way for more complicated integrations, it is useful to per- 
form the integration another way by introducing a change of variable. Let x be 
defined as the amount of A that has reacted at any given time. Then [A(t)] = 
[A(O)] - x, and 

bThe alert student might notice that we have omitted the on the left-hand side of the equation, amount- 
ing to a redefinition of the rate constant for the reaction. The reason for temporarily abandoning our conven- 
tion is so that second-order reactions of the type 2 A + products and those of the type A + B -t products 
will have the same form. 
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I Figure 2.4 

Variation of concentration with time for a second-order reaction of the type 2 A -+ products. 

Rearrangement gives 
dx 

= k dt, 
([A(0)1 - 

and integration yields 

([A(O)] - x)-' I", kt, 

1 1 
- kt, 

[A(()) 1 - x [NO) 1 

Note that the same answer is obtained using either method. 
Equations 2.14 and 2.17 suggest that a plot of l/[A(t)] as a function of time 

should yield a straight line whose intercept is l/[A(O)] and whose slope is the rate 
constant k, as shown in Figure 2.4. 

example 2.2 
Diels-Alder Condensation of Butadiene, a Second-Order Reaction 1 
Objective Butadiene, C,H,, dimerizes in a Diels-Alder condensation to yield 

a substituted cyclohexene, C,Hl,. Given the data on the 400-K gas 
phase reaction below, show that the dimerization occurs as a 
second-order process and find the rate constant. 
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Time (s) Total Pressure (ton-) 

Method According to equation 2.14, when the reciprocal of the reactant 
pressure, P(C4H6), is plotted as a function of time, a second- 
order process is characterized by a linear function whose slope 
is the rate constant. The complication here is that we are given 
the total pressure rather than the reactant pressure as a function 
of time. The reactant pressure is related to the total pressure 
through the stoichiometry of the reaction 2 C4H6 + C8H12. Let 
2x be the pressure of C4H6 that has reacted; then P(C,H12) = x, 
and P(C4H6) = Po - 2x, where Po is the initial pressure. The total 
pressure is thus Ptot = P(C4H,) + P(C,H,,) = Po - x, or x = Po - 
P,,. Consequently, P(C4H6) = Po - 2(Po - P,,,) = 2Pt0, - Po. 

Solution A plot of 11(2Ptot - Po) versus time is shown in Figure 2.5. A 
least-squares fit gives the slope of the line as k = 3.8 X .  lop7 s-l 
torr-'. Recalling that 1 tom = (11760) atm and assuming ideal gas 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 
Time (s) x 104 

Figure 2.5 

Plot of reciprocal C4H6 pressure as a function of time for the Diels-Alder condensation of 
butadiene. 
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behavior, we can express kin more conventional units: k = (3.8 X 
s-l torr-') X (760 tordl atm) X (82.06 cm3 atm mol-' K-l) 

X (400 K) = 9.48 cm3 mol-' s-'. Thus, -d[A]ldt = (9.48 cm3 
mol-l s-')[AI2. 

We now turn to reactions that are second order overall but first order in each of 
two reactants. The simplest reaction of this form is 

A + B -+products, 

with the differential rate law 

-4'41 
= k[A] [B]. 

dt 

Consider a starting mixture of A and B in their stoichiometric ratio, where 
[A(O)] = [B(O)]. Then, again letting x be the amount of A (or B) that has reacted at 
time t, we see that [A(t)] = [A(O)] - x and that [B(t)] = [B(O)] - x = [A(O)] - x, 
where the last equality takes into account that we started with a stoichiometric mix- 
ture. Substituting into the differential rate law we obtain 

just as in the case for the reaction 2A + products. The solution is given by equa- 
tion 2.17, and a similar equation could be derived for l/[B(t)]. 

Suppose, however, that we had started with a nonstoichiometric ratio, [B(O)] # 
[A(O)]. Substitution into the differential rate law would then yield 

dx  
= k dt. 

([A(0)1 - x)([B(O)I - x) 

This equation can be integrated by using the method of partial fractions. We rewrite 
equation 2.22 as (see Problem 2.15) 

- I = k dt. (2.23) 
[B(O) I - x 

Integrating, we find 

1 1 1 - 
[B(0)1 - [A(0)1 I:, [ ,A(O)l - x [B(O)1 - x 

] dr = lo k dt, (2.24) 
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Thus, a plot of the left-hand side of equation 2.27 versus t should thus give a 
straight line of slope { [B(O)] - [A(O)] )k. 

2.3.3 Pseudo-First-Order Reactions 

It often occurs for second-order reactions that the experimental conditions can be 
adjusted to make the reaction appear to be first order in one of the reactants and 
zero order in the other. Consider again the reaction 

with the differential rate law 

We have already seen that the general solution for nonstoichiometric starting con- 
ditions is given by equation 2.27. Suppose, however, that the initial concentration 
of B is very much larger than that of A, so large that no matter how much A has 
reacted the concentration of B will be little affected. From the differential form of 
the rate law, we see that 

and, if [B] = [B(O)] is essentially constant throughout the reaction, integration of 
both sides yields 

Note that this last equation is very similar to equation 2.8, except that the rate con- 
stant k has been replaced by the product of k and [B(O)]. Incidentally, it is easy to 
verify that equation 2.32 can be obtained from the general solution for nonstoi- 
chiometric second-order reactions equation 2.27 in the limit when [B(O)] >> 
[A(O)] (Problem 2.16). 

Pseudo-first-order reactions are ubiquitous in chemical kinetics. An example 
illustrates their analysis. Figure 2.6 shows the decay of the concentration of excited 
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Variation of I* concentration with time for various starting concentrations of NO(v = 0). 

I(2P1,2) atoms, here again called I*, following their relaxation by NO(v = 0) to the 
ground I(2P,,,) state, here called simply I: 

Note that in this process the electronic energy of I* is transferred to vibrational exci- 
tation of the NO; this type of process is often referred to as E + V tran~fer.~ In this 
experiment, the I* concentration was created at time zero by pulsed-laser photodisso- 
ciation of I,, I, + hv + I* + I, and the I* concentration was monitored by its fluo- 
rescence intensity. Because the initial concentration of I* is several orders of magni- 
tude smaller than the concentration of NO(v = O), the latter hardly varies throughout 
the reaction, so the system can be treated as pseudo-first-order. Consequently, the data 
in Figure 2.6 are plotted as In of I* fluorescence intensity versus time; a straight line 
is obtained for each initial concentration of NO(v = 0). It is clear that the slope 
becomes steeper with increasing NO(v = 0) concentration, as predicted by equation 
2.32. The value of k can be determined from the variation as roughly 3.9 X lo3 s-l 
tonp1, or 1.2 X 10-l3 cm3 molec-' s-', as shown in Example 2.3. 

CThe data in the figure are taken from A. J. Grimley and P. L. Houston, J. Chem. Phys. 68,3366-3376 
(1978). A review of this type of process appears in P. L. Houston, "Electronic to Vibrational Energy Transfer 
from Excited Halogen Atoms," in Photoselective Chemistry, Part 2, J. Jortner, Ed., (J. Wiley & Sons, New 
York, 1981), 381-418 (1981). 
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example 2. 
Evaluation of Rate Constant for Pseudo-First-Order Reaction 

Objective Evaluate the second-order rate constant from the data shown in 
Figure 2.6 given the slopes of the lines as -0.627 X for 1.6 
ton, -0.213 X 10-I for 5.5 torr, and -0.349 X lo-' for 9.0 torr, 
all in units of ps-'. 

Method From equation 2.31 we see that the slope of ln([A(t)]l[A(O)]) 
versus t should be the negative of the rate constant times the starting 
pressure of the constant component. Thus, k should be given by the 
negative of the slope divided by the pressure of the constant 
component. 

Solution For the three points given, k = (0.0062711.6) = 3.92 X k = 
(0.021315.5) = 3.87 X lop3, and k = (0.034919.0) = 3.88 X 
The average is 3.89 X lop3 in units of ps-' ton-', or (3.89 X 

ps-l ton-') X (lo6 ps)/(l s) = 3.89 X lo3 s-I torr-'. 

Comment A better method for solution would be to plot the negative of the 
slopes as a function of the pressure of the constant component 
and to determine the best line through the points. Such a plot is 
shown in Figure 2.7. The slope of the line is equal to k[B(O)] over 
[B(O)], i.e., the slope is equal to the rate constant. If the kinetic 
scheme is correct, the intercept of the line should be zero. A 
positive intercept would indicate deactivation of I* by some other 
process or species, for example radiative decay or deactivation by 
the remaining I2 precursor. 

[B(O)]ltorr 

II Figure 2.7 

Figure showing alternative analysis of pseudo-first-order reaction. 
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Second-order rate constants are reported in a variety of units. As we have 
just seen, the units most directly related to the experiment are (time-' pres- 
sure-'), for example, s-I torr-'. However, reporting the rate constant in these 
units has the disadvantage that at different temperatures the rate constant is dif- 
ferent both because of the inherent change in the constant with temperature and 
because the pressure changes as the temperature changes. The use of time-' den- 
sity-' for rate constant units avoids this complication; the density is usually 
expressed either as molecules/cm3 or in moles/L. At any given temperature, of 
course, the two sets of units can be related. For example, at 300 K, the ideal gas 
law can be used to determine that 1 torr is equivalent to 3.22 X 1016 molecules 
~ m - ~ .  Thus, the rate constant for I* + NO(u = 0) + I + NO(v > 0) listed above 
as 3.9 X lo3 s-' torr-I is equivalent to (3.9 X lo3 s-' torr-')/(3.22 X 1016 mol- 
ecules ton-') = 1.2 X 10-l3 cm3 molec-l s-l, which in turn is equivalent 
to (1.2 X 10-l3 cm3 molec-' s-l)(6.02 X loz3 molec/mole) = 7.2 X 101° cm3 
mole-' s-'. If we multiply by (1 LI1000 cm3), we see that it is also equal to 7.2 X 
lo7 L mole-' s-l. 

2.3.4 Higher-Order Reactions 

For higher-order reactions, integration of the differential rate law equation becomes 
more complicated. For example, in an overall reaction 

where the differential rate law is 

the integrated rate expression for a nonstoichiometric starting mixture is 

However, such higher-order reactions usually take place under conditions where the 
concentration of one of the species is so large that it can be regarded as constant. 
An example might be the recombination of 0 atoms: 0 + 0 + 0, + 2 0,. Under 
conditions where [O,] >> [O], the third-order process becomes pseudo-second- 
order, and the integrated rate expression is simply related to expressions already 
derived. For example, in the reaction 2 A + B + products, for large [B(O)] the inte- 
grated rate expression is simply equation 2.14 with k replaced by k[B(O)]. Alter- 
natively, the reaction might become pseudo-first-order (see Section 2.3.3), as would 
be the case for 0 + 0, + 0, + 0, + 0 3  with 0, in excess. The differential rate 
law is -d[O]/dt = k[02]2[0]. If the concentration of 0, is very nearly constant 
throughout the reaction, the integrated rate law is an expression similar to equation 
2.8: [O] = [O]oexp(-k[0,]~t/2). It can be verified that equation 2.36 reduces to 
equations similar to equation 2.8 or equation 2.14 for the limiting cases when 
either [A(O)] or [B(O)] is very large, respectively (Problem 2.17). 
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2.3.5 Temperature Dependence of Rate Constants 

The temperature dependence of the reaction rate, like the order of the reaction, is 
another empirical measurement that provides a basis for understanding reactions on 
a molecular level. Most rates for simple reactions increase sharply with increasing 
temperature; a rule of thumb is that the rate will double for every 10 K increase in 
temperature. Arrhenius* first proposed that the rate constant obeyed the law 

where A is a temperature-independent constant, often called the preexponential fac- 
tor, and Ea is called the activation energy. The physical basis for this law will be dis- 
cussed in more detail in the next chapter, but we can note in passing that for a sim- 
ple reaction in which two molecules collide and react, A is proportional to the 
number of collisions per unit time, and the exponential factor describes the fraction 
of collisions that have enough energy to lead to reaction. 

The temperature dependence of a wide variety of reactions can be fit by this 
simple Arrhenius law. An alternate way of writing the law is to take the natural log- 
arithm of both sides: 

Ea I n k =  1nA - -. (2.38) 
RT 

Thus, a plot of In k as a function of 1/T should yield a straight line whose slope is 
- Ea/R and whose intercept is In A. Such a plot is shown in Figure 2.8 for the reac- 
tion of hydrogen atoms with O,, one of the key reactions in combustion. 

Plots such as these have been used to determine the "Arrhenius parameters," A and 
Ea for a wide number of reactions. A selection of Arrhenius parameters is provided for 
first-order reactions in Table 2.1 and for second-order reactions in Table 2.2." 

The Arrhenius form of the rate constant allows us to calculate the rate constant 
k2 at a new temperature T,, provided that we know the activation energy and the rate 
constant k, at a specific temperature, T I .  Since the Arrhenius A parameter is inde- 
pendent of temperature, subtraction of the Arrhenius form equation 2.38 for k,, In 
k,  = In A - Ea/RTl, from that for k2, In k2 = In A - Ea/RT2, yields 

Example 2.4 illustrates the use of equation 2.39. 

dSvante August Arrhenius was born in Uppsala, Sweden, in 1859 and died in Stockholm in 1927. He is 
best known for his theory that electrolytes are dissociated in solution. He nearly turned away from chemistry 
twice in his career, once as a undergraduate and once when his Ph.D. thesis was awarded only a "fourth class," 
but his work on electrolytic solutions was eventually rewarded with a Nobel Prize in Chemistry in 1903. His 
paper on activation energies was published in 2. physik. Chem. 4,226 (1889). 

eData taken from NIST Chemical Kinetics Database Version 4.0, W. Gary Mallard et al., Chemical 
Kinetics Data Center, National Institute of Standards and Technology, Gaithersburg, MD 20899. The data- 
base covers thermal gas-phase kinetics and includes over 15,800 reaction records for over 5700 reactant pairs 
and a total of more than 7400 distinct reactions. There are more than 4000 literature references through 1990. 



II Figure 2.8 

Arrhenius plot of the reaction H + 0, + OH + 0. 
The data are taken from H. Du and J. P. Hessler, J. Chem. Phys 96, 1077 (1992). 

Arrhenius Parameters for Some First-Order Gas 
Phase Reactions 

Reaction A (s-I) E$R (K) Range (K) 

CH,CHO + CH, + HCO 

C2H6 + CH, + CH, 

0, + 0, + 0 

HNO, + OH + NO, 

CH,OH + CH, + OH 

N,O + N, + 0 

N205 + NO, + NO, 

C2H5 + C2H4 + H 

CH,NC + CH,CN 

H,S + SH + H 

cyclopropane + propene 

cyclobutane + 2 C2H4 
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Arrhenius Parameters for Some Second-Order 
Gas Phase Reactions 

Reaction A (cm3 mol-l s-l) E,IR (K) Range (K) 

CH, + H, + CH, + H 6.7 x 10l2 6,250 300-2,500 
CH, + 0, + CH,O + 0 2.4 x 1013 14,520 298-3,000 
F + H , + H F + H  8.4 X 1013 500 200-300 
H + H20 + OH + Hz 9.7 x 101, 10,340 250-3,000 
H + CH4+CH3 + H 1.9 x lo', 6,110 298-2,500 
H + 0 2 + O H + H  1.4 x l0l4 8,000 250-3,370 
H + N O + O H + N  1.3 x l0l4 24,230 1,7504,500 
H + N20 + N2 + OH 7.6 x l O I 3  7,600 700-2,500 
H + C O , + C O + O H  1.5 x loi4 13,300 300-2,500 
H + 0 , + 0 2 + O H  8.4 X 1013 480 220-360 
O + H , - + O H + H  5.2 x loL3 5,000 293-2,800 
0 + CH4+OH + CH, 1.0 x l0l4 5,090 298-2,575 
0 + NO,+NO + 0, 3.9 X 10l2 - 120 230-350 
0 + C2H, + products 3.4 x l0l3 1,760 195-2,600 
0 + 0, + 0, + 0, 7.5 X 10l2 2,140 197-2,000 
0 + C,H, + products 9.5 X 10l2 946 200-2,300 
OH + H, + H + H20 4.6 x 10l2 2,100 200450 
OH + CH, + H,O + CH, 2.2 X 10l2 1,820 240-300 
O H + O - + O , + H  1.4 x 1013 - 110 220-500 

example 
Relationship between the Rate Constants at Two Temperatures 
Objective Given that the rate constant for the H + 0, + OH + 0 reaction 

is 4.7 X 1010 cm3 mol-I s-I at 1000 K and that the activation 
energy is 66.5 Wmol, determine the rate constant at 2000 K. 

Method Use equation 2.39 with k, = 4.7 X 1010 and E, = 66.5. 

Solution ln(k2/4.7 X 101°) = -(66.5 kJ m01-~18.314 J mol-I K-l) X 
((112000 K) - (111000 K)}; In k2 = ln(4.7 X 101°) - 8000 X 
(0.0005 - 0.001) = 24.6 + 4.00 = 28.6; k, = exp(28.6) = 2.64 
X 1012 cm3 mol-I s-l. 

Comment An alternative method would be to determine A from the equation 
k, = A exp(-EJR7) with E, = 66.5 Hlmol; then one could use the 
Arrhenius parameters to determine the rate constant at the new 
temperature. Note from Figure 2.8 that 2000 K is at the edge of the 
graph, where loglok2 = 12.42, or k, = 2.63 X 1012 cm3 rnol-'s-', 
in good agreement with the rate determined by the first method. 
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At this point, a word of caution is necessary. Not all reactions obey the simple 
Arrhenius form. For example, a recent reviewf of the measured rate constants for 
the OH + CO + H + CO, reaction in the temperature range from 300 to 2000 K 
recommends k(T) = (3.25 X 101° cm3 mol-' ~ec-')(T'~~)exp(+25O/T). Note that 
the preexponential factor is not independent of temperature, and that the "activation 
energy" is negative. We will see in the next chapter why the Arrhenius preexpo- 
nential factor might depend on temperature. For reactions with very low activation 
energies, such as this one where there is no barrier to formation of an HOCO com- 
plex, the rate of the reaction might actually go down with increasing temperature, 
because at high temperatures, the two species might not stay in one another's vicin- 
ity long enough for the attractive force between them to draw them together. Thus, 
many reactions may exhibit a more complicated dependence of k on T than given 
by the simple Arrhenius form. 

2.4 REACTION MECHANISMS 
As we have seen in the example of the Br, + H, reaction, equation 2.5, many rate 
laws do not have the form that might be supposed from the overall stoichiometry. 
The value of the rate law, in fact, is that it gives us a clue to what might be hap- 
pening on the molecular level. Here we start to leave empiricism and try to account 
for our experimental observations on a more chemical and microscopic level. What 
could be the behavior of the molecules that would lead to the observed macroscopic 
measurements? We postulate that the macroscopic rate law is the consequence of a 
mechanism consisting of elementary steps, each one of which describes a process 
that takes place on the microscopic level. Three types of microscopic processes 
account for essentially all reaction mechanisms: these are unimoleculal; birnolecu- 
lal; and termolecular reactions. As we will see, for such elementary steps the order 
of the reaction is equal to the molecularity; i.e., a unimolecular reaction follows 
first-order kinetics, a bimolecular reaction follows second-order kinetics, and a ter- 
molecular reaction follows third-order kinetics. 

Unimolecular reactions involve the reaction of a single (energized) molecule: 

A + products. (2.40) 

Since the number of product molecules produced per unit time will be propor- 
tional to the number of A species, d[products]ldt = -d[A]ldt = k[A], so the order 
of this unimolecular reaction is unity; i.e., unimolecular reactions are first order. 
We have already seen an example of such a unimolecular process, namely the 
first-order radiative decay of excited iodine atoms discussed in Section 2.3.1 and 
Example 2.1. 

Bimolecular reactions involve the collision between two species: 

Since the number of products per unit time will be proportional to the number of col- 
lisions between A and B, the rate of this bimolecular reaction should be proportional 
to the product of the concentrations of A and B (see Section 1.7): d[products]ldt = 
k[A][B]. Consequently, bimolecular reactions follow second-order kinetics. 

fD. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Ken; M. J. Pilling, J. Troe, R. 
W. Waker, and J. Warnatz, J. Phys. Chem. Re$ Data 21,411 (1992). 
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Termolecular reactions are encountered less frequently than unimolecular or 
bimolecular reactions, but they are important at high pressures or in condensed 
phases. A termolecular reaction is one that requires the collision of three species: 

By a simple extension of our arguments in Chapter 1, the number of termolecular 
collisions will be proportional to the product of the concentrations of A, B, and C, 
so that termolecular reactions follow third-order kinetics. 

One might well wonder how often three molecules could converge from separate 
directions to a single point in space.g In fact, most termolecular reactions can reason- 
ably be viewed as two consecutive bimolecular collisions. The termolecular process 
might start with a "sticky" bimolecular collision, one in which the collision pair, say 
A and B, remain in close proximity for a finite period. If the pair is struck during this 
period by the third species, then products are formed; if not, then the reactants A and 
B separate. Whether one regards the overall process as two bimolecular collisions or 
as a termolecular one depends, in part, on the length of time that A and B spend 
together. If the time is no longer than, say, 1-100 vibrational periods, the current prac- 
tice is to call the process a termolecular one. Whether one regards what happens as 
two bimolecular collisions or as one termolecular collision, the overall process will 
be proportional to the product of the pressures of the three species, i.e., third order. 

In summary, we see that unimolecular processes follow first-order kinetics, 
bimolecular processes follow second-order kinetics, and termolecular processes 
follow third-order kinetics. In general, the order of an elementary process is equal 
to its molecularity, but this statement is true only for elementary processes and not 
necessarily for an overall process consisting of several elementary steps. We now 
proceed to combine elementary steps into mechanisms so as to determine the over- 
all reaction and its order. 

2.4.1 Opposing Reactions, Equilibrium 

Perhaps the most rudimentary "mechanism" is a reaction that can proceed either in 
the forward or reverse direction. For simplicity, we consider opposing first-order 
elementary reactions, A F== B, with rate constants k ,  in the forward direction and 
k- ,  in the reverse direction. The differential rate law for the reaction is 

If the initial concentrations of A and B are [A(O)] and [B(O)], respectively, then 
[Aft)] = [A(O)] - x and [B(t)] = [B(O)] + x, where x is the concentration of A that 
has reacted to B at any time. 

Before demonstrating by integration that A and B approach their equilibrium val- 
ues exponentially, we digress for a moment to state two important principles. The first 
is the principle of microscopic reversibility, which, as noted by Tolman? is a conse- 
quence of the time-reversal symmetry of classical or quantum mechanics. Consider a 
system that has reached some final state from an initial one by some path. If all the 
molecular momenta (internal and translational) are reversed, the system will return by 

gExtension of this argument immediately suggests why higher-than-termolecular processes are never 
observed. 

hR. C. Tolman, Phys. Rev. 23, 699 (1924); The Principles of Statistical Mechanics, Clarendon Press, 
Oxford, p. 163. 
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the same path to its initial state. A macroscopic manifestation of this principle is 
called the principle of detailed balance: in a system at equilibrium, any process and 
its reverse proceed at the same rate. Although the principle of detailed balance is most 
powerful when applied to multiequation equilibria, it is still useful in the simple sys- 
tem under study, where it implies that at equilibrium klAe = k-,Be, where A, and Be 
are the equilibrium concentrations. A proof of this relationship between the forward 
and reverse rates follows from the fact that, at equilibrium, the concentrations of the 
species do not change. Hence, d[A]ldt = d[B]ldt = 0 when [A] = A, and [B] = Be, 
so that the left-hand side of equation 2.43 is zero, and k,A, = k-,Be. Note also that, 
since the equilibrium constant for the reaction is K, = BJA, = k,lk-,, the principle 
of detailed balance also tells us that the equilibrium constant for opposing first-order 
reactions will be equal to the ratio of the forward and reverse rate constants. 

Returning to the integration of equation 2.43, we rewrite the equation in terms 
of the single variable x: 

However, since A, = [A(O)] - x, and Be = [B(O)] + x,, we can rewrite equation 
2.44 by substituting for [A(O)] and [B(O)]: 

dx  - = {(k,A, - k-,Be) + k1(xe - X) + k-,(x, - x)) 
dt 

(2.46) 
= (kl + k- ,)(x, - x). 

For this last equality, we have used the fact that k,A, = k-,Be. Rearrangement gives 

dx -- - (k, + k-,)dt. 
X, - X 

Integrating both sides, we find 

- [d ln(xe - x) = (k, + k-,) dt, I' 

Exponentiation of both sides gives 

or, after subtracting both sides from [A(O)], 

Thus, [A(t)] starts at A, + x, = [A(O)] and decreases to A, exponentially with a rate 
constant equal to the sum of the forward and reverse rates. Similarly, [B(t)] starts 
at Be - xe = [B(O)] and increases to Be exponentially with the same rate constant. 
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Concentrations as a function of time for opposing reactions. 

These relationships are shown in Figure 2.9. Of course, in the limit where the for- 
ward rate constant is much larger than the reverse, k, >> k-,, the completed reac- 
tion produces nearly all B. Consequently, A, = 0 and x, = [A(O)], so that equation 
2.51 reduces to [A(t)] = [A(O)]exp(-k,t), which is simply equation 2.8. 

For opposing second-order reactions, the mathematics is somewhat more com- 
plicated, but the genera1,result is the same in the limit when x, is small: the system 
will approach equilibrium exponentially with a rate constant equal to the sum of the 
rate constants for the forward and reverse reactions. We will return to this result 
when considering temperature-jump techniques for measuring fast reaction rates in 
solution in Chapter 5. 

2.4.2 Parallel Reactions 

A common occurrence in real systems is that a species can react by more than one 
pathway. Consideration of such parallel reactions provides insight into the phe- 
nomenon of competition and clears up some common misconceptions. For sim- 
plicity we will model the parallel reactions as competing first-order processes: 
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The differential equations describing the parallel reactions are 

d[Al = - k,[A] - k2[A] = - [k, + ki] [A], 
dt 

The solution to the first of these equations, for a starting concentration of [A(O)], is 
obtained by straightforward integration: 

Substitution of this equation for A into the second differential equation leads to 

/'B(t)ld[Bl = k ,  [ A(0) ] / !exp {- [k, + k2]t) dt, 
[B] = 0 0 

A similar equation can be derived for [C(t)]: 

There are two important points to note in comparing equations 2.55 and 2.56. 
First, both B and C rise exponentially with a rate constant equal to [k, + k,], as 
shown schematically in Figure 2.10. The reason for this behavior is that the rates 
of production of both B and C depend on the concentration of A, which decreases 
exponentially with a rate constant equal to the sum [k, + k,]. Second, the ratio of 
products, sometimes called the branching ratio, is [B(t)]l[C(t)] = k,lk2 at all times. 
Thus, while the magnitude of [B] relative to [C] is constant and not generally unity, 
the time constant [k, + k,] with which each concentration approaches its final value 
is the same for both [B] and [C]. The situation is analogous to a bucket of water, A, 
leaking through two holes of different sizes. Buckets B and C collect the leaks. Of 
course, the relative amount of water collected in buckets B and C will depend on 
the ratio of the areas of the two holes, but the level of water in either bucket will 
rise toward its final value with the same rate, a rate equal to the rate at which water 
disappears from bucket A. 

Parallel reactions are often encountered; we have already seen an example. The 
data of Figure 2.3 and Example 2.1 clearly show that one mechanism for deacti- 
vation of I* is radiative decay. On the other hand, the data of Figure 2.6 and Exam- 
ple 2.3 show that I* can also be deactivated by collision with NO. In this second 
example, we actually monitor the I* concentration by its fluorescence intensity, so 
clearly both radiative decay and collisional decay are occurring in parallel. The 
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Concentrations as a function of time for the parallel reactions in equation 2.52. 

solution for the fluorescence intensity I, analogous to equation 2.54, is ln(I/Io) = 
-(krad + k[NO])t. However, for the NO pressures used, k[NO] >> krad, so that lit- 
tle error was made in Example 2.3. For example, the branching ratio for decay by 
radiation versus decay by collision in 1.6 ton of NO is kradl(k[NO]) = (7.94 s-')I 
[(3.9 X lop3 ,xs-' tom-')(1.6 torr)] = 1.27 X lop3; i.e., nearly all of the deactiva- 
tion is caused by collisions. However, the radiation is still important-it enables us 
to monitor the deactivation! 

2.4.3 Consecutive Reactions and the Steady-State Approximation 

Another common mechanism, which also leads to the important steady-state approx- 
imation, involves consecutive reactions. An example is the sequence of first-order 
processes 

B $c, 
for which the differential equations are 
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The goal of our study of this mechanism is to develop a method, called the steady- 
state approximation, that we can use to simplify the analysis of consecutive reac- 
tions. To see the limitations of this approximation, we must first look at the exact 
solution for the simple system above. We assume that the initial concentration of A 
is [A(O)] and that [B(O)] = [C(O)] = 0. Integration of the first of these three differ- 
ential equations then gives the time dependent concentration of A: 

Substitution of this solution into equation 2.60 yields the differential equation 

The solution to this equation, as can be verified by direct differentiation (Problem 
2.18), isi 

Finally, since by mass balance [A(O)] = [A] + [B] + [C], 

While the mathematical complexity of this solution may at first seem daunting, 
this exact solution will enable us to see how to make some very useful and simpli- 
fying approximations. We first consider the case when k, is much larger than k,. 
From the scheme in equations 2.57 and 2.58, we can see that in this limit the reac- 
tion A + B occurs first and goes nearly to completion before the reaction B + C 
takes place. Thus, we expect that nearly all the A is converted to the intermediate B 
before any appreciable conversion of B to C occurs. Indeed, in the limit of k, >> 
k,, equation 2.64 reduces to 

Because k, >> k,, the second term in the parentheses rapidly approaches zero 
while the first term is still near unity. Consequently, the concentration of the inter- 
mediate B rapidly reaches a value nearly equal to [A(O)], and then during most of 
the reaction B decays slowly according to [B(t)] = [A(O)]exp(-k,t). 

The exact solution for k, = 10k2 is shown in Figure 2.11. The situation is anal- 
ogous to three buckets located above one another. Imagine that the top bucket has 
a large hole and leaks into the second, which itself leaks through a much smaller 
hole into a third. Water placed in the first bucket would thus flow rapidly into the 
second bucket, from which it would then leak slowly into the third. 

A more instructive limit for the consecutive reactions is when k2 >> k,. In this 
case, the water leaks out of the middle bucket faster than it comes in, so one might 

'A solution of this differential equation by the method of Laplace transformation is described in 
Appendix 6.1. 
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Concentrations in a consecutive reaction when k,  = 10k2. 

guess that the water level in this bucket never rises very high. Indeed, in the limit 
when k2 >> k,, the solution for [B] given by equation 2.64 reduces to 

Since k2 >> k,, the second term in the parentheses rapidly approaches zero, while 
the first term is still close to unity. Consequently, the concentration of B rapidly 
approaches (kllk2)[A(0)] and then decays more slowly according to [B] = 

(kllk2)[A(0)]exp(-k,t). Because k,lk, is very small, the maximum concentration of B 
is much less than [A(O)]. Figure 2.12 shows the exact concentrations for k2 = lOk,. 

We now come to the major point of this section. It would be extremely tedious 
if we had to integrate the differential equations whenever we encountered a set of 
consecutive reactions. Fortunately, in most situations there is an easier method. 
Consider again the case illustrated in Figure 2.12, for which k, >> k,. After an ini- 
tial transient rise, called the induction period, the concentration of B is very close 
to [B] = (kllk2)[A(0)]exp(-k,t) = (kllk,)A. Rearrangement of this last expression 
yields k,[B] = k,[A], or, after inserting this approximation into equation 2.60, we 
find that d[B]ldt = 0. Recall that B is the "intermediate" in the consecutive reac- 
tion, and that, because k,lk, is small, its concentration is always much less than 
[A(O)]. The steady-state approximation can then be summarized as follows: 

After an initial induction period, the concentration of any intermediate species in a con- 
secutive reaction can be calculated by setting its time derivative equal to zero, provided 
that the concentration of the intermediate is always small compared to the starting 
concentrations. 

The first qualifier, "after an initial induction period," reminds us that [B] has to 
build up before the approximation can hold, as shown in Figure 2.12. The second 
qualifier, "provided that the concentration of the intermediate is always small," is 
equivalent to stating that k2 >> k,. 
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Time 

Figure 2.12 

Concentrations in consecutive reaction when k, = lOk,. 

Having obtained results for the consecutive reactions via the difficult method 
of integration, it is instructive to see how easily the solution could have been 
obtained using the steady-state approximation. If we had set d[B]ldt = 0 in 
equation 2.60, we would have found immediately that [B] = (kllk2)[A]. Since 
the concentration of A as a function of time is obtained easily as the solution to 
equation 2.59, we would have readily found that [B] = (kllk2)[A(0)]exp(-kit). 
Finally, equation 2.65 gives [C] as [A(O)] - [A] - [B]. Alternatively, [C] can 
be found by inserting the solution for [B] into equation 2.61 and then integrat- 
ing. In the sections that follow, we will make extensive use of the steady-state 
approximation. 

example 2.5 
Destruction of Stratospheric Ozone as Determined by 
Using the Steady-State Approximation 
Background The balance of ozone in the stratosphere is of critical concern 

because this molecule absorbs ultraviolet light that would be harmful 
to life at Earth's surface. The principal production mechanism for 
ozone is recombination of 0 atoms with 0,. The principal 
destruction mechanism is that given below. There is increasing 
concern over alternative destruction mechanisms involving 
molecules introduced into the stratosphere by human activity. 
These will be discussed in detail in Section 7.4. 

Objective Determine the destruction rate of ozone in the following 
mechanism, which is very similar to the Lindemann mechanism: 
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Method First, determine the rate law for the destruction of ozone, i.e., an 
expression for -d[03]ldt. Then use the steady-state approximation 
to solve for the concentration of the intermediate, 0. Finally, 
substitute the 0 atom concentration into the ozone rate law and 
simplify. 

Solution The rate law for the destruction of ozone is 

The steady-state equation for [O] is 

Some algebra can be avoided by subtracting these two to obtain 

Solution of the steady-state equation gives 

Substitution of this equation into the simplified ozone destruction 
equation gives the final answer: 

Comment Note that at high values of the pressure, [MI will be large enough so 
that the second term in the denominator will be large compared to 
the first. The result will then simplify to -d[O,]ldt = (2k2k,lk-,) . 
[O3I2~[O21. 

2.4.4 Unimolecular Decomposition: The Lindemann Mechanism 

As an example of the use of the steady-state approximation, we consider in detail 
the mechanism of unimolecular decomposition. The overall reaction is A + prod- 
ucts, and under high-pressure conditions the rate law is -d[A]ldt = k,,[A], where 
k,, is the apparent rate constant. A question that begs an answer is how the A mol- 
ecules obtain enough energy to decompose. The matter was debated vigorously in 
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the early 1900s.J It was F. A. Lindemann who first suggested in 1922k that the reac- 
tants obtained the necessary energy from collisions. In its simplest form, the mech- 
anism he proposed is shown below: 

In these equations P stands for the products and M represents any molecule that can 
energize A by collision; M might be A itself, or it might be a nonreactive molecule 
in which the reactant is mixed. 

The overall rate of the reaction is -d[A]ldt, or equivalently by d[P]ldt: 

Since A* is an intermediate in the mechanism, it will be useful to apply the steady- 
state approximation: 

Here, the time dependence of A* is equal to a production term, k,[A][M], and two 
destruction terms, k-,[A*][M] and k,[A*]. We can then solve this last equation for 
the steady-state concentration of A* to obtain 

Substitution of this last equation into equation 2.69 yields the solution 

Recall that use of the steady-state approximation assumes that the concentra- 
tion of the intermediate is small compared to the concentration of the starting mate- 
rial. This assumption is almost always valid for the system under consideration. 
Rearrangement of equation 2.71 shows that [A*]/[A] is much smaller than unity 
when k, [M]I(k-,[MI + k,) << 1. However, even if k, were zero, this last expres- 
sion would still be satisfied since k,lk-, is simply the equilibrium constant for the 
first reaction, and this equilibrium constant must be smaller than unity because A* 
has much more energy than A. In addition, for A* of sufficiently high energy, k2 is 
usually very rapid, so that the inequality k,[M]l(k- ,M + k,) << 1 is ensured. 

Having convinced ourselves that the steady-state approximation is valid for the 
Lindemann mechanism, equation 2.68, it is instructive to examine the solution, 
equation 2.72, under two limiting conditions. Let us first consider the "high-pressure 

'For an interesting discussion of the history of this problem, see J. I. Steinfeld, J. S. Francisco, and 
William L. Hase, Chentical Kinetics and Dynamics, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 1999), 
Section 11.3. 

kE A. Lindemann, Trans. Faraday Soc. 17,598 (1922). 
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limit," for which k-,[MI >> k2. In this limit, the denominator of equation 2.72 can 
be approximated by its first term, and division of numerator and denominator by 
[MI gives d[P]/dt = (k2k,lk-,)[A]. Thus, in this limit the [MI cancels and the reac- 
tion is first order. Physically, in the high-pressure limit A* is rapidly being created 
and destroyed, and only a small fraction goes on to form products. 

In the "low-pressure" limit, when k-,[MI << k,, the second term in the 
denominator of equation 2.72 dominates, and d[P]ldt = k, [A] [MI. In this limit the 
reaction is second order. Physically, in this limit most of the A* that is formed lasts 
long enough to react to form P, and very little gets deactivated. 

This behavior is shown in Figure 2.13, which plots a theoretical curve on a log- 
log plot for the apparent first-order rate constant, defined by kap = (l/[A]) d[P]ldt, 
as a function of [MI for the isomerization of cis-but-3-ene to trans-but-2-ene. The 
log-log plot is necessary to show both extremes in pressure. In the high-pressure 
limit, we have seen that d[P]ldt = (k2k,lk-,)[A] so that log(kap) should be a con- 
stant. At high pressures, the apparent rate constant is, indeed, found to be constant, 
but below about lo6 torr the apparent rate constant is linearly proportional to pres- 
sure. This is because, in the low-pressure limit d[P]ldt = k,[A][M] so that log(k,,) 
should be equal to log(k,[M]); i.e., it should vary linearly with log[M], as observed 
in the plot. An important practical application of the Lindemann mechanism is 
given in Example 2.5. 

The high-pressure result for the Lindemann mechanism also illustrates an impor- 
tant point about the temperature dependence of the overall rate constant in complex 
reactions. In the high-pressure limit d[P]ldt = k,,[A] = (k2k,lk-,)[A]. Thus, the tem- 
perature dependence of the overall rate constant k,, depends on how k,, k-,, and k2 
depend on temperature. Suppose that each of the rate constants for the elementary 
processes can be expressed in Arrhenius form: ki = Ai exp(-EilkT). Simple multi- 
plication and division of exponentials shows that 

Figure 2.13 

Theoretical dependence of the Lindemann apparent rate constant with pressure for the isomer- 
ization of cis-but-2-ene. 
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3.1 INTRODUCTION 
The goal of this chapter is to provide a theoretical basis for understanding and pre- 
dicting reaction rates. We begin by considering an encounter between two gas- 
phase reactants, and we assume that on the microscopic level, the outcome and rate 
of the reaction are determined by the forces acting between atoms making up the 
reactants. We would like to know what those forces are, or equivalently, what the 
potential is, since the force is simply proportional to the slope of the potential, F, = 
-dVldx. Because we will rarely be able to know the potential in complete detail, it 
will also be of interest to determine which of its features are most responsible for 
determining the reaction rate, or conversely, which features are determined most 
accurately by measuring the reaction rate. 

Two simple theories of reaction rates will be considered in detail: collision the- 
ory and activated complex theory. Both of these theories make approximations 
about the potential energy function controlling the reaction, and both theories relate 
the rate constant to simple features of the potential energy function. In its simplest 
form, collision theory concentrates primarily on the barrier to reaction, while acti- 
vated complex theory includes not only the barrier but also some information about 
the "width of the channel leading from reactants to products. Our goal here will 
be to explore these general properties of the potential energy function and to learn 
what approximations are made in these simple theories of reaction rates. We leave 
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until Chapter 8, Molecular Reaction Dynamics, the question of how more detailed 
investigations can provide closer approximations to the potential energy function. 
A thermodynamic formulation of activated complex theory will provide us with an 
association between the entropy change between reactants and activated complexes 
and the orientational requirements for reaction. 

3.2 POTENTIAL ENERGY SURFACES 
Consider the reaction between two species having a total of N atoms. For any fixed 
geometry of these nuclei, quantum mechanics can in principle be used to calculate 
the energy of the system. What will be of interest in our attempt to calculate reac- 
tion rates is the way in which this energy varies with geometry. We first determine 
the number of coordinates on which the energy depends. 

In general, the position of each nucleus can be described by three coordinates, 
so the position of all atoms relative to an arbitrary origin of the coordinate system 
can be described by 3N coordinates. However, if we assume that no forces act on 
the system other than the forces between the atoms, then the potential energy of the 
system depends on the relative coordinates between the atoms but neither on the 
position of the system as a whole nor on its overall orientation. Since three coordi- 
nates describe the position of the system as a whole and three (two for a linear sys- 
tem) describe its orientation, the potential energy of the system in the absence of 
external forces is a function of 3N - 6 variables (3N - 5 for linear systems). Thus, 
if the coordinates are called qi, we have V = V(q,, q,, . . . , q,), where k = 3N - 6 
for nonlinear or 3N - 5 for linear systems. 

Even for a very simple reaction involving just three atoms, A + BC + AB + 
C ,  we see that in the general case the potential energy will be a function of 3 X 3 - 
6 = 3 coordinates. We would like to picture the energy as a function of these 
coordinates. If one dimension is used to describe the energy, then a complete 
description of the way in which V varies with the three coordinates would require 
a four-dimensional figure, one not easily visualized by inhabitants of three- 
dimensional space. A way to circumvent this deficiency of human perception is 
to hold all but two of the coordinates at fixed values and to plot V as a function 
of those two coordinates. 

For example, in the well-studied hydrogen atom exchange reaction, D + H, + 
HD + H," if we constrain all three atoms to be collinear, then the resulting poten- 
tial energy diagram looks like that in Figure 3.1. A somewhat different way of 
viewing it is from the top, as in Figure 3.2 where each contour line represents a 
change in energy of 0.2 eV. 

Of course, for nonlinear angles between the three atoms, the potential surface 
would look different-for example, like that in Figure 3.3 for a D-H-H angle of 
40". Note that the barrier to reaction is higher than that in Figure 3.2. 

Returning to Figure 3.2, we consider the path of an exchange reaction. In the 
"entrance" valley on the lower left side of the figure, the H-H distance is small, 
given by the equilibrium distance for an H, molecule, and the D-H distance is 
large; these conditions describe the reactants. In this valley, motion along the H-H 

"The potential is described in A. J. C. Varandas, F. B. Brown, D. G. Truhlar, C. A. Mead, and N. C. Blais, 
J.  Chem. Phys. 86,6258 (1987); D. G .  Truhlar and C. J. Horowitz, J. Chem. Phys. 68,2466 (1978); J. Chem. 
Phys. 71, 1514 (1979). 
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D + H 2  H-H (A) 

Figure 3.1 

Potential energy surface for the collinear reaction D + H, + DH + H. 

0.5 1 .O 1.5 2.0 2.5 
H-H (A) 

Figure 3.2 

Contour diagram of the collinear D + H, + DH + H reaction. 

coordinate corresponds to vibration of the H,, whereas motion along the D-H coor- 
dinate represents the approach of the D and H, reactants. In the "exit" valley on the 
upper right side of the figure, the D-H distance is small and the H-H distance is 
large; these conditions describe the products. In this valley, motion along the D-H 
coordinate corresponds to vibration of the H-D product, whereas motion along the 
H-H coordinate corresponds to the separation of the H and D-H products. The sad- 
dle point on the contour diagram, marked by a $, is called the activated complex and 
is the highest point along the minimum energy path separating the reactants from 
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0.5 1 .O 1.5 2.0 2.5 
H-H (A) 

I Figure 3.3 

Contour diagram of the potential for D + H, + DH + H where the D-H-H angle is fixed at 40°. 

the products. A typical reaction path would proceed from the valley on the lower 
left over the saddle point and into the valley on the upper right. We define the "reac- 
tion coordinate" as the minimum energy path along which the reaction can take 
place. Suppose for the moment, as is the case for D + H,, that the collinear 
approach of the atoms is the one of least potential energy. Then the reaction coor- 
dinate would simply be given by the dashed line in Figure 3.2. If we straighten out 
this line and plot the energy at each point as a function of the position along the 
reaction coordinate, then for a generic A + BC reaction we obtain the familiar pic- 
ture for a chemical reaction given in Figure 3.4. 

Even when the reaction involves several atoms, the reaction coordinate can 
always be viewed as the minimum energy path for the reaction along the valley of 
some two-dimensional contour map. However, because several coordinates may be 
changing at once in order to minimize the energy, the "distance" along the reaction 
path may not correspond to an easily visualized change in geometry. Thus, while 
the ordinate of Figure 3.4 is a well-defined energy axis, the units along the abscissa 
are usually omitted. 

We define the configuration of atoms at the geometry corresponding to the 
highest energy along the reaction path as the activated complex, usually denoted 
by a double dagger, e.g., ABCS. The difference in energy between the zero-point 
energy of the reactants and that of the activated complex is called the threshold 
energy, E*, while the difference in energy between the zero-point energy of the 
reactants and products is Ae for the reaction. Recall that the zero-point energy of 
an ensemble of atoms is E, = zihvi ,  where the sum is over all vibrational fre- 
quencies vi. 

In principle, of course, it should also be possible to calculate from quantum 
mechanics the detailed potential energy surface. And, in principle, as noted in the 
introduction, a detailed knowledge of the potential energy surface should be all that 
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l i duAuu Reaction coordinate 

Figure 3.4 

Energy as a function of reaction coordinate for an endothermic reaction. 

we need to determine the rate constant. In practice, however, most systems are suf- 
ficiently complicated that neither of these steps is straightforward; drastic approxi- 
mations are often needed, even using modern computational techniques. The phi- 
losophy of simple theories of reaction rates is to avoid these complicated calculations 
by concentrating on a few key features of the potential surface and by learning how 
these affect the rate. Simple collision theory, to be considered next, concentrates 
exclusively on the threshold energy E*.  Activated complex theory, to be considered 
in Section 3.4, considers as well how the "width or structure of the potential 
energy valley changes as reactants proceed through the activated complex. 

3.3 COLLISION THEORY 

3.3.1 Simple Collision Theory 

The simplest theory of chemical reactions, already partially developed in Chapter 
1, makes use of only one parameter of the potential energy surface, the height of 
the barrier to reaction, E*. The method of presentation is in three steps. First we 
draw on the results of Chapter 1 to show that the rate constant as a function of 
energy is kt€,) = a ( ~ , ) u , ,  where a(€ , )  is an energy-dependent cross section and v ,  
is the relative velocity at energy E,. Next we argue from a simple model that the 
functional dependence of the cross section on energy should be a(€,)  = ~b: , , ( l  - 
E*/E,), where E* is a minimum energy needed for reaction and E, is the collision 
energy. Finally, we obtain the dependence of the rate constant on temperature, k(T), 
by averaging kt€,) over the energy distribution. 

To develop this theory we return to equation 1.44, the equation for the colli- 
sion rate between two dissimilar species, repeated here: 

* * 
Z12 = ~bk ,v ,n~n2 ,  (3.1) 
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where b,, = r, + r2 is the sum of the hard-sphere molecular radii and v, is the rel- 
ative velocity. This equation tells us that the collision rate, Z,,, is equal to a cross 
section, here ~b;, for hard-sphere collisions, times the relative velocity and the 
product of molecular densities. To account for the fact that not all collisions will 
lead to reaction, we need to modify what we mean by the cross section. We suppose 
that the cross section for a reactive collision will not be a constant ,rrb;, but rather 
will depend on the relative energy of the collision. (We recall from Chapter 1 that 
the energy corresponding to the motion of the center of mass is conserved, so that 
the only energy available for overcoming a barrier to reaction is the relative 
energy.) Only collisions with enough relative energy will react. Let us recognize the 
relative energy dependence of the cross section by writing it as a(€,). For reactions 
at a particular relative energy E, corresponding to a relative velocity u,, we can 
rewrite equation 3.1 as reaction rate = k(~,)nyn;, where k(~,) = u(e,)v, is the rate 
constant for reaction at E, = iPv,2. 

We now model the reactants as spheres and assume that a reaction will occur 
only if the energy, when evaluated using the relative velocity along the line between 
the centers of the spheres, exceeds a particular value, E*. It seems a reasonable 
assumption even for spherical reactants that glancing collisions for a given veloc- 
ity will be less effective in causing reaction than head-on collisions. Parameteriza- 
tion of the cross section in terms of the energy calculated from the velocity along 
the line of centers is one way to incorporate this assumption into our model. 

Figure 3.5 helps in deriving the functional dependence of a(€,) on E,. For sim- 
plicity, we suppose that one sphere is standing still and that the other is approaching 
it with relative velocity v, at impact parameter b. The figure shows that the velocity 
along the line of centers is v, = vrcos a ,  where a is the angle indicated in the fig- 
ure. The value of cos a is also related to b and the distance b,, along the line of cen- 
ters by sin a = blb, . The energy associated with motion along the line of centers 
is then = &pv$ =~pu,2cos2a = (iPu:)(l - sin2a) = €,(I - b2/bkm), where E, is 
the relative translational energy and p is the reduced mass of the two reactants. 

Returning to the assumption that E,, > E* for reaction, we assert that the prob- 
ability for reaction, P(E,,~), is unity when el, = er(l - b2/b;,,) > E* and zero oth- 
erwise. The cross section for the reaction is calculated by averaging over the impact 
parameter b. Figure 3.6 shows a narrow annulus of area = (circumference) X 
(width) = (2,rrb) X (db). If the probability of reaction in this annulus and for energy 

sin a = b/b- 

II Figure 3.5 

Simple model for obtaining energy dependence of the reaction cross section. 
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Center of 
target molecule 

1 Figure 3.6 

The average probability is the integral of P(e,,b) over b weighted by the area of the correspond- 
ing annulus. 

E, is P(E,,~), then the average probability is simply the integral of P(E,,~) over the 
possible values of b, from b = 0 to b = m, each weighted by the area of the appro- 
priate annulus. 

a(€,) = P(~,,b)2nb db, I" 
= F ( r r , b ) 2 n b  db, 

where b' is the impact parameter above which P(E,,~) = 0. Note that if the proba- 
bility were unity for all impact parameters up to b,,, the integral would simply give 
the hard-sphere cross section nbk,. But the requirement E,, = ~ , ( 1  - b2/bk,) > E* 

for P(E,,~) = 1 implies (b')2 < bia,(l - E*/E,), SO that the range of integration is 
from 0 to b', where (b')2 = bkax(l - E*/E,). The integral is easily evaluated to yield 
a(€,) = nbkax(l - E*/E,), provided of course that the relative energy E, exceeds E*; 
i.e., a(€,) = 0 when E, 5 E*. 

The solid line in Figure 3.7 (plotted against the left and lower axes) shows the 
energy dependence ,of a(€,) in this simple model. When E, >> E*, the reaction 
occurs for nearly every hard-sphere collision, and a(€,) = nbk,. The cross section 
drops rapidly to zero as E, + E*. For reference, the points in this figure (plotted 
against the right and top axes) give experimental measurements of the (T(E,) for the 
H + D2 reaction. The functional form of the solid line, while not exact, can be seen 
to be in qualitative agreement with the actual cross sections. 

Given the above functional form for a(€,), we now calculate k(T) by averaging 
over the Boltzmann energy distribution in equation 1.37 and repeated here: 

From equation 1.16, we know that the average of any quantity is the integral of that 
quantity times the distribution function of the variable on which it depends, <Q> = 
SQP(Q) dQ. Here, the quantity we want to average is the reactive rate constant at a 
particular energy, ~ ( E J  = u(E,)v,. Thus, k(T) = S~(E,)G(E,) d ~ ,  = S(T(E,)U,G(E,) d~,: 
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H + DD Kinetic energy (eV) 
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Figure 3.7 

Dependence of reaction cross section on energy for the simple collision model. The solid line 
plotted against the bottom and left axes shows the prediction of the simple model. Data for 
H + D, are shown as points plotted against the top and right axes.The points with error bars 
are experimental results taken from K. Tsukiyama, B. Katz, and R. Bersohn, J.  Chem. Phys. 84, 
1934 (1986), while the triangles are from the classical trajectory calculations of N. C. Blais and 
D. G. Truhlar, J. Chem. Phys. 83,2201 (1985), and the crosses are experimental points taken 
from R. A. Brownsword, M. Hillenkamp, T. Laurent, H.-R. Volpp, J. Wolfrum, R. K. Vatsa, and 
H.-S. Yoo, J. Phys. Chem. 101,6448 (1997). 

We now substitute for a(€,) and u,, noting that $pv; = e, SO that u, = ( 2 ~ ) ~ ) ~ ' ~ :  

If we premultiply the integral by exp(-e*lkT), multiply the integrand by exp(+~*lkT), 
and transform variables by letting x = [E, - <]l(kT), we obtain 

( 8 k ~ ) ' n  ( E* ) Iw [e, - e*] 
k(T) = .rrbL= - exp -- 

TP kT E- kT 
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The integral in equation 3.6 can be shown to be unity either by integration by parts 
or by substitution of x = y2 and use of Table 1.1. The result is thus 

where v, = (8kTl.rrP)'" is the average relative velocity. 
This surprisingly simple result can be interpreted (and remembered!) as follows. 

The quantity .rrbia,v, is simply the rate constant for hard-sphere collisions and is 
equal to the average of the cross section times the relative velocity. The Boltzmann 
factor exp(-ilkq can be interpreted as the fraction of collisions that provide 
energy greater than E*. The reaction rate constant is thus simply the rate constant for 
hard-sphere collisions times the fraction of those collisions with enough energy to 
react. This hand-waving "derivation" could have bypassed the calculus of equations 
3.1 through 3.7, but would not have introduced the key ideas of the probability of 
reaction and the cross section. These ideas are necessary to extend simple collision 
theory to incorporate the modifications described below and in Chapter 8. A sum- 
mary of the key steps in the derivation we pursued is given in Figure 3.8. 

Before extending the theory, we note that the result in equation 3.7 is very sim- 
ilar to the Arrhenius form, k = A exp(-EalkT), except that since v, depends weakly 
on T the activation energy Ea is not exactly equal to E*. For our purposes, we will 
take the threshold energy E* to be equal to the activation energy Ea, although Prob- 
lem 3.10 shows that they differ slightly. Finally, we note that although this develop- 
ment of collision theory has assumed that the energy necessary to overcome the bar- 
rier to reaction comes from the relative translational energy of the reactants, it is also 
possible to develop a theory in which the energy comes from the internal vibrational 
energy of the reactants. The final result is the same as that given in equation 3.7. 

3.3.2 Modified Simple Collision Theory 

Simple collision theory suffers, however, in that it usually overestimates the 
absolute magnitude of k. The reason is that for most reactions, the reactants must 
have favorable orientations for reaction, even when the collision supplies sufficient 
energy along the line of centers. We have already seen in comparing Figure 3.2 

I Average over b 

e ( u r )  

1 Multiply by u, 

1 Average over G(er) 

k ( T )  

II Figure 3.8 

Summary of the key steps in the derivation of k(T) from P(e,,b). 
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with Figure 3.3 that the theoretically determined threshold energy for the D + H2 
reaction depends on the angle of D atom approach; the barrier to reaction is much 
higher for an approach angle of 40" than for the collinear approach. Direct experi- 
ments testing reactivity as a function of approach angle confirm the importance of 
orientation. For example, Richard Bernstein and coworkers determined that the reac- 
tion Rb + CH31 + RbI + CH3 proceeds only if the attacking Rb atom approaches 
the I end of CH31 within a cone of about 127"; attack within 53" of the CH, end gives 
a nonreactive collision (a more complete description is provided in Section 8.7.1)'' 
While most reactions are neither as well understood theoretically as D + H2 nor as 
well studied experimentally as the Rb + CH31 reaction, it is certain that orientation 
plays a quite general role in determining the magnitude of the rate constant. For this 
reason, simple collision theory is often modified by including a so-called steric fac- 
toc p, with p < 1, to account for the orientation requirement: 

ExampIe 3.1 illustrates how collision theory might be used to estimate the value of p. 

example 3.1 
Estimation of the Steric Factor p 

Objective Consider the reaction CH, + H, -+ CH, + H. Assuming that the 
cross-sectional areas (a = ~9.2) of CH3 and H2 are 4.0 and 2.7 X 
10-l9 m2, respectively, use collision theory to calculate the steric 
factor p at 300 K given that the measured preexponential factor is 
6.7 X 1012 cm3 mol-l s-l. 

Method Use equation 3.8 recognizing that b,,, = ro3 + rH2 and that the 
preexponential factor is simply A = p ~ b k , v , .  

Solution i) Calculate ~ b ; , :  

bSee D. H. Parker, K. K. Chahavorty, and R. B. Bernstein, J. Phys. Chem. 85,466 (1981) and S. E. Choi 
and R. B. Bernstein, J. Chem. Phys. 83,4463 (1985); also R. D. Levine and R. B. Bernstein, Molecular Reac- 
tion Dynamics and Chemical Reactivity (Oxford University Press, New York, 1987), p. 56. 
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so that 

ii) Calculate v,: 

(1 5 amu) (2 m u )  

'= (15 + 2amu) 

iii) Calculate p: 

The steric factor p clearly does little more than embody our ignorance of the 
details of the reaction into a single factor. For many reactions, p is found to lie in 
the range from 0.001 to 0.1, reflecting the range of probabilities that the reactants 
will be in the correct configuration for reaction. A somewhat more sophisticated 
account of the orientation dependence of reactions has recently been introducedC 
and is described below. 

The basic assumption of the modification is that the threshold energy depends 
on orientation. Suppose not only that the energy along the line of centers needs to be 
above some minimum energy E* for reaction, but also that the minimum energy 

This  extension of collision theory was proposed independently by I. W. M. Smith [Kinetics and 
Dynamics of Elementary Gas Reactions (Butterworths, Boston, 1980), pp. 78 ff; J. Chem. Ed. 59,9 (1982)] 
and by R. D. Levine and R. B. Bernstein [Chem. Phys. Lett. 105,467 (1984)l. As pointed out by Levine [J. 
Phys. Chem. 94,8872 (1990)], both are similar to an earlier formulation by H. Pelzer and E. Wigner [Z. Phys. 
Chem. B 15,445 (1932)], as described in H. Johnston, Gas Phase Reaction Rate Theory (Ronald Press, New 
York, 1966). A more advanced version is given by A. Miklavc, M. Perdih, and I. W. M. Smith, Chem. Phys. 
Lett. 241,415 (1995). 
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Hot spot 

w 
Line of centers 

Figure 3.9 

Simple model for a modified collision theory, one for which the effective activation energy 
depends on angle of approach. 

depends on the orientation of one reactant with respect to another. In simple terms, 
suppose, as shown in Figure 3.9 that the sphere representing one of the reactants has 
a "hot spot7' toward reactivity at angle y = 0 but that the reactivity falls off as the 
hot spot is rotated away from the point of impact. A simple model embodying this 
idea is to assume that the energy along the line of centers needs to be bigger than E* + 
~ ' ( 1  - cos y). When y is zero, the effective threshold energy is simply E*, but the 
effective threshold energy rises to E*+ E' for y = 90" and reaches E* + 26' for y = 
180". Following the argument above, we require E,, 2 E* + ~ ( 1  - cos y), where E,, 

is still given by ~ , ( 1  - b2/bi,). Problem 3.7 outlines the solution, which, when com- 
pared to equation 3.8, shows that p can be identified as kTIe'. Reasonable values of 
E' are in the range from 10 to 1000 kl: so this modified collision theory finds values 
of p in the range 0.001-0.1, in fair agreement with experiment. 

Note that the modified (and improved) collision theory achieves better agreement 
with experiment by incorporating one more feature of the potential energy function 
into the model. In this case, the additional feature is the way in which the barrier to 
reaction increases as the angle between the reactants is varied; in other words, the 
additional feature is the "width of the barrier. We will see below that activated com- 
plex theory incorporates a similar parameter, although in a different manner. 

3.4 ACTIVATEDCOMPLEXTHEORY (ACT) 
While simple collision theory models the potential energy surface with only the 
threshold energy E*, activated complex theory goes somewhat beyond this naive 
view, but only by one step. As we will see, the additional feature of the surface 
incorporated by ACT is related to the "width or structure of the reaction channel 
leading over the activation barrier. In this sense, it is similar to the modified colli- 
sion theory just described, but the development of ACT provides new insights into 
the meaning of the preexponential factor. 

We start by modeling the chemical reaction by the following scheme: 

kl k2 
A + B 6 AB$ + products, 

k- , 
(3.12) 

where A and B each might represent some collection of atoms. Under the steady- 
state assumption, we can write the overall rate of the reaction as 
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where the last equation was obtained by assuming that k, < < k- ,. 
What remains is to express the combination of rate constants k,kllk-, in terms 

of properties of the reactants and the potential energy surface. We start with the 
ratio kllk-, and recognize that this ratio is simply the equilibrium constant for the 
"reaction" A + B + ABS. From statistical mechanics, we know that an equilib- 
rium constant can be written as the ratio of partition functions per unit volume, but 
we must be careful to take into account the offset in energy between the zero-point 
energies of the reactants and that of the activated complex. Thus, if we denote the 
partition function per unit volume for the activated complex by q* and the product 
of the partition functions per unit volume for the reactants by qAqB, then k,lk-, is 
equal to qt1qAqB and the rate of the reaction becomes 

d[ products ] 4' 

dt = 4- ~ A ( ? B  exp(-$)[~][B], 

where each partition function per unit volume depends on temperature and gives the 
number of states available to the system at that temperature. The factor exp(-~*lkT) 
accounts for the offset in energy, E*, between the zero points of the reactants and 
that of the activated complex. This offset is shown in Figure 3.10. 

A reminder about the physical interpretation of partition functions may help 
to clarify the meaning of equation 3.14. The partition function is simply a num- 
ber which describes how many states are available to the system at a given tem- 
perature; it is defined as z = C exp(-~,lkT), where the sum is over all states n of 
the system, each with energy E,. If the system were a single quantum particle in a 

I 

Reaction coordinate 

Figure 3.10 

The energy E* in ACT is the difference in energy between the zero points of the reactants and 
the activated complex. 
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one-dimensional box, for example, the possible states of the system are at the ener- 
gies E, = n2h2/8mL2, where h is Planck's constant, m is the mass of the particle, and 
L is the length of the box. For a particle in a one-dimensional box, Problem 3.8 
shows that this sum is (2.rrmkT)1'2L/h. If, instead, the particle is translating freely in 
a three-dimensional box of volume K the partition function is z, = (2~rnkT)~/~Vlh~,  
where the subscript t denotes that this is the translational contribution to the parti- 
tion function. For this example, the quantity required in equation 3.14 is the par- 
tition function per unit volume: q, = zJV = ( 2 ~ m k T ) ~ / ~ / h ~ .  

Of course, if a particle has vibrational and rotational degrees of freedom, more 
states will be available at a given temperature. For independent degrees of freedom, 
the partition function for a single particle is simply the product of the partition func- 
tions for each type of motion: z = zt X z, X z, X z,, where the additional subscripts 
denote rotation, vibration, and electronic motion, respectively. Partition functions 
for these degrees of motion are summarized in Table 3.1. At this stage, we will sim- 
ply use the listed results. Note that only the translational partition function depends 
on volume. 

It is clear from equation 3.14 that the overall rate constant for the bimolecular 
reaction A + B + products is k = k2(q*/qAqB)exp(-e*/kT). The partition functions 
q, and q, can be calculated with the aid of Table 3.1. We then have left two tasks- 
to determine k2 and to learn how to calculate q$. 

The rate constant k2 describes the unimolecular decomposition rate of ABg 
going to products. We will take the approach that the rate of AB* decomposition is 
simply equal to the frequency of vibration of the complex along the path of the 
reaction coordinate, denoted v*. Thus, the complex decomposes to products on 
every vibration, and the reaction rate simplifies to 

There are admittedly two predicaments with this approach. First, it is difficult 
to imagine a vibrational frequency along a coordinate for which the potential 
energy function is not bound. We will see shortly, however, that the frequency v$ 
actually cancels in the final result. Furthermore, Problem 3.9 shows that the same 
final result is obtained if the motion is treated as a translation rather than a vibra- 
tion. Second, we have assumed in our model leading to equation 3.13 that the 

Partition Functions for Molecular Degrees of Freedom 

Type of Motion Partition Function Order of Magnitude 

Translational, three-dimensional, per unit volume zJV = ( 2 ~ r r n k T ) ~ ~ l h ~  ~ r n - ~  
Rotational, linear molecule z, = 8.rr21kTlh2u 1 02 
Rotational, nonlinear molecule z, = [ ~ r ' ~ ~ ( S . r r ~ k T ) ~ ~ ~ / h ~ u ]  X (ZAIBIc)112 1 o3 
Vibrational, each degree of freedom, measured 
from the lowest (zero point) vibrational level z, = [ l  - exp(-hvlkT)]-I 1 (high v) 

10 (low v) 
Electronic = 2 g,exp(-~tlkT) 1 

Notes: I is the moment of inertia; v is the vibrational kequency; E; are the electronic energy levels, g, is the degeneracy, and u is a symmetry num- 
ber (e.g., a = 2 for a homonuclear diatomic molecule). 
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decomposition of the complex is slow enough not to perturb the equilibrium A + 
B + ABS, yet we are now assuming that ABS decomposes on every vibration. 
Despite this apparent contradiction, a more careful examination, somewhat beyond 
the level of this text,d shows that for E* > 3kT the approximations are still valid, 
partly because the overall rate is small compared to vt under these conditions. 

We now separate the partition function q$ into two factors, a partition function 
for the vibration along the reaction coordinate, z,S, and a partition function for the 
remaining degrees of freedom, qS', where the prime notation reminds us that the lat- 
ter partition function is missing one degree of freedom (the vibration). According 
to Table 3.1, z:, can be calculated as 

where the approximation uses only the first two terms in the Taylor expansion of 
the exponential since the frequency vS is assumed to be small. Substitution of equa- 
tion 3.16 into equation 3.15 gives 

Note that the ambiguous frequency vS cancels in this final result. Example 3.2 illus- 
trates how equation 3.17 can be used to estimate rate constants. 

example 3.2 
Estimating Rate Constant Orders of Magnitude with ACT 
Objective Estimate the order of magnitude of the room-temperature rate con- 

stant for a reaction in which an atom and a heteronuclear diatomic 
molecule react through a nonlinear activated complex; leave the 
answer as a factor times exp(-~*lkT). 

Method Use equation 3.17 and the third column of Table 3.1. I 
Solution The nonlinear activated complex of three atoms has three trans- 

lational degrees of freedom, three rotational degrees of freedom, 
and 3N - 6 = 3 vibrational degrees of freedom. One of these, 
the asymmetric stretch, is the reaction coordinate; the symmet- 
ric stretch is usually a high frequency while the bend is a low 

*P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley-Interscience, London, 1972), Sec- 
tion 4.12. 
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frequency. Thus; we may estimate q*' = (10% ~rn-~)(10~)(10) = 
~ m - ~ .  The partition function for the atom has only transla- 

tional contributions: qA = ~ m - ~ .  The partition function for the 
diatom has three translational, two rotational, and one (probably 
high-frequency) vibrational degree of freedom: qB = cmP3) . 
(102)(1) = cmw3. Recalling that kTlh = 6 X 1012 s-l at room 
temperature, we find that k = (6 X 1012 ~ - ' ) ( 1 0 ~ ~  ~ m - ~ ) / [ ( 1 0 ~ ~  
~ m - ~ )  ~m-~)]exp(-~*lkT) = (6 X 10-lo cm3 molecule-' s-') 
exp(- ~*lkT). 

Equation 3.17 is sometimes written as 

where 

is a sort of equilibrium constant describing the ratio of activated complexes (less 
one degree of freedom along the reaction coordinate) to reactants. 

Let us step back from equation 3.17 for a moment to consider its physical 
meaning. The factor of kTlh, equal to 6.25 X 1012 s-' at room temperature, is the 
frequency at which the reactants attempt to get to the activated complex. The fac- 
tors q~'l(q,q,)exp(-~*lkT) determine the ratio of the number of states available to 
the activated complex (less one degree of freedom) divided by the number of states 
available to the reactants. The reaction rate is just the frequency times this ratio, 
since we have assumed that the activated complexes proceed to products on every 
vibration along the reaction coordinate. 

Note that each of the three partition functions in the ratio q*'/(q,q,) has units 
of volume-', so that the units of the rate constant for this bimolecular reaction are 
volume per second (per molecule), as required. The Boltzmann factor exp(-~*lkT) 
accounts for the difference in energy between the activated complex and the reac- 
tants; if the zero of energy had been the same for each of these species, this factor 
would have been unnecessary. 

A view from the reactants' point of view of two possible A + B reactions is 
shown in Figure 3.11, where only one of the possible modes of vibration perpen- 
dicular to the reaction path is shown in each panel. Two colliding molecules would 
find it easier to react on the potential energy surface of Figure 3.11A rather than 
that of Figure 3.11B. The reason is that the vibrational levels are more closely 
spaced on the "wider" potential energy function, so that more states of the activated 
complex are accessible at any given temperature in this case. The reaction rate 
should depend both on the threshold energy and on the "width of the channel lead- 
ing over the barrier. Note, however, that the "width in most reactions is multidi- 
mensional, so that it is really more accurate to refer to the "structure" of the acti- 
vated complex state or, even better, to the partition function for the activated 
complex; for an activated complex with N 2 3 ,  there are 3N - 6 - 1 degrees of 
freedom perpendicular to the reaction coordinate. For example, in a triatomic 
activated complex, there are 9 - 7 = 2 perpendicular degrees of freedom. The 
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Activated 
complex w / 

Reactants 
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complex 

Reactants 

(B) 

Figure 3.11 

The reactants' view of two possible reactions. 

asymmetric stretching motion of the triatornic system (A +c B-C +) is the reac- 
tion coordinate, while the symmetric stretch (t A-B-C +) and the bending vibra- 
tion (& A-~1' -c$ ) are the two orthogonal vibrational modes. 

A connection between ACT and simple collision theory can be made calculat- 
ing the ACT rate constant for the reaction of two atoms of average diameter b,,. As 
one might hope, the resulting expression, derived in Example 3.3, is exactly that cal- 
culated by collision theory, given in equation 3.7. We remarked in Section 3.3.2 that 
the steric factor, p, was typically less than unity. Activated complex theory gives an 
explicit formula for p; it is equal to the ratio between the value of q"/(qAqB) for the 
reaction under consideration and the value of q"/(qAqB) for a reaction between two 
atoms whose average diameter is equal to that of the reactants under consideration. 

It should be noted that ACT is not restricted to bimolecular reactions. Return- 
ing to equation 3.17, we could write the temperature-dependent rate of a unimolec- 
ular reaction as 

Of somewhat more interest is to ask what the rate for unimolecular reaction would be 
if all the reactant molecules had the same energy. The answer involves a somewhat 



Chapter 3 Theories of Chemical Reactions 

more complex calculation that we will postpone until Section 7.5.4 when we dis- 
cuss unimolecular reactions in more detail. However, the final result is reasonably 
simple: 

where ka(E*) is the rate constant for unimolecular decay of molecules with energy 
E*, W(E+) is the number of vibrational states of the activated complex accessible at 
that same total energy, and N*(E*) is the density of states (the number per unit energy 
interval) of the reactant at energy E". The energy E+ is equal to E* - Eo, where Eo 
is the activation energy. Note that since hN*(E*) has units of time and since W(E*) 
is dimensionless, ka(E*) has units of s-', as required for a first-order reaction. 

example 3.3 
I ACT Calculation of the Reaction Rate of Two Atoms 

Objective Show that the ACT rate constant for the reaction of two atoms 
whose average diameter is b,, gives the same result as collision 
theory, equation 3.7. 

Method Use equation 3.17 with column 2 of Table 3.1. Note qS' is the 
partition function of the activated complex, but without the degree 
of freedom corresponding to the reaction coordinate. For the reac- 
tion of two atoms, the reaction coordinate corresponds to the 
vibration of the diatomic activated complex. 

Solution The exponential factors, exp(-~*lkr), are the same for ACT and 
collision theory, so that our task is to show that the pre-exponential 
factor in ACT, (kTlh)(q$'lqAq,), is equivalent to the preexponen- 
tial factor in equation 3.7. Using Table 3.1 and recalling that the 
moment of inertia in this case is pb:,, we find that the ACT pre- 
exponential factor is 

This is just the result of equation 3.7. 
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3.5 THERMODYNAMIC INTERPRETATION OF ACT 
We now return to equation 3.18 to provide a thermodynamic interpretation of 
the rate constant. If we identify the equilibrium constant with a Gibbs free 
energy through the relationship -RT ln K" = AGS then equation 3.18 can be 
rewritten as 

where AGS is the change in Gibbs free energy in going from the reactants to the 
activated complex. Of course, AG* can be written in terms of the enthalpy and 
entropy changes between the reactants and the activated complex: 

AGS = AH" T A P ,  (3.24) 

so that equation 3.23 becomes 

Recalling that AH = A(E + pV) =AE + (An)RT for an ideal gas and that for our 
reaction A + B + (AB)* the value of An is - 1, we see that AH* = AE* - RT 
where A@ is the activation energy in going from reactants to activated complexes 
and can be identified as the activation energy E,. Thus, 

kT k(T) = exp(1) - exp - 
h (A:)exp(-s). 

When compared to the Arrhenius expression k = A exp(-EJRT), we find that the 
preexponential factor is identified as 

The point of this exercise is to identify the Arrhenius preexponential factor with 
an entropy of activation, the entropy change in going from reactants to the activated 
complex. For a bimolecular reaction, of course, ASS is always a negative quantity, 
since two reactants must come together into a necessarily more ordered state before 
they can react. If the activated complex needs to be even more "ordered than just 
two spheres in contact, then the entropy of activation will be correspondingly more 
negative, and the preexponential factor and reaction rate constant will become 
smaller. A more "ordered activation complex is one for which, in collision theory, 
the steric factor is smaller than 1, or one for which, in activated complex theory, 
there are few accessible states of the complex. 

3.6 SUMMARY 
The main point of this chapter was to show how two simple theories, collision the- 
ory and activated complex theory, can be used to estimate rate constants. We started 
by noting that the rate constant could be calculated if we knew the potential energy 
surface for the reaction. In most cases, however, this surface is known only approxi- 
mately. Which of its features is most important in determining the rate constant? Sim- 
ple collision theory concentrates on the difference between the zero-point energies of 



Chapter 3 Theories of Chemical Reactions 

the activated complex and the reactants, E*. It assumes that reaction occurs every 
time a collision provides an energy along the line between the centers of the reac- 
tants greater than E*. The derivation of the collision theory rate constant starts with 
evaluation of the reaction probability as a function of energy and impact parameter, 
P(E,,~), averages this over impact parameter to obtain the cross section for reaction 
at a particular energy, (T(E,), and then averages the energy-dependent rate constant 
k ( ~ 3  = (T(E,)U over the thermal distribution of collision energies. The result is 

where v, = (8kT/rrp)112 is the average relative velocity. A hand-waving derivation of 
this result is that the rate constant is simply the hard-sphere collision rate, .rrbkmv,, 
times the fraction of collisions, exp(-~*lkT), that provide energy greater than E*. 

Simple collision theory overestimates the rate constant because it fails to take 
into account the fact that the reactants must be oriented properly for reaction even 
when the collision energy is sufficient to overcome the threshold energy. We can 
modify the theory by incorporating a steric factor, p, with p < 1 to account for the 
orientation requirement. Then, 

Consideration of the simple model illustrated in Figure 3.9 leads to the conclusion 
that p = kTIe', where E' describes the way in which the energy required for reac- 
tion varies with the angular orientation of the reactants. Thus, this modified colli- 
sion theory improves on the simple model by incorporating one more feature of the 
potential energy surface in addition to the threshold energy E*. 

Activated complex theory also improves on the simple model by incorporating 
information about the "width" of the barrier over the saddle point. The essential 
assumption of the theory is that the reactants are at equilibrium with activated com- 
plexes, so that the equilibrium constant can be used to calculate the overall rate for 
the reaction, k2[ABt] = k21i?[A][B]. The concepts of statistical mechanics are used 
to show that 

In this equation, the quantities q are partition functions that describe the number of 
states accessible at the temperature of interest. They can be evaluated using Table 
3.1. For a unimolecular reaction taking place at a particular temperature, the corre- 
sponding equation is simply 

If all the reactants have the same energy E*, then the equation simplifies to 

where W(E+) is the number of states of the activated complex and N*(E*) is the den- 
sity of states of the reactant. 



Problems 

By realizing that the equilibrium constant between reactants and activated 
complexes can be expressed in terms of a free energy of activation, AGS = Al@ - 
TA$, we found that the Arrhenius preexponential factor, A, can be related to the 
entropy change in proceeding from the reactants to the activated complex. 
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3.1 For a nonlinear system of 5 atoms, on how many coordinates does the poten- 
tial energy depend? 

3.2 For simple collision theory, at what energy is the cross section most depen- 
dent on energy? 

3.3 The thermal rate constant is the average of (a) the reaction probability over 
impact parameter, (b) the reaction probability over the thermal energy distri- 
bution, (c) the reaction cross section over the thermal energy distribution, or 
(d) the energy-dependent rate constant over the thermal energy distribution. 
(Specify which.) 

3.4 The steric factor p depends on (a) the angular dependence of the reaction 
probability, (b) the requirements for the reactants to be in a particular orien- 
tation, (c) a ratio of partition functions, (d) the entropy of activation, or (e) 
more than one of the above. (Specify which.) 

3.5 When activated by collision, the molecule Br-CH2-CH2-CH,-CH, can elim- 
inate either HBr or Br. Which reaction will have the higher Arrhenius A 
parameter? Why? 

3.6 The partition function (a) specifies the number of states below a certain 
energy, (b) is proportional to a volume in phase space, (c) specifies the num- 
ber of states accessible at a certain energy, (d) more than one of the above. 
(Specify which.) 

3.7 The condition for reaction, given the modified collision theory assumptions 
of Section 3.3.2 and Figure 3.9, is that E,, r E* + ~ ' ( 1  - cos y), where E,, is 
equal to ~ , ( 1  - b2/b:,). For E, > E*, this equation defines a maximum angle 
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y,, for which reaction can occur: 1 - cosy,, = [€,(I - b2/b2,,,) - e*/e1. 
The probability for reaction P(e,,b) is then just the surface area of a sphere 
of radius b,, for which y r y,,: 

Ymax 

4 l rbksin  y dy 

= 1 - cos y,, 

By integrating this value for P(e,,b) over 2?rb db, calculate a(€,). Then aver- 
age this cross section over the thermal distribution to show that k(T) is equal 
to (KT/€') times the result for simple collision theory. Note that this theory 
predicts that the steric factor should increase with temperature. The result is 
reasonable, since the range of angles for which reaction can occur should 
increase with increasing temperat~re.~ 

3.8 Recalling that the energy levels for a particle of mass m in a one-dimensional 
box of length L are given by en = n2h2/(8mL2) and that the partition function 
is defined as q = 2 exp(-enlkT), show that for this system is q = 
(2~mkT)~'~Llh. Hint: 

2 exp(-n2a2) = 1 exp(-n2a2) dn. 

3.9 In equation 3.15, we assumed that the rate k2 at which the activated com- 
plexes decompose to products was equal to a vibrational frequency v*. 
Although the vibrational frequency cancels in the final analysis, it might 
appear disturbing to associate a vibrational frequency with motion over a sad- 
dle point. In this problem, we consider the motion over the saddle point to be 
a translation. Let the activated complex be defined as the set of geometries 
along a length on the reaction coordinate equal to 8. This length, about 0.1 
nm, is arbitrary, since we will see that it, like the vibrational frequency, can- 
cels in the final analysis. If the average translational velocity along the reac- 
tion coordinate is < v > ,  then the rate of crossing is just k2 = <v>/26, where 
the factor of 2 is introduced because half of the transition complexes will be 
moving in the forward direction. For motion in one dimension the average 
velocity is < v >  = (2kT/lrmf)'12, where m*is the mass of the activated com- 
plex. Starting from equation 3.14, substitute for k, and write q* as the prod- 
uct of a translational partition function q t  (in one dimension) and the parti- 
tion function for the remaining degrees of freedom q*' to derive the result in 
equation 3.17. 

3.10 The activation energy Ea can be defined from the Arrhenius expression as 

eFor further discussion of this effect, see R. D. Levine, Chem. Phys. Lett. 175,331 (1990). 



Problems 

a. Use equation 3.7 to show that 

b. What is the percent error in taking Ea = E* for each of the first three reac- 
tions of Table 2.2 where T is taken to be at the middle of the applicable 
range? 

3.1 1 a. Use simple collision theory to calculate the Arrhenius A factor for the 
elementary reaction NO + O3 + NO2 + 0,. Reasonable values for the 
molecular radii are 0.14 nm for NO and 0.20 nm for 0,. Assume T = 
300 K. 

b. The experimental A factor for this reaction is 1.0 X lo8 L mol-l s-'. 
What is the value of the steric factor p? 

3.12 Consider a unimolecular decomposition that proceeds via the Lindemann 
mechanism: 

The reactant A may also be activated by a collision with a product molecule B: 

Use collision theory to calculate the relative magnitudes of k, and k3. You 
may assume that the two reactions have the same threshold energy. (Hint: 
What is a reasonable assumption about the relative volumes of B and A?) 

3.13 The reaction F + H, + H + HF is the rate-limiting elementary step in the 
overall reaction H, + F, + 2 HE This latter process is the key reaction in 
the HF chemical laser. The reaction proceeds through a transition state: 

H, + F + (HHF)~ + H + HF. 

Suppose that the activated complex is linear. Some properties of the reac- 
tants and the activated complex are given in Table 3.2. The threshold 
energy is estimated to be E* = 6.6 kJ mol-'. 

Properties in the F + H, Reaction (Problem 3.131 

H2 F (HHF)" 
u (10-l9 m2) 2.7 1.8 - 
I kg m2) 0.46 - 7.43 

(10'~ S-I) 13.19 - 12.02 
1.19 
1.19 

Electronic degeneracy 1 4 4 
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a. Use collision theory to calculate the preexponential factor and the rate 
constant for the reaction at 298 K. Compare your answer to the exper- 
imental result of A = 2 X 1Ol1 L mol-I s-l. 

b. Use activated complex theory to calculate the rate constant for the reac- 
tion at 298 K. Assume that the electronic degeneracy for F and for the 
activated complex is 4. 

3.14 Use activated complex theory to determine the temperature dependence of 
the Arrhenius preexponential factors for the following three gas-phase reac- 
tions 

In other words, for A T", find n for each equation. You may assume that 
the activated complex is linear for reaction (a) and nonlinear for reactions 
(b) and (c). Further, you may assume that h << kT and that the electronic 
degeneracies are unity. 

3.15 A theorem by Tolman states that the activation energy for a reaction is the 
difference between the average energy of those molecules that react and the 
average energy of all the molecules: Ea = <E,> - <E>. 

a. Show for a general reaction of cross section a(€,) that the rate constant is 

b. Recalling that Ea = kT2d In k(T)ldT prove Tolman's theorem. 

3.16 The objective of this problem is to see how isotopic substitution might affect 
the rate of a chemical reaction. For simplicity, we consider the case when 
the substitution is made at the atom whose motion is most nearly along the 
reaction coordinate; the effect on the rate constant is called the primary 
kinetic isotope effect. A simple example might be to compare the dissocia- 
tion RH + R + H to the dissociation RD + R + D. The origin of the effect 
is due to the fact that different isotopic species have different zero-point 
vibrational frequencies, both in the ground state and, to a lesser extent, in 
the excited state. We recall from quantum mechanics that the vibrational fre- 
quency in the harmonic oscillator approximation is v = (1/2~)(k~J~) '" ,  
where k,, is the force constant for the vibration and p is the reduced mass of 
the vibrating masses. An approximation to the primary kinetic isotope effect 
can be calculated by assuming that there is no difference in zero point ener- 
gies between the two isotopic species in the activated complex and that both 
species have the same Arrhenius A factor. The justification for this approxi- 
mation is that the stretching motion, for example, R-H or R-D, is not bound 
if it is along the reaction coordinate. (To be sure, there will be some zero- 
point energy difference for the bending motion in the activated complex, but 
for this crude approximation we will assume it to be negligible. There will 
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also be some difference in the A factor, but assuming no symmetry number 
difference, this difference will also be small.) Since the zero-point energy 
for the hydrogen system, i h v , ,  lies higher than the zero-point energy for the 
deuterium system, i h v , ,  the former system will have a lower activation 
energy than the latter by the difference between these two zero points. 

a. Given that the higher of the two ground-state vibrational frequencies is 
known (as v , ) ,  derive a formula for the ratio of the two rate constants, 

klightlkheavy. 
b. Typical frequencies for hydrogen stretches are given as follows (in 

cm-I): C-H; 2900; OH; 3300; NH; 3100; SH; 2600. Calculate kH/kD at 
room temperature for reactions involving motion of the hydrogen or 
deuterium along the reaction coordinate. 
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4.1 INTRODUCTION 
The goal of this chapter is to understand such properties as thermal conductivity, 
viscosity, and diffusion on a microscopic level. For gases, we can attain this under- 
standing by application of the kinetic theory developed in the last chapter. Although 
an exact treatment is mathematically cumbersome, simple physical ideas can be 
used to derive approximate formulas that have the correct dependence on molecu- 
lar parameters and differ from the exact formulas only by numerical constants of 
order unity. Thus, our approach focuses on the underlying physics of the process 
rather than on obtaining exact results. 

The outline of the approach is as follows. After briefly discussing the general 
functional form of the transport equations, we will make four simplifying assump- 
tions that will enable us to easily apply kinetic theory to transport phenomena in 
gases. The basic theme is that the properties transported, namely, energy, momen- 
tum, or concentration, are carried by the motions of molecules. We know something 
about this motion from our discussions of the Maxwell-Boltzmann distribution. 
The first step in a general treatment of transport is to calculate the flux of mole- 
cules, i.e., the number of molecules that cross an area per unit time. The second step 
is to calculate how far the molecules travel in a particular direction between colli- 
sions. This distance is clearly related to the mean free path, but it is slightly different. 
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The third step is to combine these two results to calculate a transport equation for 
an arbitrary property carried by the gas molecules. We will see that the transport 
always moves the property in a direction opposite to a gradient, or spatial deriva- 
tive, in the property, and that the proportionality constant is related to the mean 
velocity of the molecules, the mean free path, and other properties of the molecules. 
For gradients that are independent of time, it is then relatively straightforward to 
apply the general equation in turn to thermal conductivity, where energy is trans- 
ported; to viscosity, where momentum is transported; and to diffusion, where the 
molecules themselves are transported. For gradients that are not constant in time, 
the treatment is somewhat more complex but can again be understood using a sim- 
ple model, as shown in the final section of this chapter. 

4.2 THE FUNCTIONAL FORM OF 
THE TRANSPORT EQUATIONS 

The principal features of all transport equations can be appreciated by considering the 
flow of a liquid through a tube. Figure 4.1 displays the important parameters. For the 
liquid under consideration and for a particular choice of diameter, the tube has an 
inherent conductivity C. Suppose that a pressure differential Ap = p, - p, > 0 is 
placed across the tube so as to force the liquid to flow from left to right. We expect 
from common experience that the rate of liquid volume that crosses a unit area ori- 
ented perpendicular to the flow will depend linearly on both the pressure differential 
and the conductivity. The flow of a quantity per unit time per unit area is called the 
flux and has dimensions of (quantity) s-' mP2. In this case, the quantity is the volume 
of liquid and the linear proportionalities can be expressed by the equation 

an equation known as Poiseuille's law. In the example above, dpldz is simply 
-Aplt and is called the gradient of the pressure. Strictly speaking, since the gra- 
dient can have different values in different directions, equation 4.1 should be writ- 
ten in vector form: J = -CVp, where V is the vector idldx + jdldy + kdldz and i, 
j, and k are unit vectors in the x, y, and z directions, respectively. To keep the nota- 
tion simple, we will focus on the z component of the flux, while remembering that 
similar equations can be written for the other directions. Note in equation 4.1 that 
the gradient dpldz is negative since the pressure decreases as z increases, but that 
the flux is positive because of the negative sign incorporated in equation 4.1. 

II Figure 4.1 

The flow of liquid through a tube. 
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Quantity Transported Equation Name 

Fluid J, = -~(ap laz)  Poiseuille's law 
Heat (thermal conductivity) J, = - ~(aTIaz) Fourier's law 
Momentum J, = - V ( ~ U  Jaz) Viscosity 
Particles (diffusion) J, = -D(an*laz) Fick's law 
Electrical charge J, = -(llp)(a+laz) Ohm's law 

From dimensional analysis we see that the units of the conductivity C are volume 
s-I m-' pressure-'. While we note here that C is inversely proportional to the vis- 
cosity, we defer discussion of the relationship between the conductivity and molec- 
ular properties until Section 4.5. 

All transport equations have the form of equation 4.1; the only differences 
involve the form of the gradient and the quantity that flows counter to the gradient. 
The examples of greatest interest are described in Table 4.1. 

In the case of thermal conductivity, the quantity carried is heat or energy, and 
it is carried in the direction opposite to the temperature gradient; i.e., heat flows in 
the positive z direction if the temperature decreases as z increases. The proportion- 
ality constant, K ,  is called the coefficient of thermal conductivity. Similarly, in the 
case of diffusion, the quantity carried is the particle itself, and it is carried counter 
to a density gradient. The proportionality constant, D, is called the diffusion coef- 
ficient. Viscosity is at first a bit confusing. The quantity carried is the x component 
of momentum, but it is carried in the z direction against a gradient of momentum, 
as discussed in detail in Section 4.5. The proportionality constant is called the vis- 
cosity coefficient. Ohm's law concerns the transport of electricity through a con- 
ductor against a gradient in electrical potential, as discussed in Example 4.1. 

example 4.1 
Ohm's Law 
Objective Determine Ohm's law for the flux of electrons through a wire, 

given that its conductivity is l lp (p is called the resistivity) and 
that the potential decrease across the wire is V volts per m. Show 
that the result leads to the common form of Ohm's law: V = ZR. 

Method The charge flux will have the units of charge per cross-sectional 
area of the wire per second. It should be proportional to the con- 
ductivity of the wire and to the gradient of the electrical potential 
that pushes the electrons along the wire. 

Solution Since the electrons flow from a region of high potential 4 to one 
of low potential, the gradient in the direction of flow is negative; 
the potential decreases with increasing z, where z is the direction 
of electron flow. Assuming a linear variation in voltage across the 
wire, the gradient is thus &#~ldz = - Vlt, where 4 is the length of 
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the wire. The flux of electroils is thus J, = -(l/p)(d+ldz). Writ- 
ing the flux of electrons as the current, I, per unit area and substi- 
tuting for the gradient, we obtain IIA = Vlpt, or V = ZR, where 
R = ptlA is the resistance of the wire. 

Comment The units of I are amperes (one coulomb of charge per second), 
while the units of R are ohms. A 1-volt drop in potential across a 
resistance of one ohm causes a current flow of 1 ampere. The units 
of the resistivity, p, are ohm m. 

4.3 THE MICROSCOPIC BASIS FOR 
THE TRANSPORT LAWS 

4.3.1 Simplifying Assumptions 

It is clear from Table 4.1 that the transport laws all have the same basic form, 
namely that the flux of some quantity is proportional to and in the opposite direc- 
tion of a gradient. In the case of transport in gases, the explanation of this common 
form is based on the kinetic theory outlined in Chapter 1. As realized very early by 
Maxwell and by Boltzmann and later expanded by Enskog and by C h a ~ m a n , ~  the 
property transported by the flux must be transported by the individual particles 
comprising the gas, namely, by molecules subject to the Maxwell-Boltzmann dis- 
tribution law. In the case of thermal conductivity, the property carried is the energy, 
E = mv2/2. In the case of viscosity, the property carried is the momentum mu,. Dif- 
fusion involves the flux of the molecules themselves. While a rigorous theory of 
transport properties involves both complicated mathematics and physics, the basic 
form of the answer can be derived from kinetic theory and a few simple assump- 
tions. We will follow this latter route, recognizing that while we expect to capture 
the basic taste of the argument, the seasoning of our dishes may not be perfect. 
Most of the equations we derive will show the correct dependence on molecular 
parameters but will have numerical factors that are not quite correct. 

We make the following simplifying assumptions: (1) the molecules behave as 
rigid spheres with no attractive forces; (2) they all travel with the same speed, equal 
to the average speed <v>, and traverse the same distance, equal to the mean free 
path A, between collisions; (3) the molecules taken collectively have an isotropic 
angular distribution; and (4) each collision results in complete equilibrium with 
respect to the interchange of the property q which is being transported. 

The first assumption is obviously a drastic oversimplification, since we know that 
it is the forces, both attractive and repulsive, between gas molecules that account for 
the deviations from ideal gas behavior. The second assumption is more than merely a 
matter of convenience. It is certainly easier to deal with the average behavior rather 
than performing each calculation as a function of velocity and finally integrating over 
the velocity distribution. But this procedure hides the fact that some of the properties 
we want to transport depend on velocity, q = q(v), so that the rate of transport of this 

aD. Enskog, Kungliga Svenska Vetenskapsakademiens Handlingar 63, No. 4 (1922) (in German); S. 
Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, 
Cambridge, England, 1939). 
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property is proportional to vq(v). By considering only the average velocity we are in 
effect replacing <vq(v)> by <v><q(v)>, an approximation whose accuracy 
depends on the exact nature of the distributions. The third assumption turns out to be 
particularly weak. When molecules collide, they do not completely forget their orig- 
inal direction of motion, so their motion in the presence of a gradient is not likely to 
be isotropic. The approximation ignores the fact that the gradient affects the velocity 
distribution. The fourth assumption is likewise a source of error. It may be true for 
transfer of infinitesimal amounts of the property q per collision, but it will certainly 
fail when the gradients become large. In view of these approximations, it should be 
no surprise that the derivations below will introduce incorrect numerical factors. 
Nonetheless, the essential physical picture is unchanged by these approximations; the 
property q is carried by molecules whose motions over a wide range of conditions are 
not too different from those predicted by kinetic theory. 

We begin by considering gradients that are stable in time; i.e., gradients that are 
established by some external means so that the transport of heat, momentum, or 
concentration does not change the gradient with time. For example, we might hold 
the ends of a tube of gas at fixed, but different, temperatures by using two large heat 
baths. Heat would then be transferred through the gas from one bath to another 
without appreciably changing the gradient. 

In the remainder of this section we will first develop an equation for the molec- 
ular flux. We will then use this equation to determine two quantities: the flux of a 
property through a plane and the vertical distance between planes where collisions 
have occurred. We will finally develop a general flux equation that can be used in 
subsequent sections to relate the coefficients of thermal conductivity, viscosity, and 
diffusion to molecular properties such as diameter, speed, heat capacity, and mass. 

4.3.2 The Molecular Flux 

The first step in a microscopic explanation for transport properties is to recognize 
that, if molecules are canying the quantity in question across a unit area in a unit time, 
we need to know the rate at which the molecules themselves cross the area. Equation 
1.30 and Figure 4.2 can help in this exercise. How many molecules cross the area A 
in the indicated plane per unit time? We treat the problem in spherical coordinates, 

Figure 4.2 

The flux of molecules through a plane. 
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where v ranges from 0 to 03, 8 from 0 to 95-, and + from 0 to 295-. The relationship 
between spherical and Cartesian coordinates is discussed in Appendix 1.2. Consider 
for each possible value of v, 8, and + a cylinder of slant height vAt tilted at angles 8 
and 4 with respect to the z axis, where the slant height is chosen so that all molecules 
within the cylinder with velocities centered on v, 8, and + will cross area A in the time 
At. The volume of the cylinder depends both on the slant height, vat, and on cos 8: 
V = AvAt cos 8. The number of molecules crossing A in At is then given simply as 
the number of molecules in the cylindrical volume times the probability that a mole- 
cule will have a velocity v centered on angles 8 and +. The number of molecules in 
the volume is n*V = n*AvAt cos 8, while the probability of having the given velocity 
is (m/2nkn3I2 X exp(-mv2/2kQv2sin 6 d8 d+ d ~ . ~  Thus, 

number = n * ~ u ~ t  cos 8 (L) 'lzexp (- $) vzsin 8 dB d+ du. (4.2) 
2nkT 2kT 

The number of molecules in the cylinder with velocities centered on (v,O,+) that 
cross a unit area of the plane in a unit time is then the flux distribution function: 

number 
~(v,e,+)u~sin 8 d8 d+ dv = --- 

A At 

= n*v3 ((m)312exp 2rkT (- &) 2kT cos 8 sin 8 d8 d+ dv. 

Equation 4.3 is evidently a distribution function giving the probability that a 
molecule with a speed in the range v -+ v + du and direction in the range 8 -+ 8 + 
do, + + + + d+ will pass through the plane in a unit time. We can use it to calcu- 
late two important quantities. 

We would first like to know the flux of molecules J, that cross the plane from 
below regardless of their velocity and direction. To find this quantity, we simply 
need to integrate equation 4.3 over all the variables, but the range of integration for 
8 should be from 0 to 95-12 (see Figure 4.2) since we want only those molecules 
moving upward through the plane. Thus, 

The integration over v (with an additional factor of 495-) was performed in equation 
1.31: the answer here is simply 1/(4r<v>). The integration over + gives a factor 
of 295-. Thus, 

1 r ~ 1 2  

1 [s i 'Se]p  
sin 19 d(sin 6) = n - <u> - 

2 
9 

bNote that integration of the probability over the angles would give a factor of 47r, so that the probabil- 
ity would be identical to that given in equation 1.31. 
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where we recall from Chapter 1 that <v> = (8kT/rm)lD, where m is the mass of 
the gas molecules. This important equation gives the flux of molecules in a partic- 
ular direction. Of course, for an isotropic gas, the flux of molecules has the same 
value in any direction, a conclusion that is clear from the fact that the right-hand 
side of equation 4.6 does not depend on direction. 

Suppose now that the molecules each cany an amount q of some property. 
Then the flux of that property will be simply the flux of molecules times the amount 
of the property each carries. In particular, for the +z direction, 

4.3.3 The Vertical Distance between Collisions 

The next question we consider is the distance in the z direction traveled by the aver- 
age molecule between collisions. Although the total average distance is the mean 
free path A, the distance in the z direction will be somewhat shorter, since molecules 
with positive z component velocities move at a variety of angles 8 with respect to 
the z axis. The second result that we will derive from equation 4.3 is that the aver- 
age z distance between collision planes is 2M3. 

Let the slant length of the cylinder in Figure 4.2 be uAt = <u>/Z, = A. 
Then the vertical distance between the indicated plane and the plane in which the 
molecule last had its collision is A cos 8. We wish to find the average of this quan- 
tity. Since equation 4.3 gives the flux probability, the average of A cos 8 will 
simply be 

j A cos 8 J ( V , ~ , + ) ~ T  

<A cos 8> = 

J(u,ed) d~ 

IT'2cos28 sin 8 do 

= A '0 = A  j:llcos a sin 8 d8 

where the volume element abbreviated as dr  is equal to u2sin 8 do d+ du and where 
the integral in the denominator is used for normalization. Consequently, we see that 
the average distance traveled in the z direction between collisions is 2Al3. 

4.3.4 The General Flux Equation 

To calculate the flux of the property q it is convenient to consider a plane located 
perpendicular to the direction of the gradient. Let the gradient be in the z direction, 
and let the plane be located at the arbitrary position zo. As shown schematically in 
Figure 4.3, we calculate the net flux into the plane at zo as the flux due to the 
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II Figure 4.3 

Transport between layers separated by the mean free path. 

upward motion of molecules that made their last collision in the plane at z0 - 2Al3 
and due to the downward motion of molecules that made their last collision in the 
plane at zo + 2Al3. From equation 4.7, the flux from a plane at z is given by Jz = 
1 * ,n q<v >, where n*, q, and <v > are evaluated at the position z. While assumption 
2 enables us to treat <v> as constant, in principle both n* and q can vary between 
planes. Introducing temporarily the notation pq(z) as n*q evaluated at location z, 
the upward flux of the property q is then given by J+, = $ < ~ > ~ , ( z ~  - 2h/3), 
where pq(zo - 2hl3) is the value of p, = n*q for upward traveling molecules that 
had their last collision in the plane at zo - 2Al3. Similarly, the downward flux of 
the property is given by J-, = $ < U > ~ , ( Z ~  + 2hl3). The net flux in the upward 
direction is then 

If the gradient is constant or if its change is small over dimensions corresponding 
to the mean free path, then we may approximate p,(zo 2 2hl3) by the first two 
terms in a Taylor series expansion about the position zo:c 

Substitution of equation 4.10 into equation 4.9 and replacement of p, by n*q yields 

CThe Taylor series expansion for y(xo + Ax) is given as y(xo + hn) = y(xo) + Ax(dy1dx) + $(Ax)' 
(d2yldWZ) + . . . , where the derivatives are evaluated at x = x,. If (dyldx) is nearly constant over the range of 
Ax, then (dZy/dx2) will be small and only the first few terms in the expansion will be needed. 
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Equation 4.11 will form the basis for much of our further discussion. At this 
point it is worthwhile to make two comments. First, the result does not depend on 
having a gradient that is independent of position. If the gradient is constant every- 
where in space, then equations 4.10 and 4.11 are exact, but even if the gradient 
changes as a function of position, equation 4.11 will give an excellent approxima- 
tion to the flux through the plane at zo as long as the change in the gradient is small 
over distances within roughly one mean free path of zo. Second, equation 4.11 sug- 
gests that a nonzero flux will result from either a gradient in the molecular density, 
n*, or a gradient in the property q, or both. In our discussions of thermal conduc- 
tivity and viscosity below, we will assume that there is no net movement of the mol- 
ecules; that only the property q = E for thermal conductivity or q = mu, for vis- 
cosity changes with position. In this case, since the number density does not change 
with position, we see that d(n*q) = n*dq. In the case of diffusion, however, the 
property in flux is the number density itself, so q = 1 and d(n*q) = an*. 

4.4 THERMAL CONDUCTIVITY 
A fundamental observation in the development of the second law of thermody- 
namics is that heat flows from a hot body to a cold one. The phenomenological 
description of this flow was discussed in Section 4.2 and is embodied in the equa- 
tion called Fourier's law: J, = -~(dT/dz), where J, is the flux of heat (energy) in 
the z direction and K is the coefficient of thermal conductivity. Since the units of the 
flux are energy per area per time, we see that Fourier's law has dimensions (J mP2 
s-') = K (K m-'), or that the dimensions of K are (J mP2 s-')/(K m-') = J m-' s-I 
K-'.* Since 1 J of energy per second is also equal to 1 watt of power, alternative 
units for K are W m-l K-'. Table 4.2 gives some values for K. 

Thermal Conductivity Coefficients, K, for Various 
Substances at 273 K and 1 atm 

Substance K (J m-I s-I KP1) 

Cu 400 
Fe 80 
He 0.144 
Ar 0.0162 

N2 0.0237 
H2 0.174 
0 2  0.0240 
Co2 0.0142 
CH4 0.0300 

dKappa, K ,  is used here for the thermal conductivity coefficient and should not be confused with the 
isothermal compressibility coefficient, which sometimes also uses this symbol. 
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example 4.2 
The Heat Flow through Fiberglass Insulation 

Objective Calculate the rate of heat loss through a wall insulated with fiber- 
glass. Let the wall be 3 m X 4 m, ignore the conductivity of any 
other wall materials, and take the thickness of the insulation to be 
15 cm, the temperature difference between the inside and outside 
of the wall to be 10 K, and the coefficient of thermal conductivity 
for fiberglass to be 5 X lop2 W m-l K-'. 

Method According to Fourier's law, the flux of energy is given by J,  = 

-~(dT/dz). The flux is the heat per unit time, so that the total heat 
loss in watts (joules per second) is the area times the flux: AJ,. 

Solution The gradient is -(I0 K)/0.15 m), so that the total heat loss is 
(3 m X 4 m)(5 X W m-l s-l)(10 K)/(0.15 m) = 40 W. 

Of course, thermal conductivity is not the only method for heat transport. Heat 
is also transferred by radiation, as from the sun to Earth, or by convection, as in 
winds that move weather fronts. In our consideration of thermal conductivity, we 
will separate these processes and analyze the flow of heat (energy) in the absence 
of net movement of either photons or matter. To be sure, even in conduction the heat 
is transported by the movement of particles, usually by the motion of molecules, 
but, in metals, also by the motion of electrons. However, we will assume that there 
is no net molecular motion in conductivity. Thus, the conducted heat moves like the 
baton in a relay race; it is passed from one particle to another. This view is true, and 
the macroscopic equations valid, for heat flow through solids, liquids, or gases. In 
the latter case, however, we can easily come to a microscopic understanding of the 
coefficient of thermal conductivity. 

The kinetic theory that we have developed describes the collisions that provide 
the opportunity for gases to exchange energy, so that equation 4.11 should predict 
the essential features of thermal conductivity in gases, subject to the simplifying 
assumptions made in the last section. The property transported by the molecules is 
their energy, E, and by assumption 4, this energy is equilibrated at every collision. 
If we assume no net motion of the molecules, then d(iz*q) = n*dq. If the energy per 
mole is q = UIN, = E, equation 4.11 then becomes 

Recalling from Chapter 1, Section 1.6, that (13 UIdT), = C,, the constant vol- 
ume molar heat capacity, we write the gradient (dddz) as 



Chapter 4 Transport Properties 

Thus, 

Comparison of equation 4.14 with Fourier's law yields 

This expression for the thermal conductivity coefticient may be simplified by 
using equation 1.47, repeated here for use with a single component so that n,* = n* 
and b,,, = d, the molecular diameter: 

Substitution of equation 4.16 into equation 4.15 yields 

Note that the result for K is independent of pressure because the n* dependence 
in the general expression for the flux and the lln* dependence of the mean free path 
exactly cancel one another. A qualitative explanation for the cancellation is that, 
while there are fewer molecules crossing a given area per unit time at low pressure, 
they travel a longer distance between collisions. Although it is found experimen- 
tally that K is independent of pressure over most pressures of interest, this inde- 
pendence breaks down at very high pressures where the molecules no longer 
behave like an ideal gas and at very low pressures where the mean free path reaches 
macroscopic dimensions. In the latter case, truncation of the Taylor expansion used 
in equation 4.10 is no longer valid after two terms. At extremely low pressures, the 
mean free path is limited only by collision at the cold surface or the hot surface, and 
the thermal conductivity coefficient is then directly proportional to n*. 

It is important to comment that the heat capacity for a real molecule is larger 
than that for a monatomic ideal gas: Cv > 3Rl2. The reason, of course, is that real 
molecules have rotational and vibrational degrees of freedom in addition to trans- 
lational ones. While many vibrational motions are of high enough frequency not to 
contribute to the heat capacity, the rotational degrees of freedom contribute R per 
mole for diatomic molecules and 3Rl2 per mole for polyatornic ones. 

example 4.3 
1 The Thermal Conductivity Coefficient of N, at 273 K and 1 atm 

Objective Estimate the thermal conductivity coefficient of N, at 1 atm and 
273 K, given that the molecular diameter of N, is 370 pm. 

' Method Use equation 4.17 recalling that Cv = 5Rl2. 

Solution First calculate < v >  = (8kTl.rrm)"2: 
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g(1.38 X J ~ - ' ) ( 2 7 3  K)(6.02 X lou amu/g)(1000 g/kg) 

[3.1415 (28 amu)] 

Then evaluate Cv = 5R/2 = 5(8.314 J mol-I K-')/2 = 20.8 J 
mol-' K-'. 
Finally, 

Comment Note that the information that the pressure is 1 atm is irrelevant to 
the solution. Since we used approximations in arriving at equation 
4.17 and in evaluating the heat capacity, the answer is not exactly 
equal to the measured value listed in Table 4.2. 

4.5 VISCOSITY 
Most people are familiar with the viscous drag of water impeding a swimmer or air 
impeding a plane. What are the causes of these forces and how can we understand 
them at a molecular level? Consider two plates of area A separated by a distance in 
the z direction and immersed in a fluid, as shown in Figure 4.4. If the upper plate is 
drawn through the fluid with a velocity v, while the lower plate is stationary, then 
there will be a force exerted on the lower plate in the x direction due to the frictional 

Figure 4.4 

The viscous force on a stationary plate exerted by a moving one. 
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drag of the fluid; an equivalent force in the negative x direction will have to be 
applied to hold the lower plate stationary. The force transmitted downward to the sta- 
tionary plate will be proportional to the area A and is given by Newton's law of vis- 
cosity: F, = -qA(dv Jdz), where the constant 17 is called the coefficient of viscos- 
ity. From Newton's law we recall that F = ma = dpldt, where p is the momentum, 
so that the force transferred per unit area is the same as momentum transferred per 
unit time per unit area, or momentum flux. Thus, the gradient in velocity (or the pro- 
portional gradient in momentum) between the two plates causes a flux of momen- 
tum that is transmitted by the fluid. Note that, while the momentum and force are in 
the x direction, theflux of momentum is in the z direction: J, = FJA = -q(dv Jdz). 

The units of the flux are momentum per second per area or, equivalently, force 
per area, so that the flux equation has dimensions (forcelarea) = 7) (distance1 
time)/distance. Thus, the units of rj are (force/area)/(lltime) or N m-2 s. A pascal 
of pressure is also a N mP2, so that equivalent units for r) are Pa s. In older texts, 
one often encounters the cgs unit for 17 called a poise; 1 poise = 1 dyne cm-2 s = 
1 gm cm-l s-l = 0.1 N m-2 s. 

Table 4.3 provides some viscosity coefficient data for a few materials. Note 
that both liquids and gases obey the macroscopic viscosity equation. We will focus 
first on gases and return to the frictional forces in liquids later in this chapter. 

In the case of gases and under the assumptions listed in Section 4.3.1, the trans- 
fer of momentum must be described by the general flux equation 4.11, with q = 
mu,. We again assume that there is no net transport of molecules, so that d(n*q) = 
n*dq. Substitution of q = mu, leads to 

so that 

Note that since A is proportional to lln*, the viscosity coefficient will be indepen- 
dent of pressure. This prediction was one of the early triumphs of the kinetic theory 

Viscosity Coefficients at 273 K for Various 
Substances 

Substance 17 (pa s) 

Glycerol 0.95 
Olive oil 0.08 
Water, liquid, 298 K 0.9 x lo-3 
He 18.8 X lo-6 

H2 8.4 X 
Ar 22.2 X lo-6 

0 2  19.2 X 

co2 13.8 X 

N2 16.6 X 

NH3 9.2 X 

cH4 10.3 X lop6 
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of gases. An alternative formulation of equation 4.21 recognizes that the density p 
is equal to the product of the number density n* and the mass m, so that 

Again, while the numerical factors in these equations are incorrect, the functional 
form is correct. However, little is gained by using the correct hard-sphere numbers 
since real molecules do not behave like hard spheres. 

Equations 4.21 and 4.22 provide a convenient method for estimation of molecu- 
lar diameters. Substitution of equation 4.16 into equation 4.21, for example, leads to 

Example 4.4 illustrates this calculation. 

example 4.4 
Finding Molecular Diameters from Viscosity Coefficients 

Objective Given that the viscosity coefficient for argon at 298 K is 22.2 X 
Pa s, calculate its molecular diameter. 

Method Use equation 4.24 after calculating <v>. 

Solution First, calculate <v > = (8kTl.lrm)lJ2: 

<v> = ( 8 k ~ l ~ m ) " ~  

g(1.38 X J K1)(298 K)(6.02 X amu/g)(1000 g/kg) 

( ~ 4 0  m u )  

= 397 m/s. 

I 
(4.25) 

Then calculate d: 

(397 m/s)(40 m u )  

= [3V%(6.02 X 10;- amu/g)(l000 g/kg)(22.2 X lo-. N s 

= 299 pm. 

I 
(4.26) 
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Although there are other methods for measuring the viscosity coefficient of a 
fluid, one convenient technique is to determine the volume of the fluid that passes by 
a unit area of a tubing per unit time; i.e., the volume flux. We have already seen in the 
opening section of this chapter that this flux is proportional to the product of the pres- 
sure gradient and a conductivity coefficient: Jz = - C(dpldz), where C depends on the 
nature of the fluid and the size of the tubing. The dependence on the nature of the fluid 
comes about because, while the fluid has a finite velocity in the center of the tube, the 
molecules in contact with the edges of the tube must have zero velocity. Conse- 
quently, C should be inversely proportional to the viscosity coefficient of the fluid. A 
detailed calculation shows that C = a2/8r), where a is the radius of the tube. The vol- 
ume of liquid passing through the tube per unit time is given simply by the volume 
flux times the area of the tube: JzA  = dVldt = - CA(dp1dz) = - (~a!/8r))(dpldz). This 
last expression, whose complete derivation is given in Appendix 4.1, is perhaps the 
most useful form of the Poiseuille formula describing the laminar flow of a liquid: 

It enables determination of the viscosity coefficient from a measurement of the rate 
of volume change. An alternative form of the Poiseuille formula is obtained by mul- 
tiplying both sides of equation 4.27 by the liquid's density, p: 

example 4.5 
Using the Poiseuille Formula 
Objective Find the viscosity coefficient of a liquid flowing through a tube 

0.1 cm in radius and 50 cm in length. When the pressure drop 
across the tube is 0.1 atm, the volume of liquid emerging from the 
tube is 1 cm3/s. 

Method Since we know the flow rate and the pressure gradient, we can use 
Poiseuille's formula, equation 4.27, to calculate the viscosity 
coefficient. 

Solution The flow rate is dVldt = 1 cm3 s-I = lop6 m3 s-'. The pressure 
gradient is (0.1 atm)/(0.50 m) = 0.2 atm m-l. Then from the 
Poiseuille formula, r)  is 

- - ~ ( 0 . 0 0 1  m)4(~.2  atm/m)(l01.3 X lo3 Pall  atm) 
(4.29) 

8(1oP6 m3 s-') 

The liquid might very well be olive oil (See Table 4.3). 
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While equations 4.27 and 4.28 are useful for liquids, where the density is 
rather insensitive to pressure, for gases the density changes dramatically with pres- 
sure: p = MpIRT, where M is the molecular weight of the gas. Substitution for p 
and recognition that n = mlM gives 

Because the number of moles of gas crossing any area per unit time, dnldt, is constant, 
it must also be true that p(dp1dz) is a constant. If we call the constant B, then p dp = 
Bdz. Integration gives p2 = 2Bz + C. Applying this equation to pressures p, at 2, and 
p2 at z2 yields two equations: p: = 2Bz, + C and p; = 2Bz2 + C, where C is a con- 
stant of integration. Subtraction gives B = (pi - p:)/2(z2 - zl), so that for gases 

4.6 DIFFUSION 
Anyone whose nose is in working order can attest to the fact that diffusion is an 
important process. The kitchen smells that woke us in the morning as children or the 
fragrance from an opened bottle of perfume reach us even if there are no convective 
currents in a room. The mixing process is spontaneous, but the rate of interdiffusion 
of two substances has yet to be discussed. Experimental observation shows that dif- 
fusion in fluids against a gradient obeys Fick's law, whose form is by now quite 
familiar: J, = -D(dn*ldz), where J, is the flux of molecules, (an*ldz) is the gradient 
in number density, and D is the diffusion coeflicient. Dimensionally, the equation is 
(number time-' area-') = D X (numberlvolume)ldistance, so that the dimensions of 
D are thus distance2 per unit time, or m2 s-'. Because the diffusion of one substance 
into another can depend on the properties of each substance, it will be useful to add 
subscripts to D. Let Dl, be the coefficient describing the diffusion of type 1 into mol- 
ecules of type 2 and let Dl, be the diffusion coefficient for diffusion of molecules of 
type 1 into other molecules of the same type. One might well wonder how the latter 
coefficient could be measured; indeed, it cannot. But Dl, can be approached quite 
closely by studying the diffusion of one isotope of a substance in another isotope of 
the same substance..Table 4.4 lists some typical diffusion coefficients. 

Diffusion Coefficients at 273 K and 1 atm 
for Various Substances 

Substances Dl, or Dl, (m2 s-l) 

HZ-H2 1.5 x 1 0 - ~  
0 2 - 0 2  1.9 X 

Nz-N2 1.5 X 
C0,-CO, 1.0 x 
Xe-Xe 5.0 X 

0,-N2 1.8 x 1 0 4  
0 2 x 0 2  1.4 x 
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example 4.6 
The Number of 0, Molecules Crossing an Area per Second While 
Diffusing through N, 

Objective Find the number of 0, molecules diffusing through N2 molecules 
and crossing a 0.2 m2 area at 273 K if the concentration gradient 
is 40 torr per centimeter and the diffusion coefficient is that given 
in Table 4.4. 

Method Use the diffusion equation, J ,  = -D(dn*/dz), to calculate the flux. 
The number crossing the given area is then the flux times the area. 

Solution The diffusion coefficient for 0,-N2 is D = 1.8 X m2 s-'. 
Since p = nRT/W we can convert the pressure gradient to a num- 
ber density gradient by dividing the pressure by RT. The gradient 
is thus calculated to be 

an* - 
az 

- - 
(40 torr/cm)(l atm/760 torr)(100 cm/m)(6.02 X molecules mole-')(lo3 L/1 m3) 

(0.082 L atm mole-' K-')(273 K) 

= 1.42 x loz6 (molecules/m3) m-'. (4.32) 

Thus, the flux is 

Jz = -(1.8 X m2 sf') [1.42 X (molecules/m3) m-'1 

= -2.55 X lo2' molecules s-' mP2. (4.33) 

The number crossing the area of 0.2 m2 per unit time is then the 
flux times the area, or (0.2 m2)(2.55 X loz1 molecules s-' mP2) = 
5.10 X 1020 molecules/s. 

Like thermal conductivity and viscosity, diffusion in gases can be under- 
stood by the application of kinetic theory. In this case, however, we must focus 
on the motion of the molecules themselves. Because their number density changes 
with position we cannot bring n* out of the differential a(n*q) in equation 4.11, 
and because it is the molecules themselves that are being transported, q = 1 and 
the flux is the flux of molecules. Equation 4.11 then becomes 

and comparison with Fick's first law, J, = -D(an*/az), shows that 

As might be expected from the severity of the approximations made in Sec- 
tion 4.3.1, the numerical factor in equation 4.35 is incorrect, even for hard 
spheres, but our understanding of the underlying science is enhanced little by 
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correcting it. It is worth noting, however, that the value of the mean free path 
depends on whether we are considering the diffusion of a molecule of type 1 into 
other molecules of type 1 or into molecules of another type, 2. For so-called self- 
difusion, the mean free path is given by equation 4.16, since this equation 
describes how far a molecule travels before colliding with another of the same 
type. For one molecule of type 1 diffusing through molecules of type 2, however, 
we must review the derivation of presented in Section 1.7 just prior to equation 
1.47. If the mean free path for a type 1 molecule in molecules of the same type is 
A = ZlZ,, then the mean free path for a type 1 molecule in molecules of type 2 
should be A = Z/Z2 = Z/[.rrb~a,,,vp~]. Note that although the calculation of Z 
involves the mass of molecules of type 1, the calculation of v, involves the reduced 
mass. Furthermore, b,,, is the average of the diameters of molecules of type 1 and 
2. Thus, the mean free path will depend on the properties of both types of mole- 
cules. In real systems, molecules of type 1 will diffuse both through others of the 
same type and through those of type 2, so that the mean free path is somewhat 
more complicated than that in either of the above calculations; it depends inversely 
on the total number density, not just on the number density of type 2 molecules. 

example 4.7 
Calculating the Diffusion Coefficient for N, I 
Objective Approximate the diffusion coefficient of N, in N, at 300 K and 

1 atm given that the molecular diameter is 218 pm (see Exam- 
ple 1.7). 

Method Use equation 4.35, noting that under these conditions we have 
calculated in Example 1.7 the mean free path of N, as 3.87 X 
m and the average velocity as 673 d s .  

Solution D = (113)vA = (1/3)(673 ds)(3.87 X m) = 8.68 x lop5 
m2 s-l. 

Comment That this value is higher than that listed in Table 4.4 is due only 
partly to the fact that v and A are higher at 300 K than at 273 K. 
Because we have made several simplifying approximations, equa- 
tion 4.35 is not expected to be numerically accurate. 

4.7 TIME-DEPENDENT TRANSPORT 
We have assumed in the preceding sections that the gradient of temperature, 
momentum, or concentration was steady in time. For example, in the case of diffu- 
sion we see from J, = - D(an*laz) that if the gradient of concentration is steady in 
time then the flux of particles will also be steady. We now address the situation in 
which the gradient changes in time, as it might, for example, if a drop of one mate- 
rial were introduced into another or if heat were momentarily applied to one end of 
a rod of conductive material. In both cases we see that the gradient is large imrne- 
diately after the perturbation, but that the diffusion of molecules or the flow of heat 
tends to cause the gradient to diminish as time progresses. 
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To be able to describe these processes, we introduce a notation that recognizes 
that the flux can depend both on position and on time, J = J(z,t). The time depen- 
dent flux can be related to the gradient by considering two surfaces of area A sepa- 
rated by a distance Az, as shown in Figure 4.5. Suppose that molecules are diffks- 
ing in the positive z direction. What is the change of concentration in the volume 
AAz per unit time? The concentration is increased by the number of molecules that 
flow into the volume from below. Because J(z,t) is the number of molecules per unit 
time per unit area that cross the plane located at z, the change in concentration is 
given by J(z,t) times A divided by the volume: dn*(z,t)ldt = J(z,t)AIAAz = J(z,t)lAz, 
where the dependence of n* on z and t is made clear by the notation n*(z,t). Simi- 
larly, the concentration is decreased by the molecules that flow out of the volume 
to regions above; the change is given by dn*(z,t)ldt = -J(z + Az, t)AIAAz = 
- J(z + Az, t)lAz. Thus, the net rate of concentration change is 

In the limit when Az is very small, the quantity on the right-hand side of equation 
4.36 is simply - dJ(z,t)ldz, so that 

At any time t, however, the flux is related to the number density gradient, as we 
have seen in the previous section: 

II Figure 4.5 

The change in flux with time. 
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If we take the partial derivative of both sides of equation 4.38 with respect to z, 
we obtain 

Finally, using equation 4.37 we see that equation 4.39 can be rewritten as 

Equation 4.40 is known as the time-dependent diffusion equation or as Fick's sec- 
ond law. 

Consider the diffusion of N molecules that start at z = zo at t = 0 in the cross- 
sectional area A of a tube of infinite length. How will this distribution change in space 
as a function of time? The solution to equation 4.40, as shown in Problem 4.16, is 

Figure 4.6 displays the concentration profile predicted by equation 4.41 for dif- 
ferent values of Dt. With increasing time, the concentration spreads over larger dis- 
tances. In fact, if we normalize the right-hand side of equation 4.41 (which amounts 
to multiplication by AIN) we will obtain a function that gives the probability that a 
molecule will be found at a position z at a time t. This function is thus a distribution 
function for the position at a particular time, and we can use it to calculate average 
positions. Of course, because the distribution function is symmetric around zo, the 
average distance that a molecule has traveled from that position after a time t is zero. 

- - - 
- 
- 

- - 
- 

El 
- 
- 
- 

-2 -1 0 1 2 

Distance z - zo ( [ ~ t ] ' " )  

Figure 4.6 

Plot of n*(z,t) following diffusion from a starting condition where all molecules are at z = 0 at 
t = 0. 
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It is useful, however, to calculate the root-mean-squared distance, z,, = <(z - 
z,,)~>~'~. Using Table 1.1 to evaluate the integral, this distance is given by 

so that 

We thus see that the root-mean-squared distance that a molecule diffuses is propor- 
tional to the square root of the diffusion coefficient and to the square root of the time. 

example 4.8 
The rms Distance Traveled by a Molecule in a Day 
Objective Find the rms distance that a molecule of naphthalene travels by 

diffusion in 1 day through the atmosphere assuming the diffusion 
coefficient is 1.5 X m2 s-'. Naphthalene is the principal 
component in moth balls. 

Method Use example 4.43, but recognize that this is a three-dimensional 
problem and not merely a one-dimensional one. 

Solution Note that the square of the distance from the center of a three- 
dimensional object is ? = x2 + y2 + z2, so that <$> = <x2> + 
<y2> + <z2> = 3<z2>. One day is (24 hr)(60 min/hr)(60 
slmin) = 8.64 X lo4 s. Thus (z,,)~ = (2Dt) or (r,,)2 = (6Dt) = 
[6(1.5 X m2 s-')(8.64 X lo4 s)] = 0.78 m2 or r,, = 0.88 m. 

Comment Note that molecules do not travel far in a day by diffusion. Con- 
vection is more often the mode of transport. 

We can gain some physical insight into diffusion by considering a process known 
as the one-dimensional random walk. Consider a molecule constrained to move in 
the z direction in steps of length t ,  and suppose that after each step the molecule 
has no memory of which direction it traveled in previous steps; its choice of direc- 
tion for the next step is completely random. On average, what will be the root- 
mean-squared position of the molecule with respect to its original position after it 
has taken N steps? 

While this problem can be solved mathematically in closed form, the solution 
is somewhat complex (see Problem 4.18). It is far easier to write a simple computer 
program to predict the position. Given a position of zi after the ith step, the position 
after the (i + 1)th step is given by 
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where RND( ) is a random number between 0 and 1 and sign[ ] is a function that is 
equal to + 1 if the argument is nonnegative and - 1 otherwise. 

Figure 4.7 displays the results of six random walks starting at a position z,,. Note 
that the positions of the particles spread out with increasing number of steps. If we 
run, say, 1000 trajectories we can compute an accurate average for the root-mean- 
squared displacement from 2, as a function of the number of steps. This average for 
a typical calculation is shown in Figure 4.8, which demonstrates that the root-mean- 
squared displacement in units of .t' is equal to the square root of the number of steps. 

Number of steps 

/II Figure 4.7 

Random walks: the position as a function of the number of steps for six one-dimensional ran- 
dom walks. 

0 
0 5 10 15 20 25 30 

(Number of steps)112 

Figure 4.8 

Root-mean-squared distance traveled as a function of the square root of the number of steps for 
a one-dimensional random walk. 
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What we learn from this computer experiment (or from the more rigorous 
closed-form solution derived in Problem 4.18) is that molecular diffusion is just 
like a random walk in one dimension. Let the total time for N steps be equal to N 
times the average time per step, r: t = Nr or N = tlr. The observation from our 
computer experiment is that (z,,)~ = Nt2, or (z,,)~ = t(&)t. The expression 

is known as the Einstein-Smoluchowski eq~at ion.~  We can interpret it as follows. 
Note that tlr = <v>, the average velocity, so that z,, = [t<v>tI1". If we take the 
step size in the z direction to be that calculated in equation 4.8, we find that z,, = 
[(2/3)A<v>t]'", or, using equation 4.35, z,, = [2Dt]li2. This last equation is 
exactly what we have calculated in equation 4.43. 

In retrospect, it should come as no surprise that the one-dimensional random 
walk agrees with our diffusion calculation. Assumption 4 in Section 4.3.1 made the 
approximation that complete equilibrium is attained after every collision. When 
applied to the motion of molecules, this assumption means that there should be no 
preferential direction for the velocity after any collision. Thus, the assumption that 
leads to equation 4.43 and the assumption of a random walk are equivalent. Both 
are slightly in error when compared to the real situation, but both capture the essen- 
tial physical situation. 

4.8 SUMMARY 
By assuming that the motion of molecules is responsible for the transport of prop- 
erties such as heat, momentum, and concentration in gases, we have found how the 
constants K, 7, and D in the flux equations for these properties depend on micro- 
scopic molecular properties. The relationships were found by making four simpli- 
fying assumptions in Section 4.3.1 and by treating the motion of molecules using 
the kinetic theory developed in Chapter 1. We found that the flux of molecules 
across a surface is given by 

and that the average vertical distance between collisions is 2M3. Armed with these 
equations, we showed that when the gradient is constant in time, the flux of a prop- 
erty q in the vertical direction is given by 

Use of this equation with q equal to E, p,, or 1 gave equations for the following 
coefficients: 

Thermal Conductivity: 

eA. Einstein, Ann. d. Physik 17,549 (1905); 19, 371 (1906); M. v. Smoluchowski, Ann. d. Physik 21, 
756 (1906). 
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Viscosity: 

and Diffusion: 

It is important to remember that, although these equations capture the essential fea- 
tures of transport properties, the numerical coefficients are not quite correct. Those 
seeking more accurate formulas are referred to one of the texts listed in the reading 
list at the end of this chapter. 

When the gradient is not constant in time we found, using diffusion as an 
example, that the derivative of the quantity with time was proportional to the sec- 
ond derivative of the quantity in space: 

For a starting condition in which all the molecules have a specified z component 
at time zero, the root-mean-squared distance traveled as a function of time is 
given by 

zrms = ( 2 ~ t ) " ~ .  (4.43) 

Diffusion of molecules in a gas is analogous to a one-dimensional random walk. 

appendix 4.1 
The Poiseuille Formula 

Consider the flow of a fluid through a cylindrical tube of radius a whose axis is 
coincident with the x direction and which is subject to a pressure gradient along its 
length. The velocity of the fluid will be a function of the radial position r from the 
center of the tube. Molecules at r = a will be in contact with the surface of the tube 
and will have zero velocity in the x direction, while those in the center of the tube 
at r = 0 will have the largest velocity. The volume V of fluid passing a cross- 
sectional area of the tube per unit time is given by integrating the area of coaxially 
concentric shells of thickness d r  times the velocity in each shell: 

where 2 ~ r  dr is the area of the shell and u,(r) is the velocity in the x direction as a 
function of I: To perform the integration, we first need to determine vx(r). 

To evaluate the radial dependence of the velocity, consider a small cylindrical 
volume element of the fluid coaxial with the x axis, as shown in Figure 4.9. The 
cross-sectional area of the cylinder is 7.rl-2, and the length is dx. The pressure on the 
left side of the volume is p, while that on the right side is p - dp. When the pres- 
sure differential is constant in time, the velocity of the fluid through the cylinder will 
be constant; its acceleration will be zero. From Newton's law, zero acceleration 
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Figure 4.9 

The force due to the pressure differential is equal and opposite to the force due to the viscous drag. 

means that the total force on the fluid is zero. A fluid in the volume will thus accel- 
erate its flow in the +x direction until the force in the -x direction due to its vis- 
cous drag is exactly equal to the force due to the pressure differential. The force due 
to the pressure differential is the area times dp: F+, = 5-3 dp. The force in the -x 
direction can be calculated from the flux of momentum in the r direction, J, = 
-r)(dvJdr), so that F-, = J,A = -r)(duJdr)25-r dx, where A = 25-r dx is the sur- 
face area of the outside of the cylinder. Thus 

This equation can be integrated to give 

where C, the constant of integration, can be evaluated by the boundary condition 
that the velocity is zero at the wall of the cylinder: v,(a) = 0. The result is 

Figure 4.10 shows the velocity distribution predicted by equation 4.49. 

II Figure 4.10 

The velocity distribution of a fluid in a cylindrical tube. 



Problems 

We now substitute equation 4.49 into equation 4.46 and integrate: 

This last equation is simply the Poiseuille formula given in equation 4.27 with the 
pressure gradient in the x direction rather than the z direction. 

suggested readings 
R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry 

(Wiley, New York, 1980). 
J. 0 .  Hirschfelder, C. F. Curtiss, and R. B. Bird, Molec- 

ular Theory of Gases and Liquids (Wiley, New 
York, 1954). 

W. Kauzmann, Kinetic Theory of Gases (W. A. Ben- 
jamin, New York, 1967). 

E. H. Kennard, Kinetic Theory of Gases (McGraw-Hill, 
New York, 1938). 

problems 

L. B. Loeb, The Kinetic Theory of Gases 3rd ed. 
(Dover, New York, 1961). 

F. R. W. McCourt, J. J. M. Beenakker, W. E. Kohler, and 
I. Kuscer, Non-equilibrium Phenomena in Poly- 
atomic Gases (Clarendon Press, Oxford, 1990), 
Chapter 6. 

R. D. Present, Kinetic Theory of Gases (McGraw-Hill, 
New York, 1958). 

4.1 The coefficient of viscosity does not depend on the number of molecules per 
unit volume. Explain why not. 

4.2 The transport coefficients K ,  q, and D all increase as the square root of the tem- 
perature, and decrease as the square of the average molecular diameter. Explain 
why without reference to any formula. Of the three transport coefficients, K and 
D vary as 1 6 ,  whereas varies as 6. Why? 

4.3 The rate of a certain surface catalyzed reaction is proportional to the rate at 
which molecules hit the surface. The rate will increase with an increase in 
which of the following properties? (a) the mass of the molecules, (b) the 
velocity of the molecules, (c) the heat capacity of the molecules, (d) the num- 
ber density of the molecules, (e) the area of the surface. 

4.4 Consider a thought experiment in which horses are transported by molecules 
and suppose that the number of horses is proportional to the number of bushels 
of oats: H = kO. The transport coefficient relating the flux of horses to the 
gradient of oats depends on which of the following parameters? (a) the weight 
of the horse, (b) the velocity of the molecule, (c) the proportionality constant 
k, (d) the mean free path, (e) the speed of the horse. 
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Why is the coefficient of thermal conductivity larger for helium than that for 
argon? Why is the coefficient of thermal conductivity for N2 larger than that 
for argon? 

The viscosity coefficient of 0, is greater than that of CO,. Which molecule 
has the greater molecular diameter? 

How does the root-mean-squared distance traveled by a diffusing molecule 
vary with temperature? (a) not at all, (b) increases (c) decreases. How does 
it vary with pressure? (a) not at all, (b) increases, (c) decreases. 

Two bugs each execute a one-dimensional random walk with the same step 
size, but the second bug takes steps twice as often as the first. After a given 
time the second bug will be (a) twice as far from the origin as the first, (b) ~ times as far, (c) the same distance. 

In a tube of infinite length, consider the diffusion of molecules that start at 
z = zo at t = to. The concentration of molecules at a location different than 
zo (a) increases monotonically with time, (b) stays the same, (c) decreases 
monotonically, (d) increases then decreases, or (e) decreases then increases. 

If thermal conductivity is independent of number density, why is it advanta- 
geous to evacuate the region between the walls of a dewar flask? 

The thermal conductivity of silver is about 4 J K-l cm-' s-l. Calculate the 
heat flow in watts through a silver disk 0.1 cm in thickness and having 2 cm2 
area if the temperature difference between the two sides of the disk is 10 K. 

The heat capacity of N2 is about 20 J K-' mol-I and its diffusion coeffi- 
cient is 1.5 X m2 s-l. How much heat will be conducted in 1 s across 
a 1-cm space between two parallel plates 2 m2 in area if the plates differ in 
temperature by 5 K and the space between the plates is filled with nitrogen 
at 1 atm and 300 K? You may assume that the ideal gas law holds under 
these conditions. 

a. Calculate the coefficient of thermal conductivity for nitrogen at 303 
K. Assume that ,rrd2 for N2 is 7 X m2 and Cum = (512)R. 

b. In a double glazed window the panes are separated by 5 cm. What is 
the rate of heat transfer in watts from a warm room at 323 K to the 
cold exterior at 283 K through a window of area 1 m2? Assume that 
air has the coefficient of thermal conductivity calculated in part (a). 

c. To approximately what pressure in torr would one have to evacuate 
the space between the two windows before K would be decreased 
appreciably for the value calculated in part (a)? 

The self-diffusion coefficient of CO is D = 1.75 X m2 s-' at 273 K 
and 1 atm. The density of CO under these conditions is 1.25 kg mP3. Cal- 
culate the molecular diameter. 

The heat capacity of N2 is 20.9 J K-I mol-l, and its viscosity at room temper- 
ature is 1.7 X lop4 poise (1 poise = 1 g cm-' s-'). How much heat will be 
conducted in 1 s across a 1-rnm space between two parallel plates 10 cm X 
10 cm in size if the plates differ in temperature by 5 K and if the space 
between the plates is filled with N2 at 1 atm? 

Show by direct differentiation that equation 4.41 is the solution to equa- 
tion 4.40. 



Problems 

4.17 Write and test a computer program to.verify the general result, presented 
in Figure 4.8, that the root-mean-squared distance traveled in a one- 
dimensional random walk is proportional to the square root of the number 
of steps. 

4.18 The computer experiment on the random walk showed that the root-mean- 
squared distance traveled in a random walk is proportional to the square root 
of the number of steps taken. This result can be shown more rigorously by 
consideration of the following problem. 

a. Suppose a drunken sailor leaves a bar at closing time and executes a one- 
dimensional random walk in the z direction along the sidewalk. Enu- 
merate all the possible sequences of steps for which, after six steps each 
of length t ,  she could be at distances -6t, -4t, -2t, 0, 2t ,  4t ,  or 6 t  
from the doorway of the bar. 

b. Show that the probabilities obtained in part (a) agree with the following 
formula, which can be used to calculate the absolute value of the sailor's 
distance from the bar: 

n! 
P(z) = 

[1/2(n + s)]! [1/2(n - s)]! 2"' 

where n is the number of steps, s = zlt, and N! = N(N - 1)(N - 2) 
. . . (1). 

c. A very accurate approximation to N! for large N is given by Stirling's 
approximation: 

Use this approximation to show that 

[Hint: You will need to approximate ln(1 + x) = x - x2/2.] 
d. Substitute s = z/t, and let the number of steps n be given by the total 

time divided by the time per step: n = tlr, to show that 

(2T)'" ( z2r ) 
P(z,t) = - exp -- 

2tt2 ' 

e. Finally, compare the above equation with equation 4.41, letting zo = 0, 
to derive the Einstein-Smoluchowski relationship, equation 4.45. 
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5.1 INTRODUCTION 
Our goal in this chapter is to see what fundamental differences there may be 
between reactions in the gas phase and reactions in liquid solutions. We will see 
that, in most cases, the rate for a reaction in solution once the reactants have come 
together is comparable to that for the same reaction in the gas phase, but that the 
solution may control the rates at which the reactants come together or products sep- 
arate. In some cases, the solvent influences the reaction by providing a "cage" 
around the reactants and products. In other instances, particularly when the reaction 
involves charge displacement, the solvent may influence the reaction by differen- 
tially stabilizing the reactants, products, or the transition state. Finally, some reac- 
tions in solution occur on a very short time scale, so we will briefly investigate sev- 
eral experimental approaches to measuring their rate constants. 

In comparing a reaction in solution to the same reaction in the gas phase, we 
often find that the mechanism of the reaction is the same and that the magnitude of 
the rate constant is quite similar. These facts may at first seem surprising, since gas- 
phase reactions are based on individual bimolecular collisions, whereas the density 
in solution is so high that an individual reactant is usually in direct contact with 
more than one other molecule. Why then should the simple bimolecular picture be 
correct? The answer is that most reactions in solution do not involve the solvent, 
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and that the rate of bimolecular encounters between two reactants is not apprecia- 
bly different in solution than in the gas phase. A typical concentration in solution, 
say 4 X lo-, molar, corresponds to a high but not unreasonable concentration in 
the gas phase, approximately 1 atm, so that for reactions where the solvent is not 
one of the reactants, the rate of the reaction in solution is typically within an order 
of magnitude of the rate in the gas phase. Of course, for reactions where the solvent 
is a reactant, or for reactions involving solvated ions, the rate is obviously much dif- 
ferent in solution. For the most part, however, the solvent is simply something that 
crowds the reactants. 

5.2 THE CAGE EFFECT, FRICTION, AND 
DIFFUSION CONTROL 

5.2.1 The Cage Effect 

The difference then between a reaction in the gas phase and one in solution is much 
like the difference between a romantic encounter on an empty beach and one on a 
crowded dance floor. The romance of closeness is not appreciably changed by the sur- 
rounding solvent of dancers, but it is more difficult to find one another in a crowd, and 
correspondingly difficult to separate once the dance has ended. The solvent tends to 
slow the rate of approach of the reactants, so that they must diffuse toward one another 
through the solution, but it also keeps them together for many "collisions" once they 
come in contact. This latter phenomenon is often referred to as the cage effect. 

How difficult is it for products to escape the solvent cage? In an interesting 
experiment a molecular beam of I; surrounded by a varying number of CO, sol- 
vent molecules was subjected to a pulse of laser light. The light dissociates the I; 
to I + I-, but in a large enough cage of CO, molecules the I and I- cannot escape 
one another. When they recombine, the energy released, about 167 kJ/mol, is dissi- 
pated by evaporation of CO, molecules from the cluster, so that a smaller cluster 
with 1, at its core is detected. On the other hand, if the cage is small enough, the 
product I and I- can separate from one another, so that the cluster of 1,-(CO,), 
breaks up into two smaller clusters, one containing I- and one containing I. By 
measuring the size of I; and I- containing product clusters, Papanikolas et al. were 
able to determine the branching ratio of caged versus uncaged products. Figure 5.1 
displays the fraction of dissociations that underwent recombination due to the cage 
effect as a function of the size of the starting cluster. Whereas 6 CO, molecules do 
not form a large enough cage to contain the dissociated products, 16 CO, molecules 
cause complete caging. The fraction of caged products increases roughly linearly 
for cluster sizes between 6 and 16 CO, molecules. 

If it takes only 16 solvent molecules to cage products having 167 Wmol, one can 
easily imagine that a reactant pair, having much less initial translational energy, will 
be held by the cage for an appreciable number of bimolecular collisions. How can we 
describe in simple terms the forces in solution that are responsible for the cage effect? 

5.2.2 The Langevin Equation 

We consider a particle undergoing collisions in a liquid. Unlike the motion in a gas, 
the motion of liquid molecules cannot be presented in a closed-form solution. The 
mean free path, so useful in describing transport properties in gases, is undefined 
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n = 0 5 10 15 20 
Precursor 1; (C02)n 

Figure 5.1 

The cage effect for I; in CO,. 
From J. M. Papanikolas, J. R. Gord, N. E. Levinger, D. Ray, V. Vorsa, and W. C. Lineberger, J. Phys. Chem. 
95, 8028 (1991). 

in a liquid. Indeed, the concept of a "collision" loses meaning when solvent mole- 
cules are constantly in interaction with their neighbors. Transport properties still 
follow the macroscopic description outlined in Chapter 4, but the microscopic 
description cannot be described in terms of binary collisions. However, the situa- 
tion is not quite as intractable as one might expect, since with so many interactions 
it becomes relatively easy to describe the average behavior. This is the approach 
taken at the turn of the century by Paul Langevin for the motion of a Brownian par- 
ticle in a solution. 

Langevin's model for a macroscopic Brownian particle in solution is that, what- 
ever the particle's initial velocity, its average velocity decreases to zero with time 
because of the frictional forces in the fluid. To be sure, the particle is continually 
buffeted by collisions with the molecules of the fluid, but on average these collisions 
are random. The equation of motion for the Brownian particle is thus written as 

where v is the velocity of the particle, m is its mass, l is a coefficient of friction, 
and f(t) is a function that represents the random forces on the particle due to colli- 
sions with the fluid. 

Suppose we average over an ensemble of Brownian particles. The ergodic hypoth- 
esis of statistical mechanics assures us that such an average is equivalent to an average 
over time. On average, the forces on the ensemble of Brownian particles must vanish: 

<f(t)> = 0, (5.2) 

so that averaging both sides of equation 5.1 gives 
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The solution to this equation is found by straightforward integration: 

where < v > ~  is the initial average velocity. We see that the velocity decays expo- 
nentially with a time constant equal to mlJ. This process of velocity decay is called 
dissipation and describes how the directed velocity is transferred to the molecules 
of the fluid. 

Appendix 5.1 demonstrates that the Langevin equation, equation 5.1, can be 
solved to show that for times long compared to ml J the mean squared displacement 
of a macroscopic Brownian particle is given by 

Note that under these conditions, the Brownian particle suffers many collisions 
with the medium, and its mean squared displacement is determined by the friction 
coefficient J. 

We now make a connection with our previous study of diffusion in Chapter 4. 
We write a version of equation 4.43 for motion in the x direction as 

and then combine equation 5.5 with equation 5.6 by noting that x,, = <x2>lI2: 

It is thus clear that for motion in a liquid the diffusion coefficient is inversely pro- 
portional to the friction coefficient. 

Further insight comes from the work of Stokes, who showed that the frictional 
force on a spherical particle of radius a moving through a fluid is 

where q is the coefficient of viscosity. Thus, J = 6.rrqa, and 

These equations remind us that, for motion in a liquid, higher viscosity coeffi- 
cients are equivalent to higher friction coefficients and give rise to lower diffusion 
coefficients. It thus becomes clear that the forces that prevent particles from mov- 
ing freely in a fluid are the viscous or frictional forces. It is these forces that are 
responsible for the cage effect, which we recall can hold reactants together for a 
number of collisions. 

If the rate of reaction between a pair of molecules is high enough, it is possi- 
ble that the frictional forces responsible for the cage effect will hold the reactant 
pair together long enough that nearly every encounter between the pair will lead to 
reaction. Under such circumstances, the rate of the reaction is controlled not by the 
rate constant for an individual reactive collision between the pair of reactants, but 
rather by the rate at which they can encounter one another by diffusion. Reactions 
of this type are called diffusion-controlled reactions. 
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5.2.3 A Simple Model for Diffusion Control 

Since the rate of a reaction in solution is controlled partly by how fast the reactants 
encounter one another and partly by how fast they react once they make their 
encounter, we consider a mechanism for reaction in solution composed of the fol- 
lowing steps: 

where A and B are the reactants in solution, P represents the products, ken, is the 
rate at which A and B encounter one another, keSc is the rate at which the products 
escape the solvent cage, and k, is the rate at which they react when within the cage. 
The steady-state solution to this reaction sequence, which is very similar to the 
Michaelis-Menten and Lindemann mechanisms (Chapter 2), is simply 

Note that when the rate of reaction within the cage, k,, is very slow compared to the 
escape rate, then the first reaction will basically be at equilibrium, so that the over- 
all rate of the reaction will be given by (kenJkesc)k,. On the other hand, when the 
reaction within the cage is very fast compared to the escape rate, then the rate of 
the overall reaction is controlled by the rate at which the reactants encounter one 
another. Under such conditions, the reaction rate is called diffusion controlled, 
since the rate is limited by the rate at which reactants can diffuse toward one 
another. We will see below that for neutral particles this rate is proportional to the 
sum of the diffusion coefficients for A and B through the solvent and to the radius 
of the cage, R: ken, = 4rrR(D, + DB). For oppositely charged reactants, say A+ 
reacting with B-, there is an additional multiplicative factor due to the mutual elec- 
trostatic attraction. 

5.2.4 The Diffusion-Controlled Rate Constant 

We have seen in Section 5.2.1 that the solvent cage can have a substantial influence 
on reaction rates in solution. When the reaction within the cage is very fast com- 
pared to the escape rate, then the rate of the overall reaction is controlled by the rate 
at which the reactants encounter one another. Under such conditions, the reaction 
rate is called diffusion controlled, and it is now of interest to develop an expression 
for the overall rate of such reactions. Consider a simple model for this diffusion- 
controlled limiting rate constant in which species A reacts with species B every 
time the two approach one another to within their contact distance R, the sum of 
their two radii, as shown in Figure 5.2. 

We now briefly generalize to three dimensions the treatment of diffusion in 
Chapter 4. In three dimensions, the flux is related to the gradient of the concentra- 
tion: J = - DVc, where J is a three-dimensional vector, and V is called the gradi- 
ent operator. In Cartesian coordinates, V = i(dldx) + j(d/ay) + k(d/dz), with i, j, 
and k as unit vectors in the x, y, and z directions. In spherical coordinates, V = 
a,(dldr) + a,(llr)(dld8) + a,(llr sin 8)(dld+), with a,, a,, and a, as unit vectors in 
the c 8, and + directions. 
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II Figure 5.2 

In a diffusion-controlled reaction every reactant B that approaches to within a radius R of A 
will react. Reaction causes a gradient in [B] that gives rise to a flux of B toward A. 

Returning to Figure 5.2, since reaction will deplete the concentration of B 
around each A, the reaction itself will establish a concentration gradient, and this 
gradient will cause molecules of type B to flow toward those of type A. Let A(r,8,+) 
represent the spatially dependent concentration of A, and let B(r,8,4) represent the 
spatially dependent concentration of B. The three-dimensional vector representing 
the flux JA-B of reactants A and B toward one another is equal to the flux of B 
toward A due to concentration gradient, 

plus the flux of A toward B due to concentration gradient, 

-JA = DAVA(Y;@,$), (5.13) 

so that 

JA-B = -(JA + Je )  = (DA + D B ) V B ( ~ @ , + ) -  (5.14) 

In this last equation, we have assumed quite reasonably that VA(r,8,+) = 

VB(r,B,+), since the gradients in the two reactants are caused by the same effect, 
namely, the fact that A molecules around B are depleted by reaction and vice versa. 
Note that the gradient VB(r,B,+) is positive, so that our choice of sign gives that the 
flux JA-e is also positive, as it should be. 

Suppose that we have a mixture of reactants but that we prevent them from 
reacting. Their concentrations will then be the bulk, equilibrium concentrations; 
that is, B(r,8,+) = [B] and A(r,8,+) = [A], where B(r,8,$) and A(r,8,+) are the spa- 
tially dependent concentrations and [B] and [A] are the bulk ones, which we will 
assume to be constants. Now we imagine that the reaction is suddenly turned on. 
The concentration of A in the vicinity of B will decrease, and vice versa, so that a 
concentration gradient is formed. But after a short time, steady state will be 
approached, so that the flux of A and B toward one another will be constant. The 
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concentrations A(r,@,+) and B(r,0,+) at any position will also be constant. Under 
the assumption that every encounter leads to reaction, the flux of A and B toward 
one another will equal to the flux of products. Thus, at steady state 

Jmn = JA-B = (DA + DB)VB(~,~,+)  

= constant. (5.15) 

Now let us consider the steady-state mathematical solution. Following argu- 
ments that exactly parallel those in Section 4.7 (see equation 4.40), we find that 

We wish a solution to the rate constant for which the concentrations of A and B at 
any position are fixed in time, so that, at equilibrium, aB(r,O,+)ldt = 0. 

The coordinates most appropriate for considering the motion of the A-B pair 
are spherical coordinates, since the gradient in concentration and (we assume) the 
gradient in electrical potential depend only on the distance between the pair. Thus, 
B(r,8,4) = B(r). In spherical coordinates the operator V2, called the Laplacian, is 
given by 

Substituting equation 5.17 into equation 5.16 and recognizing that B(r) 
depends only on r and that dB(r)ldt = 0, we find that the solution for B(r) needs to 
obey the equation 

The solution to this equation, as may be readily verified by substitution, is 

where the constants c, and c, must still be determined from the boundary condi- 
tions. When the distance between A and B is sufficiently large, i.e., as r + w, B(r) 
must approach its bulk concentration, [B]. Thus, we find that c, = [B]. 

To evaluate c,, let us calculate the concentration of B at the distance R equal to 
the sum of the two radii. To do this, we examine in more detail the gradient caused 
by the reaction. Consider the flux of B into of a sphere of radius r centered on a 
particular reactant of type A, as shown in Figure 5.2. Every B flowing into the 
sphere eventually reacts with A at a distance R, where the concentration of B is 
B(R). Thus, the rate of the reaction is then just the flux of B, in number per time per 
area, times the area of the sphere times concentration of A: 

where [PI is the concentration of products, k, is the phenomenological rate constant 
we wish to determine (see Section 5.2.3), and 4n-13 is the area of the sphere around 
A at a distance z Combination of equations 5.15 and 5.20 leads to 
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In this equation [A] is constant (equal to the. macroscopic concentration), B(R) is 
constant (to be determined) and B(r) denotes how the microscopic concentration of 
B varies with distance. Division of both sides of the equation by [A16 and multi- 
plication by dr yields 

Finally, integration of both sides over dr from r = R to r = a gives 

In this last equation, we have used the fact that B(r = a )  is just the bulk concen- 
tration [B]. Comparison of the last line of this equation with equation 5.19 leads, 
after some algebra, to the conclusion that 

but we will have little use for this equation now that the last line of equation 5.23 
gives us an expression for B(R). Substitution of this solution for B(R) into equation 
5.20 gives 

Thus, when kr >> 4r(DA + DB)R, the overall rate constant for the reaction is 
given by 

We see that the rate constant, k, is then completely controlled by the encounter 
rate, k,,,, defined in Section 5.2.3; i.e., it is controlled by diffusion. In this limiting 
case, the reaction occurs instantly when the reactants approach to within their aver- 
age diameter R. Example 5.1 illustrates the utility of equation 5.26. 
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example 5.1 
Calculating Diffusion-Controlled Rate Constants 

Objective Given that the diffusion coefficient of many species in aqueous solu- 
tion is on the order of lop9 m2/s, calculate the diffusion limited rate 
constant for a pair of reactants whose average diameter is 2.0 nm. 

Method Use equation 5.26. 

Solution The rate constant should be k = 4v(DA + DB)R, with DA = DB 
and R = 2.0 nm. Thus, k = 4v(2 X lop9 m2/s)(2.0 X 
m/molecule)(106 cm3/m3)(6.02 X molecule/mol) = 3.0 X 1013 
cm3 mol-l s-I = (3.0 X 1013 cm3 mol-l s-I) (1 LIlOOO cm3) = 

3.0 X 101° L mol-I s-l. 

Equation 5.26 provides the diffusion-controlled rate constant in the case when 
the reactants are uncharged. When the reactants are ionic, the situation is somewhat 
more complicated because, in addition to the concentration gradient caused by 
reaction, there is also a concentration gradient caused by the attraction or repulsion 
of charged particles. A detailed examination, discussed in Appendix 5.2, shows that 

where 

and U(r) is the potential of interaction between the ionic reactants. Note that when 
U(r) = 0, the integration in equation 5.28 can be performed to yield /3 = R, and 
we recover equation 5.26 from equation 5.27. In general, this potential will be 
given for charged particles by U(r) = zAzBe2/er; where E here refers to the dielec- 
tric constant of the solution, zA and zB are the integer charges on the ions, and e is 
the magnitude of the charge on an electron. The integration in equation 5.28 then 
shows that 

where ro = e2/ekT and is equal to about 0.7 nm in water at 25OC. 

5.3 REACTIONS OF CHARGED SPECIES IN SOLUTION: 
IONIC STRENGTH AND ELECTRON TRANSFER 

As discussed in the Introduction to this chapter, most rate constants in solution are 
similar to those for the corresponding reaction in the gas phase, except when the 
rate of the reaction is limited by how fast the reactants can diffuse through the solu- 
tion. Another situation for which the solution-phase rate constant can differ sub- 
stantially from the gas-phase rate is when the reactants or the activated complex 
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interact strongly with the solvent. An example of such interaction is the electro- 
static stabilization of ionic reactants or complexes by the solvent. Two situations 
will be considered. In the first, we will examine the effect on the rate constant of 
additional ions in the solution, and we will find that the rate constant is influenced 
by the ionic strength of the solution. In the second situation we will see that even a 
neutral solvent can influence the reaction rate if the energy of solvation is substan- 
tially different for the reactants and products. An example of this second effect is 
when the reaction involves an electron transfer, either from one molecule to another 
or between two different sites on the same molecule. As the reaction proceeds, a 
dielectric solvent must rearrange its structure to attain the minimum energy, and 
this solvent reorganization will have an influence on the rate constant. How the rate 
constant varies with the solvent reorganization energy is the subject of Marcus the- 
ory, which we will briefly develop. 

We consider first the influence on reactions of solutions with high ionic strength. 

5.3.1 Reaction Rates and Ionic Strength 

It is well known that any ion in solution is stabilized by being surrounded by an 
ionic "atmosphere" of oppositely charged particles; this effect forms the physical 
basis of the Debye-Hiickel t h e ~ r y . ~  The stabilization increases with the square root 
of the ionic strength, I, = 2ciz:. The question we approach in this section is how 
to modify activated complex theory to account for the electrostatic interaction 
between reactants or activated complexes and the ions in solution. 

Our discussion of activated complex theory in Section 3.4 has assumed that the 
equilibrium constant between reactants and products can be written simply in terms 
of a ratio of concentrations. However, we know from our study of thermodynamics 
that equilibrium constants are actually related to activities rather than concentra- 
tions. To modify the ACT, we return to the fundamental assumptions in ACT 
embodied in equation 3.13, d[products]ldt = k,[ABB]. If we now write the equi- 
librium constant for A + B + ABS in terms of activities we obtain 

a* y* [AB*] K ' = - -  - 

Q A ~ B  YAY, [A] [B] ' 
so that 

The overall rate constant in equation 5.31 differs from that in our previous equa- 
tion equation 3.13 only by the multiplicative factor y,y,ly$. Let ko be the rate con- 
stant when all activity coefficients are equal to unity; in other words, let k, be the 
rate constant we have already evaluated by ACT. Then when the activity coeffi- 
cients are not equal to unity, the rate constant should be given as 

aPeter Debye was awarded the Nobel Prize in Chemistry in 1936 for his contributions to the under- 
standing of molecular structure through his investigations on dipole moments and on the diffraction of X-rays 
and electrons in gases. 
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For reactions in ionic solutions at low enough concentrations, we might reasonably 
assume that the Debye-Hiickel limiting law is valid: 

where zi is the charge on the species involved in the reaction, I, is the ionic strength, 
and A is a constant equal to 0.50 (L/m~l) l /~  for water at 25OC. Substitution of equa- 
tion 5.34 into equation 5.33 and realization that z' = z,  + zB lead to 

Note that equation 5.35 predicts that the logarithm of the rate constant should 
vary linearly with the square root of the ionic strength. In addition, reactions 
between ions of like charge should have rate constants that increase with 
whereas those between ions of unlike charge should decrease. This behavior is 
illustrated in Figure 5.3. 
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II Figure 5.3 

Effect of increasing ionic strength on the rate constant for reaction between ions of varying 
charges. Values of z,,z, are indicated. 
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The physical basis for these effects can be grasped by considering the change 
in apparent activation energy with increasing ionic strength. When unlike ions form 
an activated complex, the complex is less charged than the reactants and is thus less 
stabilized by increasing ionic strength than the reactants; the apparent activation 
energy increases so that the rate constant decreases. When like ions form an acti- 
vated complex, on the other hand, the complex has a higher charge than the reac- 
tants and is more stabilized by increasing ionic strength; the apparent activation 
energy decreases and the rate constant increases. This behavior of the rate constant 
with ionic strength is often called the primary salt effect. 

5.3.2 Electron Transfer Reactions: Marcus Theory 

Another situation in which the solvent can have a profound influence on the rate 
constant occurs when the energy of solvation differs substantially for reactants and 
products. This situation occurs frequently in electron transfer reactions, since as the 
electron moves from the donor site to the acceptor site the structure of the solvent 
must adjust to accommodate the new charge distribution. Since all oxidation- 
reduction reactions in solution involve the transfer of an electron, the determination 
of the rate constant for electron transfer reactions is an extremely important chem- 
ical problem. This problem has been considered in detail by Marcus," and we 
develop here a simplified derivation of his  result^.^ It can be shown that the more 
complete derivation gives the same answer in the limit when the distance between 
donor and acceptor sites never becomes too small. 

The overall reaction that we would like to consider can be symbolized by the 
following scheme: 

D + A + (DA) + (D+A-) + D+ + A-, 

where the species in parentheses represent having the donor and acceptor at a dis- 
tance short enough so that the electron can be transferred, and (DA) and (DfA-) 
represent this "contact pair" before and after transfer. In many oxidation-reduction 
reactions, the overall rate constant is limited by the rate for the electron transfer, so 
we will concentrate on this step of the process. In some cases, D and A are differ- 
ent sites on the same molecule, so that, again, the overall rate constant is deter- 
mined by the rate of the electron transfer. 

Consider an electron located on the donor molecule, which itself is surrounded 
by a number of solvent molecules. The energy of the electron will depend on the 
nuclear positions of all the atoms in the donor and solvent molecules, so that there 
will in general be 3N - 6 nuclear coordinates, where N is the total number of 
atoms. Under the assumption that the electron moves much more rapidly than the 
nuclei, the energy of the system can be adequately approximated by calculating the 
electronic energy for a each possible nuclear configuration. We now imagine how 
this energy varies along a particular coordinate, one of the 3N - 6 coordinates. The 
coordinate we will choose to examine is the reaction coordinate, the one whose 
nuclear displacements would lead along a minimum energy path from the nuclear 
configuration of (DA) to that of (D+A+). 

bR. Marcus, J. Chem. Phys. 24, 966 (1956); ibid., 24,979 (1956); ibid. 26, 867 (1957); ibid. 26, 872 
(1957); Disc. Farad. Soc. 29,21(1960); J. Phys. Chem. 63,853 (1963); J. Chem. Phys. 38,1858 (1963); ibid., 
39, 1734 (1963); ibid., 43,679 (1965). 

CI am grateful to Prof. A. C. Albrecht for providing this derivation and to M. Stimson for bringing it to 
my attention. 
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II Figure 5.4 

Energy dependence as a function of reaction coordinate for electron on donor or acceptor. 

When the electron is on the donor, the energy will be a minimum at a particu- 
lar location along the reaction coordinate; let us arbitrarily label this as position 
zero along that coordinate, as shown in Figure 5.4. The parabolic curve labeled 
"donor" shows how the energy of the system might vary with displacement when 
the electron is on the donor. If the electron were on the acceptor, the energy of the 
system would be different; its minimum will in general be at a different location, 
say x", along the reaction coordinate, and the energy of the minimum will differ 
from that of the donor by AGO, the free energy of the reaction. Note that, as drawn 
in the figure, AGO is negative (the products are more stable than the reactants), so 
that the positive energy difference between the minima of the two parabolas is 
-AGO. The parabolic curve labeled "acceptor" shows how the energy of the system 
might vary with displacement when the electron is on the acceptor. If we assume, 
as did Marcus, that the coupling between the donor and acceptor electronic energy 
states is weak, then the energy of the transition state will be given by the point of 
intersection between the two curves. The key to determining the rate constant for 
the reaction is to find the value of AGt in the figure. From equation 3.23, we know 
that the rate for the process is given simply by kET(T) = (kTlh)exp(-AG'lkT). 

We now suppose that the curves describing how the energy changes with posi- 
tion along the reaction coordinate can be approximated by parabolas, both for the 
donor and for the acceptor; i.e., we will assume that E = x2 for both  parabola^.^ It 
can be shown that this approximation is equivalent to the full theory developed by 
Marcus in the limit when the donor and acceptor sites are not too close together. Let 
us label by x' the reaction coordinate position where the donor and acceptor parabola 
intersect. From the point of view of the donor curve, the value of AG' is simply 
AGf = xt2 .  Let us also define Em = xU2 as the value, relative to its minimum, of the 

dActually, we need only assume that E a x2; e.g., E = Cx2 =  fix)^. The arguments given in the text 
are then appropriate provided that we then transform variables so that the reaction coordinate, now already 
plotted in arbitrary units, is plotted in units of fi times the current arbitrary unit. 
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acceptor parabola at the location of the minimum energy for the donor. This energy, 
called the reorganization energy, is the energy required to reorganize the nuclei of 
the acceptor and its surrounding solvent into the configuration of the donor and its 
surrounding solvent in the absence of back transfer of the electron. We now calcu- 
late the energy of the intersection point for the two parabola above the minimum 
energy for the acceptor. As measured from the bottom of the acceptor parabola, this 
energy is -AGO + AGf = (x" - x ' ) ~  = xw2 - 2xtx" + xt2. Substituting AG+ for 
xt2 and Em for xtt2, we obtain 

Finally, noting again that Em = xV2, we obtain the final result for G+: 

The rate constant for the electron transfer reaction is thus 

The form of equation 5.38 makes an interesting prediction about the rate con- 
stant for the reaction. If Em is large and 4G0 is positive or just slightly negative, 
then (Em + AGO) will be positive and the rate constant will be relatively small. Fig- 
ure 5.5 shows the positions of the parabolic curves for the same value of Em (the 
same displacement between the two parabolas) and for values of AGO ranging from 
positive in panel (A) to increasingly negative values in panels (B)-(D). In panel (A) 
AGO > 0, while in panel (B) AGO < 0; both panels have Em + AGO > 0. Thus, the 
rate should be small for panel (A) and a little larger for panel (B). As 4G0 becomes 
increasingly negative, eventually (Em + AGO) will become zero, and the rate con- 
stant will become a maximum; this situation is shown in panel (C) of the figure. If 
4G0 becomes even more negative, then E + AGO will be negative and its square 
will again increase. Equation 5.38 predicts that the rate constant will then actually 
decrease with increasing free energy change, -AGO. The reason why is shown in 
panel (D) of the figure, where it can be seen that the activation energy for the elec- 
tron transfer reaction has now increased. The region of free energy change over 
which the rate constant decreases as the reaction releases more free energy is called 
the "Marcus inverted region." 

That a rate constant should decrease with increasing exothermicity was quite 
counterintuitive at the time Marcus put forth his model, and the existence of the 
Marcus inverted region was in doubt for nearly thirty years until G. Closs, J. R. 
Miller, and their coworkers reported the confirming set of  experiment^.^ The results 
of their measurements are shown in Figure 5.6, which plots the logarithm of the 

eJ. R. Miller, L. T. Calcaterra, G. L. Closs, J. Am. Chem. Soc. 106,3047 (1984); G. L. Closs, L. T. Cal- 
caterra, N. J. Green, K. W. Penfield, and J. R. Miller, J. Phys. Chem. 90,3673 (1986); G. L. Closs and J. R. 
Miller, Science 240,440 (1988). 
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Reaction coordinate 

H Figure 5.5 

Intersecting donor and acceptor parabolas for increasingly negative values of AGO going from 
panels (A) to (D). Note that activation energy for the reaction is a minimum in panel (C), but 
that it increases in going from (C) to (D). 

1) Figure 5.6 

Intramolecular electron transfer rate constants as a function of free energy change. The transfer 
occurs from biphenyl anions to the eight acceptors attached at A in the structure shown. 
From G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield, and J. R. Miller, J Phys. Chem. 90, 3673 
(1986). Reprinted with permission from The Journal of Physical Chemistry. Copyright 1986 American Chem- 
ical Society. 
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energy transfer rate constant versus -AGO for a series of molecules consisting of a 
donor group separated from various acceptor groups by a rigid spacer molecule. By 
varying the composition of the acceptor and measuring the rate of electron transfer 
following pulse radiolysis to produce the radical anion, the authors were able to see 
how the electron transfer rate varied with increasing -AGO. As shown in the fig- 
ure, the rate did indeed decrease with increasing -AGO in accordance with the 
Marcus theory (solid line). Similar experiments were performed by other  group^.^ 
While the Marcus theory is now the accepted standard for electron transfer reac- 
tions,g it should be noted that this important area of chemistry is still one of active 
research. 

5.4 EXPERIMENTAL TECHNIQUES 
It should come as no surprise that some reactions in solution are very rapid. Reac- 
tions involving oppositely charged ions, reactions in which the solvent participates 
as a reactant, or reactions involving the motion of light particles such as protons or 
electrons might reasonably be expected to proceed quickly. For such rapid 
processes, which often occur more rapidly than the reactants can be mixed, special 
methods are necessary to determine reaction rate constants. 

5.4.1 The Temperature Jump Technique 

One method pioneered in the 1950s by Manfred Eigen and his coworkersh is a 
relaxation technique. In this method, the reactants start already mixed and in equi- 
librium with the products. Some property of the system that affects the equilibrium 
constant, for example the temperature or pressure, is then suddenly changed, and 
the concentration of a reactant or product is monitored as it changes to achieve its 
new equilibrium value. Figure 5.7 displays a typical apparatus for the so-called 
temperature jump version of the experiment. A power supply (PS) charges a capac- 
itor (C) to a high voltage. A triggered spark gap (G) then discharges the voltage 
through a cell, simultaneously starting the sweep of an oscilloscope and heating the 
reactantlproduct mixture by a few degrees Kelvin. A light source (L) supplies a fre- 
quency absorbed by one of the reactants or products, and this frequency is resolved 
by a monochromator (M), detected by a photomultiplier tube (PMT) and its inten- 
sity displayed on the oscilloscope. The resulting waveform is then analyzed to 
obtain the kinetic information. The best time resolution of such relaxation tech- 
niques is typically in the 100-ns regime. Table 5.1 gives a few protonation and 
deprotonation rates measured by this technique. 

How is the observed signal in this experiment related to the rate constants for 
the forward and reverse reactions? For simplicity, we first consider an opposing 
first-order reaction, A + B. Immediately after the perturbation, the concentrations 
of A and B are each displaced from their new equilibrium values by an amount we 

fM. P. Irvine, R. J. Harrison, M. A. Strahand, and G. S. Beddard, Ber: Bunsenges. Phys. Chem. 89,226 
(1985); M .  P. Irvine, R. J. Harrison, G. S. Beddard, P. Leighton, and J. K. M. Sanders, Chem. Phys. 104,315 
(1986). 

gR. Marcus won the 1992 Nobel Prize in Chemistry for his original work in this area. 
hM. Eigen, Disc. Farad. Soc. 17, 195 (1954). Eigen shared the 1967 Nobel Prize in Chemistry for his 

work in this area. 
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II Figure 5.7 

Schematic of apparatus used for temperature jump experiment. 

Protonation and Deprotonation Rates Measured by 
Relaxation Techniques 

Reaction kLM-l s -I) k,(s -9 
H+ + OH- -+ H20 1.3 x 10" 2.6 x 
H+ + NH, + NH+, 4.3 X 1O1O 24 
OH- + HCO; + H20 + CO; 6.1 X lo9 1.4 X lo2 
OH- + HPO-; + H,O + PO-; 2 x 109 3 x lo2 

will call x,. We have already seen in equation 2.51 of Section 2.4.1 that a system 
of opposing reactions displaced from equilibrium will relax exponentially with a 
time dependence given by the sum of the forward and reverse rate constants: A(t) = 
A, + x,exp[-(k, + k-,)t]. Thus, by measuring the relaxation rate and knowing the 
equilibrium constant, which is simply the ratio of the forward and reverse rate con- 
stants, one can determine the rate constants separately. 

For second-order or more complex reactions, the time dependence will be 
somewhat more complicated than that for the first-order reaction above, but for 
small displacements the system will relax exponentially toward equilibrium with a 
time dependence determined by the sum of the forward and reverse rate constants, 
each perhaps multiplied by a reactant or product equilibrium concentration. For 
example, Problem 5.3 shows that for the system A + B + C the result for the 
relaxation of A is A(t) = A, 4- x,exp{-[kLA, + Be) + k,]t). Example 5.2 shows 
how this result can be used to determine the rate constants for Hf + OH- + H,O. 

example 5.2 
I Calculating Rate Constants from a Relaxation Experiment 

Objective Find the forward and reverse rate constants for the recombination 
reaction OH- + H+ + H,O given that the equilibrium constant 
at 25°C for the reaction written in this direction is K, = [H,O]/ 
([H+][OH-I) = 0.51 X 1016 M-'. The OH- concentration is 
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observed to change from its original value to its new equilibrium 
value at this temperature exponentially with a time constant of r = 
36.8 ps. 

Method The observed rate is the reciprocal of the time constant, so 117 = 
kf([H+], + [OH-],) + k,. We also know K,, so we can both 
calculate the equilibrium concentrations and relate kf to k,: kflk, = 
K,. With two equations and two unknowns, we should be able to 
solve for both kf and k,. 

Solution First, notice that k, = &lKe and that [Hf] = [OH-] = ([H20]IKe)1n. 
Consequently, 117 = ll(36.8 X s) = kf{2([H20]lKe)1n + 
(IIK,)}; kf = 1/{2[(1000 glL)/(18 g/mol)(0.51 X 1016 M-1]112 + 
ll(0.51 X 1016 M-l)}{36.8 X ps} = 1.30 X 1Ol1 M-l S-l. 

Thus k, = kflKe = (1.30 X 10" M-I s-l)/(0.51 x 1016 M-l) = 
2.55 X s-I. 

5.4.2 Ultrafast Laser Techniques 

Even the relaxation techniques described above are not fast enough to measure 
some reaction rates in solution. A more recently developed method for measuring 
fast processes relies on the extremely short pulse durations available from modern 
lasers. Although this field is still developing rapidly, the current record for short 
pulse generation is a few femtoseconds (1 fs = 10-l5 s), substantially shorter than 
the time it takes molecules to vibrate. On such time scales, the reactants and sol- 
vent molecules stand still. Thus, even the fastest solution reactions occur on some- 
what longer time scales, those compatible with laser pulses in the picoseconds 
(1 ps = 10-l2 s) and nanosecond region. Such pulses can be used to clock the con- 
centration changes through a method generally known as the pump and probe tech- 
nique (for more detail on this technique, see Section 7.5.1). 

Figure 5.8 shows a schematic diagram for a typical pump-probe apparatus. A 
short pulse laser generates bursts of radiation. The light beam from this laser is 
then divided into two beams of different intensity using a partially transmitting 

Laser s 
II Figure 5.8 

I I 

Schematic diagram of the pump-probe 
technique using fast laser pulses to 

NL 

R probe reaction rates in solution. 

NL 

Detector 

/ 
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mirror (PTM), and each light beam is then converted to the desired wavelength by 
the use of nonlinear optical processes (NL). Because light travels roughly 0.3 mm 
in 1 ps, the pathlengths for the two beams can be adjusted so that the pulse of low 
intensity reaches the sample (S) after the pulse of high intensity. The delay time is 
scanned by translating the retroreflector (R). The pump pulse is used to initiate the 
reaction of interest, and the absorption of the probe pulse, proportional to the con- 
centration of a reactant or product, is monitored as a function of the position of the 
reflector (R). By such a technique one can measure the reaction rate on a picosec- 
ond or even femtosecond timescale (see Section 7.5.6). 

For example, the pump-probe technique has been used to investigate the iso- 
merization of 1-1'-binaphthyl, shown in Figure 5.9. The angle between the two 
naphthyl groups is changed by about 40" upon excitation from the ground to the 
first excited singlet state of this molecule. Since the molecule absorbs at a different 
wavelength in its excited state geometry, the reaction can be followed by exciting 
the first singlet state with one short laser pulse and observing as a function of time 
delay the increase in absorption of a second pulse tuned to probe the product. As 
one might expect, the time it takes to increase the dihedral angle between the two 
naphthyl groups depends on the surrounding solvent, which must be pushed out of 
the way as the geometry changes. Because the forces of friction dominate, the time 
for reaction varies with the viscosity of the solvent. Table 5.2 shows some typical 
experimental results and compares these to a theoretical result based on the fric- 
tional forces. Experiments such as this allow one to directly evaluate the role of 
friction in chemical reactions that we considered in Section 5.2.2. 

Figure 5.9 

1-1 '-binapthyl. 

Experimental and Theoretical Reaction Times for the lsomerization of 
I-1'-binapthyl in Solvents of Varying Viscosity 

Solvent Viscosity (cP)* Experimental Rise Time (ps) Theoretical Prediction (ps) 

Ethanol 1.08 12.2 t 1.0 12.2 
n-Propanol 2.23 13.7 -C 1.0 13.9 
n-Butanol 2.95 15.0 t 1.0 15.2 
n-Pentanol 4.33 17.6 + 1.0 17.7 
n-Hexanol 5.27 19.2 + 1.0 19.5 
n-Heptanol 6.90 24.0 2 2.0 22.9 
n-Octanol 8.95 27.0 + 2.0 27.4 

From D. P. Millar and K. B. Eisenthal, J. Chem. Phys. 83,5076 (1985). 

*1 poise = 0.1 N m-2 s 



Section 5.4 Experimental Techniques 

II Figure 5.10 

Solvation coordinate 

The change in electric dipole on excitation induces a change in the solvation. Emission from S, 
back to So can then be used to study the dynamics of the solvation. 
From R. M. Stratt and M. Maroncelli, J. Phys. Chem. 100, 12981-12996 (1996). Reprinted with permission 
from The Journal of Physical Chemistly. Copyright 1996 American Chemical Society. 

Another use of ultrafast lasers is to measure the solvation dynamics associated 
with the electron transfer reactions we considered in Section 5.3.2. Figure 5.10 
shows the principle. Suppose optical excitation from the ground singlet So to the 
first excited singlet S, results in a substantial change in the dipole moment of the 
molecule. The solvent cannot adjust to the change in dipole on the time scale of the 
excitation, nor is the geometrical arrangement of the solvent likely to be of the low- 
est energy configuration for the new electronic configuration. With increasing time, 
however, the solvent molecules will rearrange their orientation so as to stabilize the 
new dipole moment and lower the energy. 

Imagine now that one could resolve in time the emission from S, back to S,. 
Immediately after the excitation, emission would be at roughly the wavelength of 
the excitation, but as time progresses, the emission will occur to longer wavelengths 
as the energy on the upper potential surface approaches a minimum. Figure 5.11 
shows how the emission spectrum shifts to the red as time progresses from 0 to 50 
ps. The authors used a fluorescence up-conversion technique to obtain the subpi- 
cosecond time resolution. The fluorescence at a particular time delay and wave- 
length was combined with a probe laser pulse to produce a signal at the sum of the 
frequencies of the probe laser and the fluorescence. For a fixed delay between the 
probe laser pulse and the initial excitation pulse, the up-converted signal was then 
scanned in wavelength to generate a curve in the figure. The time delay between the 
probe pulse and the excitation pulse was then changed and the wavelength scan 
repeated to obtain the series of curves shown in the figure. Not surprisingly, differ- 
ent solvent molecules respond more or less rapidly depending on their dielectric 
constant. 
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Coumarin 153 
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II Figure 5.11 

The shift in the fluorescence spectrum of Coumarin 153 in formamide as a function of time fol- 
lowing excitation. The times are 0, 0.05, 0.1,0.2, 0.5, 1, 2, 5, and 50 ps, in order of decreasing 
peak intensity. 
From R. M. Stratt and M. Maroncelli, J. Phys. Chem. 100,12981-12996 (1996). Reprinted with permission 
from The Journal of Physical Chemistry. Copyright 1996 American Chemical Society. 

5.5 SUMMARY 
Reactions in solution are found to differ little from their gas phase counterparts 
when the solvent does not participate as a reactant. The principal difference is that 
the solvent molecules both prevent the initial approach of reactants and also form a 
cage around them when they finally encounter one another. The forces responsible 
for the cage effect are related to the friction coefficient, J, in the Langevin equation. 
Using Langevin's model, the diffusion coefficient D in the fluid can be related to 
the friction coefficient: 

If the reaction between reactants is facile when they are caged, then the reaction 
rate is often controlled by the rate at which the reactants can diffuse toward one 
another; the reaction is diffusion controlled. For such reactions, we found that the 
rate constant was given by 

where, for nonionic species, p is simply equal to R, the average diameter of the 
reactants. For ionic species, 

where rO = e2/ekT, with e here signifying the charge on an electron and E here sig- 
nifying the dielectric constant of the medium. 
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When a reaction involves charged species in solution, the solvent can influence 
the reaction by stabilizing differently the reactants, activated complexes, and prod- 
ucts. The influence on the reaction rate of the ionic strength of the solution can be 
understood by considering how the activity coefficients deviate from unity. When 
these deviations can be approximated by the Debye-Hiickel limiting law, then we 
obtain the following relationship between the rate constant and the ionic strength: 

where I, is the ionic strength and A is a constant equal to 0.50 (L1mol)ln for water 
at 25°C. When unlike ions form an activated complex, the complex is less charged 
than the reactants and is thus less stabilized by increasing ionic strength than the 
reactants; the apparent activation energy increases so that the rate constant 
decreases. When like ions form an activated complex, on the other hand, the com- 
plex has a higher charge than the reactants and is more stabilized by increasing ionic 
strength; the apparent activation energy decreases and the rate constant increases. 

A second situation where the solvent can affect the reaction rate constant is 
during electron transfer. Marcus has addressed the problem of how the activation 
energy for the reaction depends on AGO, the free energy of the reaction. By using 
an approximate derivation of his theory, we determined that the rate constant for the 
electron transfer reaction is given by 

where Em, called the reorganization energy, is the energy the donor would have in 
excess of the acceptor if it and its surrounding solvent were placed at the minimum 
energy configuration of the acceptor. This equation predicts that the rate constant 
for electron transfer will first increase with -AGO, that is as the products become 
more stable with respect to the reactants, but that it will then decrease as -AGO 
increases further. This latter region is called the Marcus inverted region. 

In the above examples, the solvent influences the stability of reactants, activated 
complexes and products, but it does not itself react. When the solvent does participate 
as a reactant, the reaction rates in solution are often large enough to require special 
experimental techniques for determination of the rate constant. Relaxation and ultra- 
fast laser techniques were briefly described as ways to measure rapid rate constants. 

appendix 5.1 
The Langevin Equation and the Mean Squared Displacement 

In this appendix we solve the Langevin equation, equation 5.1, for the root-mean- 
squared distance traveled by a Brownian particle. Noting that u = dxldt, we multi- 
ply both sides of equation 5.1 by x and rewrite it as 

d dx dx 
n u -  - = -(x- + xf(t). 

dt dt dt 

Since d d t  (x dxldt) = ( d ~ l d t ) ~  + x (dldt) (dxldt), we rewrite the first term: 
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We now take the ensemble average of both sides of the above equation. On the 
right-hand side, <xf(t)> = <x><f(t)> since we assume that the fluctuating 
forces are random and independent of position; note that <At)> = 0, as stated in 
equation 5.2. Thus, 

The last term is just m<v2>, which is equal to kT for a particle with one degree of 
freedom (in the x direction, as assumed here). The solution to the resulting differ- 
ential equation is then simply 

where the validity of the second step can be verified by differentiation. The con- 
stant A must be determined from the initial condition, which we take to be x = 0 
when t = 0 so that A = -(kTIC). We now write x(dx1dt) as i (dldt)(x2) and obtain 
the equation 

Integrating both sides of this equation gives the final expression for the mean 
squared displacement 

Let us now investigate two limiting cases for this formula. When t is short 
enough so that tlm << 1, then we can approximate the exponential by its first few 
terms: exp(-ltlm) = 1 - (6tlm) + i (Jtlm)2, so that 

This formula just tells us that on such short time scales, the rms displacement 
goes as (kTlm)lI2t, or that the particle just moves freely with its one-dimensional 
rms speed, (kTlm)lD. On this time scale, when t << ml6, the particle does not 
encounter the friction of the medium (note that the friction coefficient does not 
appear in equation 5.45). For a particle of water's density and a radius 100 nm 
moving in a fluid such as water, the time m/6 is about lop9 s. 

Now consider the case when t >> mI6. Under this condition, equation 5.44, 
reduces to 

This last equation is the long-time mean squared displacement. Note that the mean 
squared displacement is inversely proportional to the friction coefficient 6. 
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appendix 5.2 
Diffusion with an Electrostatic Potential 

For neutral species, motion is controlled by the response to a concentration gradi- 
ent, but for ionic species, motion is also affected by the electrostatic potential 
between the ions. Before proceeding to calculate the diffusion controlled rate con- 
stant, we digress briefly to consider how the diffusion equation, Jz = -D(dcldz), 
would need to be modified if species responded not only to a concentration gradi- 
ent but also to an electric field. 

An ion which is moving in a potential gradient V@ caused has a mobility p = 
vI(V@). Thus, the mobility is simply the proportionality constant between the 
velocity v and the potential gradient; the bigger the gradient, the faster the ion will 
move. If A and B, for example, are oppositely charged, the potential gradient 
between them will cause them to move toward one another, so that the flux toward 
one another will be increased. Since v is the velocity toward one another, the flux 
toward one another is increased by cv = cpV@, where c is the concentration. The 
general diffusion equation Jz = -D(dcldz) would then need to be modified to give 

where z is the charge on the ion and the factor zllzl is used to take care of the sign 
of the charge. The first term is the contribution to the flux due to diffusion, whereas 
the second term is the contribution due to the gradient of the electric field. 

At equilibrium in a solution, the overall flux at any point must be zero, so that 

Solution of this equation is relatively straightforward: 

dc - -  - 
C 

d@, 
lzl D 

where c0 is the concentration when the electric field is zero. We now assume that at 
equilibrium the concentration must obey the Boltzmann law: 

where the potential energy U of the ions in the field is given by U = ze@. 
Substitution of equation 5.51 into equation 5.50 and use of U = ze@ gives an 

equation that relates the mobility and the diffusion coefficient: 

Finally, substitution of equation 5.52 and U = ze@ into equation 5.47 gives 

J = - D  -+--  (a: ~cT:). 
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More generally, we recognize that the flux can have components in each of the 
three spatial dimensions, so that 

We now return to the development of Section 5.2.4 and generalize equation 
5.21 for the case of diffusion in an electrostatic field to obtain: 

In this equation [A] is again constant, B(R) is constant (to be determined), and B(r) 
denotes how the microscopic concentration of B varies with distance. 

We now rewrite the right-hand side of the last equation as 

Division of both sides of the equation by [A]?-exp[- U(r)lkT] and multiplication by 
dr yields 

Finally, if we define 

then integration of both sides of equation 5.62 over dr from r = R to r = co gives 

+ 4%-(DA + ~ ~ ) e ~ ( ~ ) ~ ~ ~  = 4r(DA + 4) [B] I 
[Bl 

(5.59) 
B(R) = , 

eU(R)/kT + kr 
4 4 D ~  + DB)P 

where U(r = m) has been assumed to be zero. Note that U(R) is very small, since 
the two ions are in contact, so that exp[U(R)lkT] = 1. Substitution of this solution 
for B(R) into equation 5.20 gives 

Thus, when k, > > 4r(DA + DB)P, the overall rate constant for the reaction is given 
by 

k = 4%-(DA + DB)P. (5.61) 

This is the equation given as equation 5.27. 
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5.1 For a diffusion-controlled reaction the rate constant depends on the size of the 
reactants both through R and through the diffusion coefficients. In solution the 
diffusion coefficient can be approximated by the Stokes-Einstein relationship, 
D = kT16ql; where q is the viscosity coefficient of the solvent and r is the 
radius of the diffusing species. For reactants of the same size, will the diffusion- 
controlled rate constant depend on the size? 

5.2 The reaction rate between species of charge + 1 and one of charge -2 will 
(a) increase, (b) decrease, or (c) remain constant with increasing ionic 
strength? 

5.3 For the mechanism 
kt 

A + B C  
k, 

show that in the limit of small perturbations the concentration of A relaxes to 
its new equilibrium value A, according to the equation A(t) = A, + x, exp 
{ - [k, (A, + Be) + k,]t), where x, is the initial concentration change between 
[A] and its equilibrium value; x, = A(t = 0) - A, = B(t = 0) - Be = C, - 
C(t = 0). 

5.4 The reaction between hydrogen peroxide and iodide has been investigated by 
F. Bell, R. Gill, D. Holden, and W. E K. Wynne-Jones in J. Phys. Chem. 55, 
874 (1951): H202 + 21- + 2H+ -+ 2H20 + I,. The reaction proceeds by two 
parallel mechanisms and leads to rate law 

- -- -d'H2021 - d[12' - kl[H202] [I-] + ~ [ H ~ o , ]  [I-] [HI]. 
dt dt 

The rate constants k ,  and k, are observed to vary with ionic strength in the 
fashion shown in the table. Are these data qualitatively and quantitatively con- 
sistent with the primary salt effect in equation 5.35? 
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5.5 Suppose that the critical distance for reaction of iodine with CCl, is 2 X 10-lo 
m and that the diffusion coefficient of iodine atoms in CCl, is 3.0 X m2 
s-I at 25°C. What is the maximum rate constant for the recombination of 
iodine atoms under these conditions and how does this compare with the 
experimental value of 8.2 X lo9 M-' s-I m easured by R. M. Noyes in J. Am. 
Chem. Soc. 86,4529 (1964)? 

5.6 Suppose that three ions, A with charge z,, B with charge z,, and C with charge 
zc react in a termolecular process. Derive an equation similar to equation 5.35 
to describe the primary salt effect on this reaction. 
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6.1 INTRODUCTION 
Systems of high surface-to-volume ratio play extremely important roles in life 
processes, industrial manufacture, and even geological change. The exchange of 
oxygen and carbon dioxide in our lungs or in green plants, the conversion of 
straight-chain hydrocarbons to aromatic compounds on a platinum catalyst, the for- 
mation of ClONO, on ice crystals responsible for the "ozone hole," and the reac- 
tions responsible both for the formation of soil and for the use of its mineral con- 
tent by living organisms are all due to chemical reactions that occur at the surface 
of a substance. 

In this chapter we examine the special kinetic behavior of systems reacting at 
surfaces. Our goal is to see how the kinetic principles we have developed can be 
used to understand the kinetics at surfaces. While we will focus on the solid-gas 
interface, much of what we will discuss is applicable as well at other important 
interfaces. We will start by considering the nature of the surface separating two het- 
erogeneous phases. Processes that occur at this interface are characterized by sev- 
eral steps: adsorption and desorption ontolfrom the surface, reaction at the surface, 
and diffusion along the surface. After considering a model of adsorption due to 
Langmuir, we will then investigate unimolecular and bimolecular reactions at sur- 
faces. As we will see, there are many parallels between the catalytic action of sur- 
faces and the catalytic action of enzymes, already studied in Chapter 2. We will 
next comment briefly on the nature of catalytic sites on surfaces and then discuss 
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surface diffusion in some detail. We end the chapter with a description of two 
important techniques for surface study: temperature programmed desorption and 
modulated molecular beam methods. 

Of course, the special feature of the gas-solid interface, or indeed of any sur- 
face, is that molecules can be exchanged there between two heterogeneous phases. 
A naive view of the surface dividing two phases is simply a flat layer of atoms, but 
detailed experiments have demonstrated that surfaces themselves have structure. 
Figure 6.1 shows a schematic model of a solid surface. Most of the atoms (or mol- 
ecules) on the surface are arranged in layers called terraces, but the terraces often 
have either adatoms or vacancies. Between the terraces are steps, often, but not 
always, of 1 atom. The steps themselves are not straight, but rather have kinks and 
step-adatoms. An image of an actual surface, taken by a technique called scanning- 
tunneling microscopy, is shown in Figure 6.2. This structure of surfaces is 
extremely important to kinetics, since the rate of a surface chemical reaction may 
vary by several orders of magnitude, depending on the number of steps or on the 
detailed arrangement of the atoms in the terraces. 

The arrangement of atoms on the terraces is, of course, related to the arrange- 
ment of atoms in the bulk. While it is beyond our current interest to investigate in 
detail the crystallographic designations for atomic arrangements in the terraces, it 
is important to note that different arrangements are possible and that the chemistry 
that occurs may be dramatically influenced by the structure of the surface. Figure 
6.3 shows a few commonly observed structures. 

This chapter will be concerned principally with the characterization of the kinet- 
ics of reactions at the gas-solid interface. Such reactions typically involve five main 
processes: flux of reactants to the surface, adsorption onto the surface, diffusion to 
reactive sites, reaction, and desorption of the products into the gas phase. 

The first process, the flux of reactants to the surface, has already been dis- 
cussed in Section 4.3.2, where we saw that the flux of molecules through a plane 
was given by equation 4.6: J,  = $ n*<u>, where n* is the concentration of the 
reactant and <v> is its average velocity. This flux times the surface area gives the 
number of reactants that strike the surface per unit time; it is an upper limit on the 
rate of the reaction. Example 6.1 shows that during an exposure of 1 langmuir (1 
L = lop6 ton-s) about as many molecules hit the surface per unit area as there are 
atoms on the surface. 

Monatomic 
Terrace step 

Kink 
I / Adatom 

It Figure 6.1 

Model of a solid surface depicting different surface sites. 
From G. A. Somorjai, Chemistry in Two Dimensions: Su$ace (Cornell University Press, Ithaca, NY, 1981). 
Reprinted with permission of Dr. G. A. Somorjai. 



III/ Figure 6.2 

A scanning-tunneling microscope image of an Si(001) miscut 0.5" toward [loo]. The surface 
steps down from left to right. 
Courtesy of M. G. Lagally; for a description of a similar figure see B. S. Swartzentuber, Y.-W. Mo, R. Kari- 
otis, M. G. Lagally, and M. B. Webb, Phys. Rzv. Lett. 65,1913 (1990). 

(1 10) plane A 

(100) plane 

B 
III/ Figure 6.3 

The surfaces of single-crystal metals correspond to planes drawn through the solid. A few sim- 
ple planes for body-centered cubic crystals are given in this figure. 
From R. Gomer, "Surface Diffusion," Scientific American, August, 1982. Reprinted by permission of Jerome 
Kuhl. 
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example 6. 
The Number of Molecules Striking the Surface during a 
1-Langmuir Exposure Compared to the Number of Surface Sites 
Objective A 1-langmuir (1-L) exposure is defined as an exposure of lop6 

ton-s. Assuming that the surface of interest is a square array of 
atoms separated by 4 A and that every atom provides an adsorption 
site, calculate the fractional coverage of the surface after an expo- 
sure to 1 L of a gas that adsorbs on the surface at each collision. 

Method The flux of the adsorbate to the surface is given by J = <v>n*. 
We need to calculate how many adsorbates hit the surface given a 
1-L exposure and to compare this to the number of adsorption 
sites. The latter number can be calculated from the number of 
atoms on the surface given the geometry of the surface layer and 
the spacing. 

Solution We are given that the exposure is 1 L = ton-s = n*At, where 
At is the duration of the exposure; thus n* = ton-s)lAt and 
JAt = $<u>(10-~ ton-s). Supposing C v >  to be around 500 m/s 
gives the number of molecules striking the surface during this 
exposure: JAt = (0.25)(500 m/s)(102 ~m/m)( lO-~ torr-s)(3.22 X 
1016 molec cm-3 ton-') = 4.0 X 1014 molec ~ m - ~ ,  where the last 
number in parentheses is the conversion factor from ton (11760 
atrn) to molecules cm-3 at 300 K. Now we need to see how many 
surface sites per cm2 are on the surface. The spacing between 
atoms is 4 A, so there are 1/(4 X = 6.25 X loi4 sites ~ m - ~ .  
Thus the coverage is roughly (4 X 1014)/(6.25 X 1014) = 0.64. For 
order-of-magnitude calculations, one often assumes that an expo- 
sure of 1 L gives unity coverage. 

The remaining processes have not been considered previously. Molecules in the 
gas phase must become adsorbed on the surface. They then typically migrate by dif- 
fusion to sites where they can react or where they can encounter another reactant. 
Following reaction, the products desorb from the surface into the gas phase. We will 
examine each of these processes in detail in the subsequent sections and end this 
chapter with a discussion of a few advanced topics for the study of surface reactions. 

6.2 ADSORPTION AND DESORPTION 
An early and important discovery in the history of surface catalysis was the obser- 
vation by Faraday that molecules must first become attached to, or adsorb on, a sur- 
face before they can react.a The mutual attraction between an approaching molecule 
and a surface can be attributed to two types of interactions. In the first, called 

"M. Faraday, Philos. Trans. 124,55 (1834). 
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physisorption, the attraction is due to the weak van der Waals or dispersion forces. 
Although, in the general case neither the molecule nor the surface atom will have 
an average dipole moment, the instantaneous positions of the nuclei and electrons 
will give rise at any time to dipole moments on the molecule and on the surface 
atom. The attraction between these instantaneous dipole moments leads to the force 
responsible for physisorption. The strength of the physisorption bond is typically 
less than 20 kJ mole-l. 

In the second type of adsorption, called chemisorption, the molecule is 
attracted to the surface by the same forces that are present in a normal chemical 
bond, with strengths of 300-500 kJ mole-l. Just as in a normal chemical reaction, 
a barrier to chemisorption is frequently observed. 

Figure 6.4 shows a simplified view based on the ideas of Lennard-Jonesb of the 
potential energy V(R) between an approaching molecule and a surface atom as a 
function of the molecule-surface distance R. Curves are shown for both the physisorp- 
tion and chemisorption bonds. At infinite separation, the physisorbed molecule is 
free of the influence of the surface; it is customary to define this state as the zero 
of potential energy. Note that the physisorption bond is rather weak and that its 
minimum occurs at larger separation compared to the chemisorption bond. Note also 
that the chemisorption curve is shown as having its energy at infinite separation 
somewhat higher than the zero of potential energy. This is because chemisorption 

, , Physisorbed 

I __-------- 
I 
I 
I '  BarrierbelowV=O 
I '  
r' - 

S I > 

Chemisorbed 
Physisorbed 

I 

I I 

Barrier above V = 0 

II Figure 6.4 

Potential energy curves for chemisorption and physisorption. In (A) the transition from 
chemisorption to physisorption occurs over a barrier which lies below the energy of infinite 
separation, while in (B) the barrier lies above this energy. Chemisorption in case (B) is said to 
be activated. The depth of the physisorbed well is exaggerated in the figure compared to the 
depth of the chemisorbed well. 

bJ. E. Lennard-Jones, Trans. Farad. Soc. 28,333 (1932). 
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typically involves a rearrangement of the structure of the adsorbed molecule. If the 
adsorbed molecule is pulled away from the surface but frozen in structure, its poten- 
tial energy will generally be higher than that of the free molecule. 

It is typical that to pass from the physisorbed state to the chemisorbed state, the 
system must overcome a potential barrier. As shown in the figure, this barrier cor- 
responds to the crossing between the physisorption and chemisorption potential 
energy curves. If the barrier is above the energy corresponding to infinite separa- 
tion (taken as the zero of energy in the figure), then the chemisorption is said to be 
activated; energy must supplied for the chemisorption reaction to take place. If the 
barrier is below the energy corresponding to infinite separation, the reaction can 
proceed even if the molecule approaches the surface with nearly zero kinetic energy. 
Of course, this one-dimensional picture is highly simplified, since the potential of 
interaction will depend not only on R but also on the orientation of the molecule 
and on the specific site on the surface which it approaches. 

6.2.1 The Langmuir Isotherm 

It was Irving Langrnuir who first studied the adsorption process q~antitatively.~ In 
the simplest model, we suppose that molecules can adsorb only at specific sites on 
the surface, and that once a site is occupied by one molecule, it cannot adsorb a sec- 
ond molecule. The adsorption process can then be represented as 

A + S + A-S, 

where A is the adsorbing molecule, S is the surface site, and A-S represents an A 
molecule bound to the surface site. In a similar way, the reverse desorption process 
can be represented as 

A-S + A + S. 

If [A] is the concentration of molecules and if 8 is the fraction of the surface sites 
covered by A, then in the Langmuir model the rate of adsorption is proportional to 
ka[A](l - 8), while the rate of desorption is proportional to kd8, where ka and kd are 
the rate constants for the two processes. At equilibrium we know that the rates of 
the two processes are equal, so that 

Denoting K = kalkd and solving for the fraction of occupied sites, we obtain the 
Langmuir adsorption isotherm: 

Note that equation 6.2 predicts that the fraction of occupied sites should increase 
linearly with [A] when [A] is low enough so that K[A] << 1, while it should 
approach unity when [A] is large enough so that K[A] >> 1. This behavior is 
demonstrated in the plot of 8 versus [A] shown in Figure 6.5. 

CI. Langmuir, J. Am. Chem. Soc. 38,221 (1916); 40, 1361 (1918). Langmuir won the Nobel Prize in 
Chemistry in 1932 for this work. 
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II Figure 6.5 

The surface coverage as a function of adsorbate concentration for the simple Langmuir model. 

A somewhat different situation occurs if, as is often observed, the adsorbing 
molecule dissociates when it chemisorbs. In this case, each dissociated molecule 
occupies two sites rather than one. A detailed consideration of this situation is out- 
lined in Problem 6.6. 

6.2.2 Competitive Adsorption 

When two or more species can occupy the same sites on a surface the situation 
becomes more interesting. Let one species A have fractional surface coverage 8 ,  
and let a second species B have coverage 8,. Then the rates for adsorption of 
species A and B are k t ( l  - 8 ,  - &)[A]  and kf(1 - 8, - 8,)[B],  respectively, 
since in each case the rate of adsorption is proportional to the fraction of free sites 
( 1  - 8 ,  - 0,). Similarly, the rate of desorption in each case is proportional to the 
number of sites occupied by each species. For A and B these rates are k t @ ,  and 
k,B8,, respectively. At equilibrium the rates of adsorption and desorption for each 
species must be the same, so that, denoting K, = k t l k t  and KB = kflk:, we find 

and 

Equations 6.3 and 6.4 are two simultaneous equations in the variables 0 ,  and 8, 
that we would like to know. After a little algebra, we find that 
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and that 

Note that if the product of K and the concentration for one of the species, say A, is 
much higher than for the other, then the surface coverage of the other, B in this case, 
will be reduced. This is because both species are competing for the same sites on 
the surface. In the extreme limit when KA[A] >> K,[B], B will be almost totally 
excluded from the surface, while the surface coverage of A will approach the value 
it would have in the absence of B; in this limit equation 6.5 reduces to equation 
6.2. The situation is analogous to the competitive inhibition in enzyme catalysis 
that we encountered in Section 2.5.2. 

6.2.3 Heats of Adsorption 

It is instructive to consider the equilibrium between adsorption and desorption 
in light of thermodynamics. From the Clausius-Clapeyron equation we know 
that the quantity [d ln(PAIP~)ld(l/T)],,,,,,, gives a measure of the heat of 
adsorption: 

where P i  is a reference pressure (normally one atmosphere) and AHad is the molar 
heat of adsorption. Because AHad = A(E + pV),,, we find AEad = AHad - A(pwad. 
For an ideal gas, A('V),, = AnRT = -RT, so AEad = AHad + RT. 

Figure 6.6 shows the heat of adsorption in kcaVmole for CO on various poly- 
crystalline transition-metal surfaces. 

Figure 6.6 

Heats of adsorption of CO on polycrystalline transition-metal surfaces. 
From G. A. Somorjai, Chemistry in Two Dimensions: Surjaces (Cornell University Press, Ithaca, NY, 1981). 
Reprinted with permission of Dr. G. A. Somorjai. 
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6.3 REACTIONS AT SURFACES: CATALYSIS 
Having considered in detail the processes of adsorption and desorption, we now 
turn to overall reaction mechanisms for surface reactions. In what follows, we 
assume that the overall mechanism consists of adsorption and desorption of the 
reactant(s) followed by reaction on the surface. We will assume for the moment 
that diffusion on the surface and desorption of the products are rapid enough not 
to be rate limiting. Diffusion on the surface will be treated in more detail in Sec- 
tion 6.4. 

Overall reactions at surfaces, like those in the gas phase, can be categorized by 
the order of the reaction, and, as in the gas phase, the order for an elementary step 
is equal to the molecularity. 

6.3.1 Unimolecular Surface Reactions 

A unimolecular elementary step in a reaction at a surface is one whose rate is first 
order in the surface coverage of the reactant, 0: 

where P is the product of the surface reaction and the last equality follows from 
equation 6.2. Note that the order of the overall reaction depends on the condi- 
tions. Thus, for low values of K[A], the reaction rate increases linearly with [A] 
because adsorption is the rate limiting step; the reaction is first order in [A]. 
However, at high values of K[A]  where the surface is saturated with A, the rate 
of the reaction becomes zero order in [A] and depends only on the rate constant 
k. This situation is analogous to the enzyme catalyzed reaction studied in Sec- 
tion 2.5.2. 

An example of a unimolecular surface reaction is the decomposition of ammo- 
nia on platinum to give nitrogen and hydrogen at temperatures where both products 
desorb rapidly. (Under conditions where N, desorbs rapidly but H, does not, the 
reaction rate is still first order in NH, but is inversely proportional to [Hz]; see Prob- 
lem 6.7.) Example 6.2 shows that dehydrogenation of alcohols at surfaces is also a 
unimolecular reaction. 

example 6.2 
Dehydrogenation of Alcohols 

Objective The dehydrogenation of gaseous alcohols, RCH,CH,OH, to give 
an olefin, RCH2=CH2, plus water on many metal oxides pro. 
ceeds rapidly at 300°C. If the rate of olefin production is 1013 
molec s-I cm-2 of surface area at an alcohol pressure of 1 tom, and 
the rate constant for the reaction is k = 1014 molec s-I ~ m - ~ ,  what 
would the rate of the reaction be for an alcohol pressure of 2 ton? 

Method From equation 6.8, we see that d[P]ldt = k0 = k{K[A]I(l + 
K[A])}, where [A] represents the concentration of alcohol. We are 
given d[P]ldt as 1013 molec s-I cmF2 and k as 1014 molec s-l 
crnp2, so we need to see how {K[A]I(l + K[A])} changes as [A] 
goes from 1 to 2 torr. 
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Solution At 1 ton {K[A]I(l + K[A])} must be 0.1 from the fact that d[P]ldt 
is 10 times smaller than k, so K[A] = O.1(1 + flA]), or 0.9K[A] = 

0.1, or K[A] = for [A] = 1 torr. If we double [A] to 2 ton, then 
K[A] = $, or {K[A]I(l + K[A])} = $41 + $) = 0.182, whereas 
for 1 torr this value was 0.1. Thus the rate increases by a factor of 
1.82 to 1.82 X 1014 molec s-I cmW2. 

6.3.2 Bimolecular Surface Reactions 

For most bimolecular surface reactions, the reaction rate is proportional to the prod- 
uct of the surface coverages of the two  reactant^:^ 

where the last equality follows from equations 6.5 and 6.6. For a constant gas- 
phase concentration of [B], the rate of the reaction will at first increase linearly with 
[A]. In this region, the adsorption of A is the rate-limiting step in the reaction. As 
[A] is increased further, the reaction rate will reach a maximum and then finally 
decrease as l/[A]. In this last region, the rapid adsorption of A prevents B from 
reaching the surface. Figure 6.7 contrasts the overall rate of the reaction as a func- 
tion of [A] for a unimolecular and bimolecular reaction process. 

An example of a bimolecular surface reaction is the addition of hydrogen to 
conjugated hydrocarbons, such as ethylene. Another example is the exchange 
between D, and NH,, as described in Example 6.3. 

example 6.3 
1 HLD Isotope Exchange in Ammonia 

Objective The exchange between D, and NH,, on an iron catalyst at 150°C 
has been found to exhibit a peak in the rate of NHzD production 
as the concentration of NH, is increased. Suggest why. Ammonia 
is known to bind to iron more strongly than deuterium, and deu- 
terium is adsorbed as atomic D. 

I Method 
Consider Figure 6.7 and equation 6.9 in the limits of low and 
high [NH,]. 

dThe situation described in the text is called the Langmuir-Hinshelwood model for a bimolecular reac- 
tion, for which both species must be adsorbed on the surface before they can react with one another. An alter- 
native bimolecular model known as the Eley-Rideal mechanism involves the direct reaction of a gas-phase 
molecule with an adsorbed one, for which d[P]ldt = kB,[B]. Only a very few reactions are thought to pro- 
ceed by the Eley-Rideal mechanism (see Problem 6.12). In reality, the Langmuir-Hinshelwood and Eley- 
Rideal models are two limiting cases; most reactions will have a mechanism somewhere between these two 
extremes. 
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Solution If K,,[NH,] is larger than K,P], then the numerator of the right- 
hand side of equation 6.9 will be proportional to [NH,], whereas 
the denominator will be proportional to (1 + K,,~{[NH,]}~. ~ h u s ,  
d[NH,D]/dt oc [NH,]/{l + K,,,{[NH,]}~. This function is pro- 
portional to [NH,] at low concentrations (where KNH,[NH3] << 1 ), 
but inversely proportional to [NH,] at high concentrations, so the 
function must have a maximum at some intermediate ammonia 
concentration. 

6.3.3 Activated Complex Theory of Surface Reactions 

Activated complex theory, discussed in Chapter 3 in connection with gas-phase 
reactions, is equally applicable to surface reactions. The only reinterpretation 
necessary is that the partition functions for species on the surface are now parti- 
tion functions per unit surface area rather than per unit volume. Thus, following 
equation 3.17, the rate constant for adsorption of a gas-phase molecule on a sur- 
face, G + S + [G-sIS + G-S, is 

where qg is the partition function (per unit volume) of the free gas, q, is the parti- 
tion function (per unit area) of the unoccupied surface site, and qt' is the partition 

[A] (for fixed [B]) 

II Figure 6.7 

Overall rate of (A) first-order and (B) second-order surface reactions as a function of the gas- 
phase concentration of one of the reactants. In (B) the second reactant has been held at fixed 
concentration. 
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function (per unit area) of the activated complex, omitting the degree of freedom 
along the reaction coordinate. It is usually assumed that the partition function for 
the unoccupied surface site (involving only internal motions of the solid surface) is 
unchanged by the adsorption, so that the ratio of q" to q, depends only on the inter- 
nal degrees of freedom of the activated complex. Problem 6.9 shows that equation 
6.10 reduces to k = $ < v >  under certain limiting assumptions about the activated 
complex, confirming that the rate of collisions of molecules with the surface, kn* = 
1 s n*<v>, is an upper limit on the rate of adsorption. 

In a similar manner, activated complex theory gives the rate constant for a uni- 
molecular elementary step in a surface reaction, A +A* + with A and AS as both 
adsorbed species: 

where q, is the partition function per unit area of the adsorbate A and q*' is the par- 
tition function per unit area of the activated complex, omitting the degree of free- 
dom along the reaction coordinate. 

For a bimolecular elementary step between two adsorbed species in a surface 
process we likewise obtain 

with similar interpretations for the partition functions. 

6.3.4 The Nature of Surface Catalytic Sites 

It has long been assumed that the catalytic nature of solid surfaces is due to "active 
sites" where reaction proceeds preferentially due to a structural feature that can 
help in some way to lower the barrier between reactants and products. H. S. Tay- 
lore was the first to propose that defect sites (steps, kinks, adatoms, etc.), where 
low-coordinated surface atoms have unsaturated valencies, are most effective in the 
catalytic process. However, it is only recently that direct evidence for this thesis has 
been obtained. Zambelli et al.f examined the dissociation of nitric oxide on a ruthe- 
nium(0001) surface using scanning-tunneling microscopy and found from the dis- 
tribution of nitrogen atoms after the reaction that the steps between terraces were 
responsible for the catalysis. Figure 6.8 shows an image of the Ru(0001) surface 
with two terraces separated by a step. The left terrace is the upper terrace, and the 
step is along the dark line in the center of the diagram. The gray spots are nitrogen 
atoms, and it is noticeable in the image that the density of these atoms decreases 
with increasing distance from the step. This density distribution is exactly what 
would be expected if reaction occurs at the step edge. More detailed analysis of this 
and other images showed that the Ru atoms on the upper level of the step were 
responsible for the dissociation. 

Not all surface reactions occur at steps, but there is usually some feature of the 
surface that is most responsible for the catalysis. Since the "active sites" are not 
likely to be at the location where a molecule first adsorbs, it is clear that diffusion 
to and from the active sites must play an important role. We thus examine surface 
diffusion next. 

eH. S. Taylor, Proc. R. Soc. London Se,: A 108, 105 (1925). 
fT. Zambelli, J. Wintterlin, .I. Trost, and G. Ertl, Science 273, 1688-1690 (1996). 
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Figure 6.8 

A scanning-tunneling microscopy image of a Ru(0001) surface after the dissociative adsorption 
of 0.3 langmuirs of NO at 315 K. The dark line in the center of the image is a step separating 
two terraces, with the upper one on the left. The gray dots are nitrogen atoms, while the darker 
and broader spots are islands of oxygen atoms. Note that the density of nitrogen atoms 
decreases with distance from the step. 
Reprinted with permission from T. Zambelli, et al., Science, 273, 1688-1690. Copyright O 1996 American 
Association for the Advancement of Science. 

6.4 SURFACE DIFFUSION 
Most surface reactions involve diffusion following adsorption. In the case of uni- 
molecular reactions, the surface adsorbate might need to diffuse to an active site- 
a kink or step, for example. In the case of a bimolecular reaction, the two adsor- 
bates must diffuse to a common location where they can react to give products. 

From the macroscopic point of view, a minor reinterpretation of equation 4.40 
(see Section 4.7) gives us the connection between the diffusion coefficient, D, and 
the change in concentration with time and space: 

where n*(x,t) is now the number of adsorbates per unit area as a function of posi- 
tion and time, and D is the diffusion coefficient in units of area per time. Thus, if 
one can measure the surface concentration in the presence of a gradient as a func- 
tion of position and time, one can deduce the diffusion coefficient. In the absence 
of a gradient, molecules on a surface execute a random walk, so that the diffusion 
coefficient can be determined by the root-mean-squared distance the adsorbate trav- 
els in a given time. Following equation 4.43, this distance is given as 

Several techniques have been developed for determining the rates of surface 
diffusion. Perhaps the most dramatic is the field emission microscope, developed in 



Chapter 6 Reactions at Solid Surfaces 

Figure 6.9 

Field ion images showing the diffusion of an Ir adatom on an Ir surface. The dot near the center of 
each photograph is the image of the Ir adatom. 
Reprinted with permission from T. T. Tsong, Physics Today, 46,24 (1993). Copyright American Institute of 
Physics, 1993. 

the 1930s by E. W. Miil1er.g In this technique, a highly magnified image of a pointed 
metallic sample is formed on a fluorescence screen by field ionization of (typically) 
helium atoms. The ionization is most efficient at regions of high curvature on the tip 
surface, which, like lightning rods, have the highest field when the tip is held at a 
negative potential with respect to the fluorescence screen. Since atoms adsorbed 
onto the tip provide a highly curved surface, ions are very effectively produced at 
these locations; the adatoms show up as an intense spot on the screen. 

Motion of the adatoms can be followed by examination of images taken at dif- 
ferent times. For example, Figure 6.9 shows several images of an Ir adatom on an 
Ir surface. By measuring the root-mean-squared displacement of the adatom as a 
function of time, it is then possible to determine the diffusion coefficient through 
equation 6.14. Diffusion coefficients measured in such studies of single atoms on 
metal surfaces range from about 1 X to 3 X lop5 in units of m2 s-'. 

It is interesting to compare the magnitude of diffusion coefficients on a surface 
to those of molecules in the gas phase. From Table 4.4 we see that coefficients for 
gas-phase molecules have magnitudes of 1 X to 2 X lop4 m2 s-'. Thus, dif- 
fusion is much slower on a surface than in the gas phase. A key to why this is true 
comes from the temperature dependence. Whereas diffusion in gases has a very 
weak temperature dependence, diffusion on surfaces increases dramatically with 
temperature. From the microscopic point of view, the reason for this behavior lies 
in a potential energy barrier between adjacent preferred adsorption sites, as shown 
in Figure 6.10. Experimentally it is found that the temperature-dependent diffusion 
coefficient is given by D(T) = D,exp(-AEm/kT), where AE, is the barrier to dif- 
fusion and Do is a constant. Typically, AE, is found to be about one quarter of the 
energy required for desorption. From a microscopic point of view, Do may be inter- 
preted from a rearrangement of equation 6.14: D = $x&/t. Thus, the diffusion con- 
stant is given as + times the product of the rate of hopping attempts, llt, times the 
square of the average distance per hop, xk,. 

II Figure 6.10 
- e 

Potential energy V(x) as a function of lat- 
eral surface displacement x for a mole- 
cule diffusing on a surface. The barrier to 
migration due to diffusion, AE,, is typi- 
cally one quarter of the barrier to desorp- 
tion, AE,. 

gE. W. Miiller, Ergeb. Exakten Natuwiss. 27,290 (1953); R. H. Good, Jr., and E. W. Miiller, Handbuch 
der Physik, S. Fliigge, ed., 21, 176 (1956). 
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example 6.4 
Estimating the Surface Diffusion Coefficient of CO on Iron 

Objective Estimate the diffusion coefficient for CO on iron at 300 K given 
the heat of adsorption from Figure 6.6 and the knowledge that 
adjacent sites are separated by 1.0 nm. 

Method The diffusion coefficient should be one half the product of a hop- 
ping attempt frequency times the square of the hop length times a 
Boltzmann factor accounting for AE,. As an estimate, we may take 
AE, to be about 0.25AEa, which, from the figure is about (0.25)(50 
kcallmol). The hopping attempt frequency may be approximated 
by a low vibrational frequency, about 1.5 X 1012 s-'. 

Solution The diffusion coefficient is then given by D = (0.5)(1.5 X 1012 
s-')(1.0 X lop9 m)2exp{ - [(0.25)(50 X lo3 cal/mo1)(4.184 
J/ca1)/(8.314 J K-' mol-')(300 K)]} = 0.7 X lop6 m2 s-'. 

So far we have considered molecular diffusion on a bare surface, i.e., in the 
limit of zero coverage. When molecules of either the same or another type partially 
cover the surface, the diffusion coefficient will be different than that on a bare sur- 
face. First of all, fewer sites are available to which the molecules can jump. Sec- 
ond, the lateral interactions between molecules at adjacent sites may affect the rate 
at which the migration takes place. Measurement of diffusion coefficients as a func- 
tion of coverage is a field that is currently under investigation by a variety of new 
techniques. One of these is described in Problem 6.10. 

6.5 ADVANCED TOPICS IN SURFACE REACTIONS 

6.5.1 Temperature-Programmed Desorption 

We consider in this section a method, called temperature-programmed desorption 
(TPD), that makes it possible to estimate the energy of desorption or reaction as 
well as the Arrhenius preexponential f a ~ t o r . ~  Consider molecules that are irre- 
versibly adsorbed on the surface indicated in Figure 6.11 at some low temperature 
To. The leak valve is then closed, the valve to the pump is opened, and the density 
of product molecules is monitored with a mass spectrometer as the crystal is heated 
in time at a rate p degrees per second (typically =.: 10 K s-I). The crystal tem- 
perature is thus T = To + pt. 

The density of desorbed molecules measured by the mass spectrometer will be 
given by a balance between the rate of desorption and the pumping speed. When 
the pumping speed is high enough so that no readsorption takes place, the density 
of desorbed molecules will be directly proportional to the rate of desorption. Of 

hG. Ehrlich, J. Appl. Phys. 32,4 (1961); Adv. Catal. Relat. Subj. 14,271 (1963); P. A. Redhead, Vacuum 
12,203 (1962). 
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Mass 
spectrometer 

Figure 6.11 

Schematic diagram of a temperature- Crystal 

programmed desorption apparatus. Y Gauge 

From M. Boudart and G. DjBga-Mariadas- 
sou, Kinetics of Heterogeneous Catalytic 
Reactions (Princeton University Press, 
Princeton, NJ, 1984). Copyright O 1984 by 
Princeton University Press. Reprinted by Pump 
permission of Princeton University Press. (PI 

course, the rate of desorption depends strongly on temperature, so that when the 
temperature of the crystal reaches a high enough value so that the rate of desorp- 
tion is appreciable, the mass spectrometer will begin to record a rise in density. 
At higher crystal temperatures, the surface will eventually become depleted of 
desorbing molecules, so that the mass spectrometer signal will decrease. The shape 
and position of the peak in the mass spectrometer signal can be used to learn about 
the activation energy for desorption and the Arrhenius preexponential factor. 

Consider a first-order desorption process: A-S + S + A with a rate constant 
kd =,A exp(-AEalRT). If T represents the number of surface adsorbates per unit 
area,' the rate of desorption will be given by 

However, since the heating rate is dTldt = P, we see that 

Multiplying by - d r  gives 

and combination of this last equation for -dTldt with equation 6.15 gives 

'Note that r and 8 are related. r is the number of adsorbates per area, whereas 8 is the number of adsor- 
bates per number of sites. Thus r times the number of sites per area gives 8. 
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At the peak of the mass spectrometer signal, the increase in the desorption rate is 
matched by the decrease in surface concentration per unit area so that the change 
in dT/dT with temperature is zero: 

d r  AEa 1; ( i:;) -+-r - exp -- = 0, 
d~ RT& 

Finally, substitution of equation 6.18 into this last equation yields 

-- ""a - "xP(-E,), 
P R TM 

AEa AEa 
21nTM - l n p  =- + ln- 

RTM RA ' 

If different heating rates P are used and the left-hand side of this last equation is 
plotted as a function of l/TM, we see that a straight line should be obtained whose 
slope is AEaIR and whose intercept is ln(AE,/RA). Note also that the value of TM 
does not depend on the initial coverage. 

The situation is a bit more complicated for a second-order desorption process such 
as 2 A-S + A, + 2 S. Problem 6.1 1 shows that the resulting equation for TM is 

where r, is the initial surface coverage. Again, a plot of the left-hand side of the equa- 
tion against l/TM provides information about AEa and A,. Note, however, that the 
temperature of the peak will change with initial surface coverage. This variation is the 
hallmark of a second-order desorption. For example, note how the D, desorption peak 
at 380 K in Figure 6.12 shifts to lower temperature with increasing coverage. 

It frequently occurs that molecules decompose before they desorb. For exam- 
ple, formic acid decomposes on a nickel surface to H,, CO, and CO, at a tempera- 
ture of about 388 K. Figure 6.13 shows the temperature-programmed desorption 
spectrum of this molecule (the lower-temperature desorption of water is not shown 
in the figure). If adsorbed separately on this surface, H, and CO would desorb at 
353 and 438 K, respectively. The fact that the principal peaks for H, and CO occur 
at 388 K indicates that these species are initially produced by decomposition of the 
acid. Some of the CO escapes from the surface due to the exothermicity of the reac- 
tion, while some is readsorbed and then desorbs later at 438 K. 

6.5.2 Modulated Molecular Beam Methods 

We consider in this section the application of molecular beam methods to surface 
reactions. These methods provide insight into the kinetics of surface processes as 



I Figure 6.12 

Thermal desorption spectra of D, 
from Rh(100) for different exposures 
in langmuirs (1 langmuir = torr- 
s). Note how the peak shifts to lower 
temperature with increasing coverage. 
From Y. Kim, H. C. Peebles, and J. M. 
White, Surface Science 114, 363 (1982). 
Reprinted from Surface Science, copyright 
1982, with permission from Elsevier Sci- 100 200 300 400 
ence. T (K) 
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II Figure 6.13 

TPD of formic acid adsorbed at 325 on a nickel surface. 
From M. Boudart and G. DjBga-Mariadassou, Kinetics of Heterogeneous Catalytic Reactions (Princeton Univer- 
sity Press, Princeton, NJ, 1984) based on original data of J. McCarthy, J. Falconer, and R. Madix, J.  Catal. 30, 
235 (1973). Copyright O 1984 by Princeton University Press. Reprinted by permission of Princeton University 
Press. 
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R Figure 6.14 

Schematic diagram of the molecular beam-surface scattering technique. 
From G. A. Somorjai, Chemistry in Two Dimensions: Surfnces (Cornell University Press, Ithaca, NY, 1981). 
Reprinted with permission of Dr. G. A. Somorjai. 

well as detail concerning the dynamics of the gas-surface interaction. Molecular 
beam methods are also important to our understanding of gas-phase reactions and 
dynamics, but we will postpone our examination of this field until Chapter 8. 

Figure 6.14 shows a typical molecular beam apparatus for studies of surface 
processes. A molecular beam of reactants is formed using methods to be described 
in Chapter 8. The beam is chopped by a rotating, slotted disk before it impinges 
on a solid surface. Unreacted reactants and newly formed products are detected by 
a rotatable mass spectrometer as a function of time. Two important quantities can 
be determined using this technique: the time dependence of the product flux and 
the angular distribution of the scattered species. We consider the angular distribu- 
tion first. 

6.5.2.1 AngularDistribntions 
The angular distribution of the scattered molecules provides information on the 
exchange (or "accommodation") of momentum during the surface collision. Con- 
sider two possible limits. In one, the molecule colliding with the surface "sticks" to 
the surface long enough to lose all memory of its incoming direction and momen- 
tum. After such a strong energy exchange, we can regard the surface and gas to be 
at equilibrium at some specific temperature. If the molecule subsequently escapes 
from the surface attractive potential, we might wonder what angular distribution its 
velocity would have with respect to a line normal to the surface. The answer is 
shown for CO scattering from Pt(ll1) in Figure 6.15, where the distance of a point 
from the origin in the plot is proportional to the probability of finding the product 
velocity at the given angle with respect to the surface normal. For the highest cov- 
erage of preadsorbed CO on the surface the scattering is given approximately by 
cos 0. In fact, we already know that the cos 0 distribution, given by the dashed cir- 
cle in the plot, should be the answer to the equilibrium problem! Consider the 
velocity distribution function for molecules leaving an area A of the surface. If the 
surface and gas temperatures are the same, i.e., if there is equilibrium, this distri- 
bution will be the same as the velocity distribution for molecules which strike that 
area of the surface, except that the velocity vectors will be reversed in sign. We have 
already seen in Section 4.3.2 (see Figure 4.2 and equation 4.3) that the velocity 
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II Figure 6.15 

The angular distribution of CO scattered from Pt(ll1) at 310 K and for three different cover- 
ages. The CO beam was incident at 55", as shown by the arrow. The dashed circles indicate the 
distribution expected for purely cosine scattering. 
From C. T. Campbell, G. Ertl, H. Kuipers, and J. Segner, Surface Science 107,207 (1981). Reprinted from 
Surface Science, copyright 1981, with permission from Elsevier Science. 

distribution for molecules striking the surface starting from the three-dimensional 
"volume" element u2sin 8 d$ d+ du is proportional to cos 8. Thus, the angular dis- 
tribution for molecules leaving the surface in equilibrium with the surface temper- 
ature will also be proportional to cos $, an observation known as the Knudsen 
cosine law. 

Now consider another limit for the angular distribution, one in which the mol- 
ecules simply bounce off an unmoving surface in the same way light might be 
reflected from a mirror. In this case the outgoing angle of deflection with respect to 
the surface normal will simply be the negative of the incoming angle of incidence. 
Such scattering is termed specular scattering or elastic scattering. Figure 6.15 
shows that CO scatters nearly specularly when the surface is bare (a, = O), but 
that as the coverage increases the scattering follows more and more the cosine law. 
At the highest coverage there is still a remnant of the specular scattering, but the 
distribution nearly follows the Knudsen law. 

Most angular scattering distributions lie somewhere in between these two lim- 
its, as shown in the CO/Pt(lll) case for intermediate coverages of CO. Further- 
more, even in the specular limit, the peak of the scattering distribution is often 
shifted from the exact specular direction. Figure 6.16 shows such a shift for the 
scattering of Ar from Pt. The reason for the shift is that the collision with the sur- 
face is rarely elastic. Movement of the surface atoms either imparts energy to or 
takes energy from the component of velocity perpendicular to the surface. In this 
case, Ar atoms on average gain perpendicular momentum by collision with the 
energetic surface atoms. 

Occasionally one finds a dramatic departure from either the specular or cosine 
scattering. Figure 6.17 shows the angular distribution of H, found after passing H, 
through a thin iron membrane. The H, dissociates as it passes through the membrane 



Figure 6.16 

Polar plot of the angular distribution of Ar scattered from Pt with a surface temperature of 1173 
K and an incident angle of 55". 
From F. 0. Goodman and H. Y. Wachman, Dynamics of Gas-Surface Scattering (Academic Press, New York, 
1976) based on data from A. R. Rndnicki and H. Y. Wachman, SurJf Sci. 34,679 (1973). Reprinted from Sur- 

face Science, Copyright 1973, with permission from Elsevier Science. 

II Figure 6.17 

Angular distribution of H, desorbed from polycrystalline iron at 1140 K. 
From T. L. Bradley and R. E. Stickney, SurJf Sci. 38,313 (1973). Reprinted from Surface Science, copyright 
1973, with permission from Elsevier Science. 
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and then the hydrogen atoms recombine on the front surface. The recombination 
releases substantial energy, forcing the H, off the surface in a peak centered on the 
surface normal. 

6.5.2.2 Kinetic Parameters 
Modulated molecular beam methods also allow the determination of rate constants. 
To gain an intuitive understanding of how such an experiment might work, consider 
the analogy of the sun heating the Earth during a yearly cycle. The average amount 
of sunlight varies nearly sinusoidally throughout the year, so that if the heating 
were instantaneous, the peak in the Earth's average monthly temperature should 
follow the peak in the exposure to sunlight; the warmest month would be June, 
while the coldest month would be December. However, the rate of heating of the 
Earth's surface and atmosphere depend on the heat capacity. The result is that the 
temperature varies sinusoidally, but there is a phase lag of about 1 month. Turn- 
ing this around, the observation of a 1-month phase lag between exposure and 
response can be used to calculate the rate of heating, or the heat capacity in this 
case. Another observation concerns the depth of modulation. The average monthly 
temperatures over the ocean vary less with season than those over land, because the 
heat capacity of salt water is higher than that of land. By analogy, measurement of 
the phase lag and depth of modulation of reactant products following periodic 
exposure of a surface to reactants provides information on the rate constant for the 
reaction. 

Now let's put these concepts on a firmer mathematical foundation. Consider 
the simple mechanism outlined below in which a modulated beam of intensity I(t) 
interacts with the surface: 

s o w )  
A + S + A-S, 

k (6.24) 
A-S + A + P, 

where so is the sticking coefficient of A on the surface and k represents the rate con- 
stant for reaction of the surface-bound species to products. The differential equa- 
tions for the intermediate and the products are given by 

where C(t) and P(t) represent the time-dependent concentrations [ A S ]  and [PI, 
respectively. In the experiment, the concentration of products in the gas phase is 
measured by a mass spectrometer as a function of time for different incident fluxes 
I(t). The concentration of products in the gas phase is determined both by their pro- 
duction rate, dP(t)ldt, and by the rate at which they are pumped away. Under nor- 
mal experimental conditions the mass spectrometer signal, S(t), is directly propor- 
tional to dP(t)ldt. Thus, (taking the proportionality constant to be unity for simplicity) 
we have S(t) = dP(t)ldt = kC(t). 

In the general case, I(t) may vary on a time scale comparable to the reaction, 
so that it would be inappropriate to use the steady-state principle to solve this prob- 
lem. Instead, we use the Laplace transformation method of solution outlined in 
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Appendix 6.1. Consider the transform of the equation for dC(t)ldt, where the trans- 
formation variable is the pure complex variable iw. Using Table 6.1 in the appen- 
dix with s = io ,  we find that the transformed equation is 

soZ(o > 
c ( o )  = - 

k + i o '  

From the equation S(t) = kC(t), we obtain S(o )  = kc(@), so 

- - kso (k - i o )  

( k  + i o )  (k  - i o )  ' 

- - so(/? - i ko)  

k 2 + 0 2  ' 

where t(w) is called the transferfunction. This function indicates how the ampli- 
tude and phase of the mass spectrometer signal will depend on the frequency of the 
input signal. Specifically, writing t(w) in vector notation in a complex plane, as 
shown in Figure 6.18, we obtain 

where the real part, a(@), indicates how the amplitude of the signal changes with 
frequency, while the phase indicates how the output waveform is shifted from the 
input one. Comparison of equation 6.28 with equation 6.27 yields 

Figure 6.18 

The transfer function can be expressed in terms of amplitude a(w) and phase 4(w)  in the com- 
plex plane. 
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Time (arbitrary units) 

II Figure 6.19 

The modulated molecular beam (here assumed to be sinusoidal) and the mass spectrometer sig- 
nal for the kinetic scheme of the text and for different values of the rate constant k in compared 
to the frequency of modulation w. 

Figure 6.19 shows an input waveform (assumed to be a sine wave rather than 
a square wave) and the signal waveforms for various cases of k compared to o. 
Note that the signal s(o) = t(o)I(o) = a(o)exp[-ic#~(o)]I(o). When the modulation 
of the input signal is slow on the time scale of the reaction kinetics, the output 
waveform is just like the input waveform, but when the modulation is fast on the 
time scale of the kinetics, the output waveform is reduced in amplitude and shifted 
in phase. A measurement of the phase shift as a function of modulation frequency 
can be used to determine the rate constant. For example, if the rate constant were 
equal to the modulation frequency, then the phase shift would be 45" and the 
amplitude would be the original amplitude divided by the square root of 2. 

In practice, the input waveform is often a square wave rather than a sine wave. 
Since a square wave contains frequency components at odd multiples of the funda- 
mental, the transfer function actually can provide information on several frequencies 
simultaneously. Problem 6.13 outlines a method for recovering the information. 

6.6 SUMMARY 
Our study of reactions at solid surfaces has taken us from the structure of the sur- 
faces, involving terraces, steps, kinks, and adatoms, to the kinetics of surface 
processes, involving adsorption, desorption, diffusion, and reaction. The flux of 
atoms or molecules to the surface is given by 
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The adsorption of molecules striking the surface can occur through both physisorp- 
tion and chemisorption, and the latter process will be activated if the barrier 
between the physisorption well and the chemisorption well lies above the energy 
corresponding to infinite separation of the molecule from the surface. 

The Langmuir model for adsorption assumes that molecules can adsorb only at 
specific sites on the surface and that once a site is occupied by one molecule it can- 
not adsorb a second molecule. The model leads to the following equation for the 
surface coverage: 

where K is the equilibrium constant for adsorption: K = kJkd' When two molecules 
of different types compete for the same adsorption sites, the coverage of one is 
given by 

with a similar equation for 8,. 
From application of the Clausius-Clapeyron equation we find that 

Reactions at surfaces are unimolecular, bimolecular, etc. just as in the gas 
phase or in solution. For unimolecular processes we found that 

where P is the product of the reaction. For a bimolecular process 

The two processes have remarkable differences in their pressure dependence, since 
in the latter case one of the reactants can "poison" the surface toward adsorption of 
the second. Activated complex theory can be applied to surface reactions to yield 
estimates of rate constants. 

Surface diffusion plays an important role in surface reactions. The barrier to 
diffusion on the surface is less than the barrier to desorption, and diffusion con- 
stant on a surface can be obtained by measuring how far a molecule moves in a 
given time: 

A convenient method for estimating the energy of desorption or reaction is by 
temperature programmed desorption. For a first-order process the temperature TM at 
which the signal has a maximum is related to the activation energy by the equation 

A E a  21nTM - l n p  = - 
A E a  + ln- 

RTM RA 



Chapter 6 Reactions at Solid Surfaces 

For a second-order process the temperature at which the signal is a maximum also 
depends on the surface coverage: 

AEa 2 1 n T M - l n p = -  AEa + ln- 
RTM ARTo' 

Modulated molecular beam methods allow one to measure both the angular 
distribution and the reaction rate constant. Under conditions of equilibrium adsorp- 
tion and desorption, the angular distribution varies as cos 8 (where 8 is the angle 
measured from the surface normal). Under nonequilibrium conditions, the scatter- 
ing is often more strongly directed-toward the specular angle in the case of a 
repulsive interaction at the surface and toward the surface normal if a reaction takes 
place releasing a large amount of energy. 

The rate constant is related to the phase of the modulated product signal and 
the frequency of modulation: 

0 
tan +(0) = -. 

k 
(6.29) 

appendix 6.1 
Integral Transforms 

The Laplace transform provides a convenient method for solution of differential 
equations. Consider the function F(t). Let the Laplace transform of F(t) be defined as 

f(s) = 2[F(t)] = e-"F(t)dt, F (6.30) 

where t is a real variable, F(t) is a real function of t whose value when t < 0 is 
zero, f(s) is a function of s, and s is a complex variable. The function f(s) is called 
the Laplace transform of F(t), while F(t) is called the inverse Laplace transform 
off(s). 

The usefulness of the Laplace transform for differential equations comes from 
the observation that the Laplace transformation of derivatives like dF(t)ldt converts 
them to simple algebraic expressions of s. 

Consider the Laplace transform of dF(t)ldt: 

00 

= F(t)e-"ly - [ F(t) d(eCSt), 

= -F(t = 0) + s F(t)e-" dt, F 
where we have used integration by parts in going from the first line to the second. 

In a similar way, it is possible to build up a table of Laplace transforms of par- 
ticular functions. Table 6.1 provides the transforms of some of the more common 
functions. 
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sin bt 

cos bt 

1 
(e"' - ebt) 

1 

( a  - b)  ( S  - a) (s  - b )  

As an example of the usefulness of Laplace transforms, consider the differential 
equation we encountered (Section 2.4.3, Consecutive Reactions) in equation 2.63: 

The solution can be obtained by taking the Laplace transform of both sides, solv- 
ing the resulting algebraic equation, and then taking the inverse Laplace transform. 
First we take the Laplace transform: 

Next, note that B(t = 0) = 0 from the initial condition that all population in the 
A + B -+ C reaction is initially in A. Solution of the algebraic equation gives 
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If we now take the inverse Laplace transform of both sides of the last equation 
we obtain 

This last equation is just equation 2.64. 
It should be noted that the Laplace transform method is appropriate only for 

linear differential equations; that is, ones that involve in every term only one vari- 
able concentration rather than the product of two or more. Transformation then 
gives a set of linear algebraic equations. The solutions can then be inverse trans- 
formed to obtained the concentrations as a function of time. 
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6.1 The analysis of adsorption by Langmuir predicts that with increasing exposure 
the coverage of a species on a surface (a) increases monotonically, (b) decreases 
monotonically, (c) increases then decreases, or (d) decreases then increases. 

6.2 Under Langmuir's assumptions, if two species can adsorb on a surface, then the 
equilibrium coverage of one of them will (a) increase, (b) decrease, or (c) remain 
constant as the exposure of the surface to the other species increases. 

6.3 The barrier to diffusion is typically (a) a bit larger than, (b) a bit smaller than, 
(c) a lot larger than, or (d) a lot smaller than the barrier to desorption. 



Problems 

6.4 For a first-order desorption process, the temperature at which a peak might 
be expected in the temperature-programmed desorption spectrum depends 
on which of the following: (a) the Arrhenius A parameter, (b) the Arrhenius 
activation energy, (c) the rate of surface heating, (d) the coverage, (e) the 
heat of adsorption, or (f) the diffusion coefficient? 

6.5 Suppose a molecule is completely accommodated on the surface before 
desorbing. To detect the desorbed species most sensitively, we would place 
a detector so that it accepted molecules (a) moving perpendicular to the sur- 
face normal, (b) moving at the specula angle, or (c) moving along the sur- 
face normal. (Specify which.) 

6.6 Consider adsorption with dissociation: A, + S + S + A-S + A-S. Show 
from an analysis of the equilibrium between adsorption and desorption that 
the surface coverage 8 is given as a function of [A,] by 

6.7 As might be expected, the decomposition of ammonia on platinum is first 
order in the gas-phase concentration of ammonia. However, at certain tem- 
peratures, where the N, coverage is nearly zero but the H, coverage is not, 
the reaction is inversely proportional to the H, pressure. Suggest a mecha- 
nism for this observation, evaluate the rate expression for the mechanism, 
and show under what limit the mechanism gives the observed result. 

6.8 A second-order surface reaction involves two gas-phase species A and B, 
which are adsorbing and desorbing from the surface. For a fixed concentra- 
tion of B denoted as [B], in the gas phase, it is observed that the overall rate 
of the reaction has a maximum at a particular concentration of A denoted as 
[A],,,. What is the relationship between [A],,, and [B],,? 

6.9 Show that (6.10) reduces to k = $ < v >  for atomic adsorption under the lim- 
iting assumption where the activated complex is mobile in two dimensions 
and there is no activation energy. 

6.10 One method for measuring the surface diffusion coefficient at arbitrary ini- 
tial coverages is to thermally desorb molecules from the surface using two 
pulsed laser beams coincident in time and crossed at a slight angle. The 
interference between the light waves from the two beams creates a concen- 
tration grating of adsorbed molecules on the surface. As diffusion takes 
place, the concentration grating decreases in time. A convenient method for 
measuring the decay of the grating is to use it to scatter light from a third 
laser pulse, delayed in time from the first two. For reasonable intensities of 
the probe beam, second-harmonic generation can be obtained at each of the 
diffraction peaks. The method, which was developed by Shen and his 
coworkersj has recently been used by Rosenzweig, Farbman, and Asscher 
[J. Chem. Phys. 98,8277 (1993)l to study the diffusion of ammonia on Re. 
A theoretical analysis shows that the second-harmonic intensity for the nth 
order diffraction peak should decay as 

JX.-D. Xiao, D. D. Zhu, W. Daum, andY. R. Shen, Phys. Rev. B46,9732 (1992); Surf: Sci. 271,295 (1992); 
X. D. Zhu, Th. Rasing, andY. R. Shen, Phys. Rev. Lett. 61,2883 (1988). 
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where s is the spacing of the grating and D is the diffusion coefficient. If the 
second-harmonic signal at the first-order diffraction peak falls to lle of its 
original value in 200 s and the grating spacing is s = 8.0 pm, what is the 
diffusion coefficient for NH, on Re at the temperature and coverage of the 
experiment (1 10 K and 0 = 0.25)? 

6.1 1 Show that for a second-order desorption process the temperature at the peak 
maximum in the temperature programmed desorption experiment is given 
by equation 6.23. (Hint: The surface coverage at the temperature corre- 
sponding to the peak has been shown by Redhead to be r,/2.) 

6.12 A few reactions are thought to proceed by the Eley-Rideal mechanism. For 
example, the reaction D(,, + H(,a + HD,,, is thought not to require adsorp- 
tion of the H atom before reaction; that is, the attacking D picks up the H on 
a single bounce. Evidence that this is the case is shown in Figure 6.20, which 
plots the HD product angular distribution for an incidence D-atom angle of 
-60" [from C. T. Rettner, Phys. Rev. Lett. 69,383 (1992)l. The solid circles 
are for an incident energy of 0.06 eV, whereas the open squares are for an 
incident energy of 0.33 eV. 
a. Point out two features of this data that support the hypothesis that the 

reaction proceeds by the Eley-Rideal mechanism. 
b. Suggest another possible experiment that might test this hypothesis. 

6.13 We saw in Section 6.5.2.2 that modulated molecular beam techniques could 
be used to determine kinetic parameters. Normally, the molecular beam is 
modulated in a square-wave fashion rather than in a sine-wave fashion. The 
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II Figure 6.20 

Plot of the HD product angular distribution for an incidence D-atom angle of -60". 
From C. T. Rettner, Phys. Rev. Lett. 69,383 (1992). Copyright 1992 by the American Physical Society. 



Problems 

Laplace transform of a square wave contains amplitude at all odd multiples 
of the fundamental frequency (though with decreasing amplitude as the fre- 
quency increases), so that the transfer function, given in equation 6.28, also 
has such frequency components. If the amplitude and phase of the transfer 
function are plotted in polar coordinates, the resulting figure can be used to 
determine many aspects of the mechanism of the surface reaction. For 
example, consider the kinetic scheme 

where p and (1 - p) are the fraction adsorbing to the two different species 
C,  and C,, respectively, and both species can react to give the product P. 
Determine the transfer function for this system of parallel reactions when p = 
0.5 and plot the transfer function in polar coordinates for the following three 
values of k,lk2: 1, 10, 100. 

6.14 Molecular beam techniques can also be used to study processes at the gas- 
liquid interface. Figure 6.21 shows the schematic of an apparatus used by 
Saecker and Nathanson for investigation of the energy exchange between a 
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II Figure 6.21 
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Schematic diagram of an apparatus for studying gas-liquid interactions. A rotating wheel and a 
scraper provide a fresh surface for interaction with the molecular beam. The speed of the scat- 
tered beam is measured by a time-of-flight method using a rotating chopper. 
From M. E. Saecker and G.  M. Nathanson, J. Chem. Phys. 99,7056 (1993). Reprinted with permission from 
the Journal of Chemical Physics. Copyright, American Institute of Physics, 1993. 
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variety of atoms and molecules with glycerol [HO-CH2<H(OH)-CH2-OH]. 
The speed distribution of the scattered species was determined by timing the 
flight between the slotted chopper wheel and the ionization region of a 
quadrupole mass spectrometer. 

Figure 6.22 displays the resulting time-of-flight distributions for Ne, 
CH,, NH,, and D20. The distributions are characterized by two components, 
an inelastic component at short times and a trapping-desorption component 
at longer times. The "inelastic" component corresponds to molecules that 
collide once with the surface of the liquid and, while losing some energy, 
scatter impulsively from the surface (see Section 8.4.4 for more discussion 
of inelastic processes). The trapping-desorption component corresponds to 
molecules that lose enough energy to bind momentarily to the surface or dis- 
solve in the liquid. These molecules have sufficient contact with the surface 
to then desorb with a speed characteristic of the surface temperature. 
Explain why the ratio of the trapping-desorption component to the inelastic 
component might increase dramatically as shown. 



I Figure 6.22 
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Time-of-flight distributions for collisions of various gases with glycerol. 
From M. E. Saecker and G. M. Nathanson, J. Chem. Phys. 99,7056 (1993). Reprinted with permission from 
the Journal of Chemical Physics. Copyright, American Institute of Physics, 1993. 
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7.1 INTRODUCTION 
The field of photochemistry combines our knowledge of the quantum mechanical 
interaction of light and matter with the kinetics of chemical processes. It is a field 
important for both the fundamental information it yields about molecular structure 
and dynamics and the practical understanding it provides for processes ranging 
from the chemistry of the atmosphere to the mechanism of vision. In this chapter 
we explore several aspects of molecular photochemistry. We will concentrate 
largely on examples in isolated or gas-phase molecules, because it is in these sys- 
tems that experiments have led to new theoretical concepts. After reviewing funda- 
mental issues concerning the absorption and emission of light, we illustrate some 
of the fates of photoexcited molecules, including fluorescence, quenching, intramo- 
lecular vibrational energy redistribution, internal conversion, intersystem crossing, 
phosphorescence, and photodissociation. As a practical application of photo- 
chemistry and kinetics, we turn to processes affecting the concentration of strato- 
spheric ozone, touching briefly on the origin of the Antarctic "ozone hole" and 
outlining both the basic Chapman mechanism for ozone production and destruc- 
tion as well as the catalytic cycles which modify this simple mechanism. A major 
section of this chapter deals with the dynamics of photochemical processes. It is 
here that we see how measurement of the dynamics can provide fundamental 
information about how molecules interact, how they are held together, and what 
happens when they fall apart. The section begins with a description of the "pump- 
probe" technique for measuring dynamics and moves quickly to a description of 
two important probe methods, laser-induced fluorescence and multiphoton ion- 
ization. It then turns to a consideration of the rates for unimolecular processes 
and introduces the principles of the RRKM theory (see Section 7.5.4). It closes 
with discussions of photochemical angular distributions, photochemistry on very 



Section 7.2 Absorption and Emission of Light 

short time scales, and the relationship between photodissociation dynamics, poten- 
tial energy surfaces, and absorption spectra. A summary section emphasizes the 
major points of the chapter. 

7.2 ABSORPTION AND EMISSION OF LIGHT 
Because any photochemical reaction involves the absorption of light, we begin by 
reviewing the fundamentals of the interaction of light with matter. The intensity of 
absorption is characterized by the fraction of light that is absorbed when it traverses 
a thickness 4? of sample of concentration c or pressure p. This fraction is (I ,  - I)lI,, 
where III,, the fraction transmitted, is given by the Beer-Lambert law, 

where a is called the absorption coefficient. This exponential form of the Beer- 
Lambert law is usually used for gases, in which case a has the units of ton-' cm-', 
and p and 4? are expressed in torr and cm, respectively. In solutions an equivalent 
form of the law is more often used, 

where E has the units of liters mole-' cm-', and c and 4? are expressed in moleslliter 
and cm, respectively. Another form of the law expresses the transmission in terms 
of a frequency-dependent cross section, a ( v ) ,  for absorption: 

where the absorption cross section might be given in cm2, with 4? in cm and the den- 
sity p  in molecules ~ m - ~ .  

The absorption coefficients and cross section are related to three more funda- 
mental quantities, the Einstein coefficients: A,, for spontaneous emission from state 
2 to 1, B,, for stimulated emission from state 2 to 1, and B,, for absorption from 
state 1 to 2. For this two-level system, illustrated in Figure 7.1, if p(v) is the energy 
density per unit frequency of light at frequency v, then the change in N,, the popu- 
lation of level 1, is given as 

2 

Figure 7.1 

Einstein absoiption (BIZ) ,  stimulated emission (B,,), and 
spontaneous emission (A2,) coefficients for a two-level sys- 

I tem. The absorption and stimulated emission rates are pro- 
1 portional to the density of radiation at the resonant frequency. 
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The first term in this expression is the loss of N, due to absorption to level 2, while the 
second term accounts for the production of N, due to stimulated and spontaneous 
emission from level 2. In these equations, p(v) has units of energy lengthp3 (time-')-' 
(energy density per unit frequency), and B12 and B,, have units of energy-' length3 
time-2. At equilibrium for this two level system we have W l d t  = 0, or 

Comparison of this last equation with the Boltzmann distribution and use of p(v) 
for a blackbody distribution provides relationships between the three coefficients 
(see Problem 7.13): 

Here, g, and g, are the degeneracies of levels 1 and 2, respectively. 
An important consequence of the Einstein analysis of absorption and emission 

is the prediction of laser action (light amplification by stimulated emission of radi- 
ation). Equation 7.4 shows that emission of light will dominate if 

N ~ [ B ~ ~ P ( v )  + A211 > NlB12~(4. (7.7) 

Thus, provided that the density of radiation is high enough so that B2,p(v) >> A,,, 
stimulated emission will occur when 

where the last equality follows from equation 7.6. We will see in Section 8.2 that 
chemical reactions sometimes produce products with N, > N,, an "inverted pop- 
ulation. 

A relationship between B12 and the absorption cross section u(v) can be devel- 
oped by comparing the differential form of equation 7.3, 

-dI(v) = I(v)u(v)Nl d8, (7.9) 

and the total decrease in population of N, given by the negative of equation 7.4: 

-m1 = NlB12~(v)dt - N2[B21~(v) + A21ldt. (7.10) 

In the first of these equations we use I(v) to signify the intensity per unit frequency 
[so that its units are energy length-2 timep1 (timep1)-l). Thus, I(v) dv is the inten- 
sity (in energy lengthd2 time-I) of radiation in the region from v to v + dv. The 
density of light times its speed, c, is the intensity: p(v)c = Z(v). Thus, division of 
the intensity decrease -I(v) dv, by the energy of the photon, hv, and by the speed 
of light gives the decrease in the number density of photons, -dI(v) dvl(chv). 
Assuming that the transition is of sufficient energy that the population of level 2 is 
negligible (i.e., that N2 << N,), the number density of photons absorbed must be 
equal to the number density of molecules excited from level 1; i.e., -dI(v) dvl 
(chv) = -MI. Combining this last equation with equation 7.10 gives 

I(v) dvu(v)Nl d8 

chv 
= NlBl,p(v) dt, 
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On the left-hand side of this equation, dtldt can be replaced by the speed of light, 
c, while on the right-hand side cp(v) is equal to I(v). Consequently, 

This equation can be used in either of two ways. If we integrate over frequency, we 
obtain the Einstein coefficient for the entire absorption band. If we multiply the 
frequency-dependent cross section by the bandwidth of a narrow light source, we 
obtain the Einstein coefficient for absorption at that particular frequency. 

The Einstein coefficients are also related to the transition dipole moment for 
the transition: 

where 

Under the Born-Oppenheimer approximation, the electronic-vibrational wave 
functions, $,(r,R) can be expressed as products, $,(r)$,(R), so that 

Since the second of these integrals is the overlap between the vibrational wave 
functions in the upper and lower levels, the absorption or emission of light will 
occur preferentially to states for which this overlap is greatest. 

Since the electrons move much faster than the nuclei, absorption or emission is 
not accompanied by a change in the nuclear coordinates; the transition is vertical 
in a diagram such as Figure 7.2, plotting potential energy as a function of nuclear 
coordinates. Note in this figure that the transition is drawn as a vertical arrow and 
that the preferentially populated upper vibrational level, here shown as v = 3, is the 

Figure 7.2 

According to the Franck-Condon principle, absorption 
occurs preferentially to the state whose wave function has 

Internuclear separation the maximum overlap with the initial wave function. 
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one whose vibrational wave function has the maximum overlap with the wave func- 
tion of the lower level, here taken as v = 0. This important consequence of equa- 
tion 7.15 is known as the Franck-Condon principle. 

While the absorption depicted in Figure 7.2 often results in a line spectrum, 
where each line corresponds to a transition between not only individual vibrational 
but also individual rotational levels of the upper and lower electronic states, the 
lines are never infinitely sharp. The widths of the lines are caused by Doppler 
broadening, where the motion of the molecule relative to the observer or source of 
light causes emission or absorption of light at different frequencies, and by lifetime 
broadening, where the finite lifetime of the molecule due to emission, dissociation, 
or other processes gives rise to a width in accordance with the uncertainty princi- 
ple, AEAt h. For molecules with a Maxwell-Boltzmann distribution of velocities, 
the Doppler-broadened line shape is given by the formula 

where vo is the frequency at line center. The constant uo is a normalization factor 

and the Doppler width (full width at half maximum) is given by 

A Doppler profile is shown as the solid line of Figure 7.3. 
For molecules whose lifetime is given by T ,  the Lorentz-broadened line shape 

is given by 

Frequency shift 

Figure 7.3 

Doppler- and Lorentz-broadened line shapes. 
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where vo is the frequency at line center and Av = l/(.rrr) is the full width at half 
maximum. A Lorentz-broadened profile is shown as the dashed line of Figure 7.3. 

We can define a quantum yield for a photochemical process as simply the num- 
ber of events of interest divided by the number of photons of light absorbed by the 
system. For example, if the process of interest were the production of a photo- 
chemical product P, then the "quantum yield of P" would be given by the number 
of product molecules produced during a given time, Np, divided by the number of 
photons absorbed by the system during that same time, Nhv: cP, = NJNhv. Alterna- 
tively, the quantum yield could be expressed as the ratio of the rate of production 
of P divided by the rate of absorption of light. 

In determining the quantum yield, it will not always be the case that the process 
of interest is production of a product molecule. We next examine the possible fates 
of molecules excited by radiation. 

7.3 PHOTOPHYSICAL PROCESSES 
Absorption of light at visible or shorter wavelengths typically results in a combina- 
tion of vibrational, rotational, and electronic excitation. We examine in this section 
the fate of the energy deposited in the molecule. In many cases, the energy is lost by 
a radiative process, either fluorescence-radiation to a lower electronic state of sim- 
ilar multiplicity as the upper one--or phosphorescence-radiation to a state of dif- 
ferent multiplicity. But many nonradiative processes can occur as well, either as the 
result of collision or, particularly for larger molecules, as collisionless, intramolecu- 
lar processes. These include intramolecular vibrational energy redistribution, inter- 
nal conversion, and intersystem crossing. Of more interest from the chemical point 
of view, the energy can also be used to break a bond in the molecule. Such dissoci- 
ation can be caused by a direct process, such as absorption to a dissociative elec- 
tronic state, or by an indirect process, such as absorption to a level which, while 
bound at the level of the Born-Oppenheimer approximation, is coupled to the con- 
tinuum of dissociative states by higher-order terms in the Hamiltonian. 

7.3.1 Fluorescence and Quenching 

Perhaps the simplest photochemical processes are absorption and re-emission of 
light. According to the Franck-Condon principle, in the absence of collisions that 
change the initially excited vibrational level, light will be emitted preferentially at 
two frequencies. One frequency is the same as the frequency that caused the exci- 
tation, since at this frequency the overlap between the ground and excited vibra- 
tional wave functions is strong. Another frequency, where strong emission will 
occur corresponds to a downward vertical transition from a location near the outer 
turning point of vibrational motion on the upper surface, since at this location the 
wave function also has maximum amplitude. 

We now consider the situation when collisions with other molecules cause 
vibrational relaxation in the upper electronic state. The situation is shown schemat- 
ically in Figure 7.4. If vibrational relaxation were to take place rapidly enough, 
nearly all the subsequent fluorescence would occur from v = 0, as shown in the fig- 
ure. In reality, of course, the rate of vibrational relaxation is not infinitely fast com- 
pared to the rate of fluorescence, particularly when the pressure of the collision 
partner is low, so that emission from intermediate levels will occur. 
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Internuclear separation 

II Figure 7.4 

Vibrational relaxation in the upper electronic state prior to fluorescence back to the ground 
electronic state. 

Figure 7.5 displays the fluorescence spectrum of I, following excitation of the 
v = 25, J = 34 level of the B 3110, electronic state with a filtered mercury lamp. 
The fluorescence is resolved by a monochromator in the absence and presence of a 
quenching gas, He. In the upper panel, resonance fluorescence is observed only 
from the initially excited level; two lines are observed corresponding to A J  = IT 1 
transitions. In the lower panel, emission occurs from other vibrational and rota- 
tional levels produced in collision with He. 

The way in which the intensity of emission from the initial and intermediate 
levels varies as a function of pressure can be used to provide a measure of the relax- 
ation. Suppose a molecule M is excited by radiation at an intensity that is constant 
in time (sometimes called cw [continuous wave] radiation). The excited species, 
M*, can then emit radiation or suffer a quenching collision that takes it to a state, 
Mt, that does not emit at the frequency being detected. The state Mt might be 
another vibrational level of the excited electronic state, as in Figure 7.4, or it might 
be another electronic state, as will be discussed in later sections. In either case, the 
kinetic scheme is 

M + hv, + M*, 

The rate for excitation of M to M* is equal to the intensity of radiation at the exci- 
tation frequency, I,, times the cross section for absorption, a, whereas the intensity 
of fluorescence, I,, is proportional to k,[Mo]. Now assume that the initial concen- 
tration of M, M,, is not appreciably perturbed by the excitation and that the assump- 
tions implicit in the steady-state approximation are valid. Solution of the steady- 
state equations leads (Problem 7.6) to the equation 
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P(35), 25-3 Wavelength (A) 

H Figure 7.5 

Fluorescence spectrum of I, without (upper panel) and with (lower panel) added helium. 
From J. I. Steinfeld and W. Klemperer, J. Chem. Phys. 42,3475 (1965). Reprinted with permission from the 
Journal of Chemical Physics. Copyright, American Institute of Physics, 1965. 

Thus, a plot of 111, versus [Q] should yield a straight line whose slope is propor- 
tional to the ratio between the quenching and fluorescence rate constants. This 
equation is known as the Stem-Volmer equation, and systems obeying the relation- 
ship are said to follow Stern-Volmer kinetics. Problem 7.14 provides an example. 

An alternative experimental procedure, which yields somewhat more informa- 
tion, is to excite the molecule M with pulsed radiation rather than with radiation of 
constant intensity and to detect the decay time of the fluorescence as a function of 
quencher concentration rather than the fluorescence intensity. Let the pulse of radi- 
ation be short compared to the time scale for fluorescence or quenching, and let the 
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initial excited-state concentration it creates be M;. The solution 'for M*(t) follows 
immediately since there are two parallel decay channels (see Section 2.4.2): 

M*(t) = ~*,exp[-(k,[Q] + k,)t]. (7.22) 

Thus, M* decays with a time constant r given by the relationship 

A plot of T-I as a function of [Q] thus gives kq as the slope and k, as the intercept. 
Example 2.3 illustrated the use of lifetime measurements to determine the quench- 
ing of I* fluorescence by collisions with NO. 

7.3.2 Intramolecular Vibrational Energy Redistribution 

While intermolecular collisions are required to effect vibrational energy redistribu- 
tion in diatomic molecules, in larger systems, due to the coupling of different vibra- 
tional modes by small perturbations usually neglected in the Hamiltonian (e.g., 
anharmonicity, vibration-rotation coupling), energy can become redistributed in a 
collisionless process known as intramolecular vibrational energy redistribution 
(IVR). Indeed, as we will see in Section 7.5.4, rapid, collisionless exchange of 
energy between vibrational modes at high levels of excitation is one of the assump- 
tions of the RRKM theory of unimolecular dissociation. 

The observation that intramolecular vibrational energy redistribution takes place 
only at high levels of excitation provides a key to understanding the basic chemistry 
of this phenomenon. First, consider some data. Figure 7.6 shows the fluorescence 
spectrum of anthracene excited in a jet-cooled molecular beam.a When this molecule 
is excited to a vibrational level only 766 cm-' above the ground vibrational level of 
the first excited singlet state (S,), the fluorescence shows the expected line spectrum. 
Each line corresponds to fluorescence from the selected excited level to a different 
vibrational level of the ground electronic state (S,), and the intensity distribution is 
governed by the Franck-Condon principle. The fluorescence lifetime of the spectral 
feature marked with an asterisk is shown in the uppermost trace of the left-hand 
panel; a single exponential decay is observed with a lifetime of about 18 ns. At 1420 
cm-' of vibrational energy, the fluorescence spectrum still shows some distinct 
lines, but it has become much more congested. It appears that fluorescence from S, 
is occurring from many vibrational levels besides the one that was initially excited. 
In addition, the time-resolved fluorescence from the corresponding spectral feature 
now shows oscillations (called quantum beats) superimposed on an exponential 
decay. At 1792 cm-' of vibrational energy, the fluorescence spectrum is nearly con- 
tinuous and the time-resolved fluorescence shows a very complicated behavior, with 
most of the fluorescence disappearing in 75 ps. The experiment suggests an inter- 
esting phenomenon. It appears from the spectra that the initially excited state redis- 
tributes its vibrational energy to other vibrational levels and that the amount of redis- 
tribution increases with increasing vibrational excitation. 

A detailed theoretical treatmentb of this phenomenon was provided nearly 20 
years before the experimental observation of Figure 7.6. Vibrations approximated as 
harmonic normal modes at low levels of vibrational excitation are actually coupled 

aA brief description of the supersonic expansion technique needed for such cooling is given in Section 
8.4.1. 

bM. Bixon and J. Jortner, J. Chem. Phys. 48,715 (1968); 50,3284 (1969); 50,4061 (1969). 
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Figure 7.6 

Fluorescence spectrum of anthracene at various levels of vibrational excitation. (left) Time- 
resolved fluorescence from corresponding levels of excitation. 
From P. M. Felker and A. H. Zewail, Adv. Chem. Phys. 70,265 (1998). Copyright O 1988 by John Wiley & 
Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc. 

to one another by weak anharmonic, Coriolis, or other forces at higher levels of 
excitation, but we normally leave out these terms in a zeroth-order approximation 
to the Hamiltonian. Let the coupling be described by an interaction potential R 
When this interaction is evaluated between two zero-order states la> and Ib>,C the 
resulting matrix element, Vab = <blVla>, tells us, roughly speaking, how close in 
energy two states would have to be before the coupling between them would cause 
perturbation of the energy levels. Because the density of vibrational levels increases 
dramatically with energy for large polyatomic molecules, at some level of excita- 
tion the spacing between vibrational levels will become smaller than the value of 
the coupling matrix element. Above this level of energy, the coupling will be 
observed as an apparent vibrational energy redistribution. Excitation of one "nor- 
mal mode" will produce fluorescence from another. 

To see the effect of the redistribution on the time-resolved fluorescence signal, 
consider the intramolecular transfer of energy between just two zero-order modes, 
la> and Ib>, shown schematically in Figure 7.7. Because of the coupling element 
Vab, the modes la> and Ib> are not eigenstates of the true Hamiltonian. In the limit 
where the true Hamiltonian couples only these two modes, the actual eigenstates, 

'We use the notation In> here as a shorthand for @,(q), the vibrational wave function. This is the so- 
called "bra-ket" notation in which <ml denotes the complex conjugate of @,(q) and <mlVln> is an integral, 
S@,(q)*V@,(q) dq. 
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Figure 7.7 

Schematic level structure diagram. The two states la> and Ib> are coupled by the interaction 
potential Vab. 
From P. M. Felker and A. H. Zewail, Chem. Phys. Len 102,113 (1983). Reprinted from Chemical Physical 
Letters, copyright 1983, with permission from Elsevier Science. 

lei> and le2>, will be linear combinations of la> and Ib>: lei> = ala> + plb> 
and le2> = pla> + alb>, where a2 + P2 = 1. It is often the case that the mixing 
is weak, so that we can think, for example, of lei> as being mostly la> with a lit- 
tle bit of Ib> and of le2> as being mostly Ib> with a little bit of la>. For this exam- 
ple a2 > p2, but the specific values of a and P will depend on both Vab and the 
energy separation between the levels. Because this separation is usually quite small, 
most excitation mechanisms will excite states le,> and le2> coherently (simulta- 
neously and in phase). However, it often occurs that only one of these states has 
appreciable transition strength from the ground level. In Figure 7.7 this state is 
shown as the one composed mostly of the zero-order mode la>. 

An analogy can be made to the excitation of two pendulums of nearly the same 
frequency, coupled by a weak spring. The excitation makes both pendulums swing, 
but one has a large amplitude of motion and the other a small one. As time pro- 
gresses, the coupling causes the amplitude of one pendulum to decrease while that 
of the other pendulum increases. Vibrational amplitude flows from one pendulum 
to the other and back again at a rate that depends on the difference in frequencies. 

Returning to the radiation problem, when the coupled system fluoresces back 
to different levels of the ground state, a modulation on the fluorescence will be 
observed corresponding to the oscillatory flow of amplitude between the two cou- 
pled levels. 

Figure 7.8 shows the fluorescence from two levels of anthracene. The upper 
trace gives the signal from the level composed mostly of the mode, la>, which is 
optically coupled to the ground level, while the lower trace gives the signal from 
the level composed mostly of mode Ib>. Note that the oscillations have exactly the 
same period but they are 180" out of phase, just as we would expect from the pen- 
dulum analogy. 

Now suppose that not just two vibrational levels are coupled by the interaction, 
but rather that the density of vibrational levels, p ,  is so high that Vpv >> 1 (the so- 
called statistical limit). Now the optically connected level, consisting mostly of 
la>, will be coupled to a very large number of other levels, so that the probability 
that the energy will return to that level will be small. The fluorescence from the 
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Figure 7.8 

Experimental fluorescence decay curves showing quantum beats. 
From P. M. Felker and A. H. Zewail, Chem. Phys. Lett. 102,113 (1983). Reprinted from Chemical Physical 
Letters, copyright 1983, with permission from Elsevier Science. 

optically coupled level will be observed for only a short time, a time characterizing 
the redistribution of energy to the manifold of other vibrational levels. In the lower 
left-hand panel of Figure 7.6, this time for anthracene with 1792 cm-I of vibra- 
tional energy is seen to be about 75 ps. 

Intramolecular vibrational energy redistribution is critical to a wide range of 
chemical problems. It is particularly important to our understanding of unimolecu- 
lar reactions, to be discussed in more detail in Section 7.5.4. 

7.3.3 Internal Conversion, Intersystem Crossing, and Phosphorescence 

The intramolecular vibrational energy redistribution we have just examined takes 
place between the excited level and other densely spaced vibrational levels of the 
same electronic state. Energy redistribution may also occur from vibrational levels 
of one electronic state to those of another, a process generally called a radiation- 
less transition. When the final electronic state is of the same spin multiplicity as the 
initial state, this transition is called internal conversion, whereas when it is of a dif- 
ferent multiplicity the transition is called intersystem crossing. Internal conversion 
and intersystem crossing either can take place as a collisionless, intramolecular 
processes or can be induced by collisions. The chemistry of these processes is not, 
in principle, very different from that of intramolecular vibrational energy redistri- 
bution; it again involves coupling between the excited state and the dense manifold 
of highly excited vibrational levels of the lower electronic state. The difference is 
that the interaction potential involves not only vibrational coupling but also an elec- 
tronic coupling. Interactions that couple different zeroth-order electronic states are 
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those neglected in making the Born-Oppenheimer approximation; i.e., terms 
involving the coupling of electronic and nuclear motions. In addition, for intersys- 
tem crossing, the coupling involves the spin-orbit interaction. 

Figure 7.9 illustrates the process of internal conversion from an initially 
excited vibrational level of S, to high vibrational levels of So. It is important to 
remember that, in most cases, there will be several modes of vibration, so that the 
potential energy surfaces for S, and So will depend on many internuclear coordi- 
nates rather than just the one plotted as the abscissa in Figure 7.9. 

Figure 7.10 illustrates the process of intersystem crossing from an initially 
excited vibrational level of S, to high vibrational levels of the lowest triplet state, 
T,. In the presence of collisions, intersystem crossing will typically be followed by 
vibrational relaxation and phosphorescence back to the ground singlet state. 

If the internal conversion or intersystem crossing is caused by collisions, the 
process can be studied experimentally by observing the loss of fluorescence from 
the initially excited level of S, as the pressure of the collision partner is increased. 
The intensity of this fluorescence, or in a time-resolved experiment, the lifetime of 
the fluorescence, will decrease with increasing pressure, following the Stern- 
Volmer kinetics already discussed in Section 7.3.1. 

If the internal conversion or intersystem crossing takes place as an intramolec- 
ular process, it is experimentally more difficult to observe. One way to tell that the 
conversion or crossing has occurred is to compare the lifetime of the fluorescence 
with the integrated absorption cross section. Equations 7.12 and 7.6 show, respec- 
tively, that the integrated absorption cross section is related to the Einstein B,, coef- 
ficient and that the Einstein B,, coefficient is related to the A,, coefficient, the 
reciprocal of the radiative lifetime. Thus, if the observed lifetime is due solely to 
radiative processes, it will be equal to the lifetime calculated from the integrated 
absorption cross section using equations 7.12 and 7.6. On the other hand, if internal 

Internuclear separation 

Figure 7.9 

Internal conversion from low vibra- 
tional levels of the first excited sin- 
glet state (S,) to high vibrational lev- 
els of the ground singlet state (So). 

Internuclear separation 

Intersystem crossing from S, to 
T,. Following vibrational relax- 
ation on T,, phosphorescence 
occurs to So. 
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conversion or intersystem crossing compete with fluorescence as decay channels 
for the initially excited state, the observed fluorescence lifetime will typically be 
shorter than that calculated from the integrated absorption cross section. 

A second method for learning that intramolecular internal conversion or inter- 
system crossing has taken place is to observe the low-pressure fluorescence inten- 
sity or fluorescence lifetime as a function of vibrational excitation in the S, mani- 
fold of states. If fluorescence is the only decay channel, its intensity or lifetime will 
vary irregularly and only slowly with increasing excitation energy, reflecting pri- 
marily the change in Franck-Condon factors for fluorescence as different initial 
levels are selected. On the other hand, because intersystem crossing and internal 
conversion depend on the density of vibrational levels in the final electronic state, 
and because this density increases dramatically with energy, the fluorescence inten- 
sity and lifetime will decrease dramatically with increasing excitation energy if 
either of these intramolecular processes is occurring. 

An example of how the fluorescence lifetime varies with excitation energy in a 
system undergoing internal conversion or intersystem crossing is provided by the 
benzene molecule. Figure 7.11 shows the lifetime of benzene fluorescence under 
collisionless conditions as a function of the vibrational energy above the origin of 
the first singlet state ('B,). The experimental points are labeled with their vibra- 
tional mode assignment in the excited state; for example, 6111 means one quantum 
of v, (a carbon-carbon bending mode) and one quantum of v, (the symmetric 
stretching mode) with zero quanta in all other modes. The important point to notice 
from the figure is that the lifetime decreases rapidly with increasing vibrational 
energy. Some more subtle points of the data are worth remarking on as well. Note that 
the lifetime decreases dramatically with the number of quanta of v,,, an out of plane 
bending mode. This mode is a so-called "promoting mode" for the radiationless 

0 800 1600 2400 3200 

Energy above the 'B,, origin (cm-1) 

The lifetime of fluorescence from benzene vapor as a function of energy above the origin of the 
first singlet state. 
From K. G. Spears and S. A. Rice, J. Chem. Phys. 55,5561 (1971). Reprinted with permission from the Jour- 
nal of Chemical Physics. Copyright, American Institute of Physics, 1971. 
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transition since it is particularly effective in causing an interaction between the 
excited and ground states of the molecule, states that would not mix if the Born- 
Oppenheimer approximation were rigorously obeyed. The behavior illustrated for 
benzene is typical of molecules undergoing internal conversion. 

example 7.1 
I Radiative and Nonradiative Lifetimes 

Objective Integrated absorption data shows that the quantum yield for fluo- 
rescence from the O0 level of benzene is 0.25. What would be the 
fluorescence lifetime of benzene excited to this state if there were 
no internal conversion? 

Method In the absence of collisions the total rate of decay of the O0 level 
is given by the sum of the radiative and nonradiative contribu- 
tions: kt, = k, + k,, where ktot = 1 1 ~ ~ ~ ~ .  In addition, the quantum 
yield of fluorescence is given by a, = k,l(k, + k,,). Thus, the 
value of @, = 0.25 and robs = 128 ns (from Figure 7.11), can be 
used to calculate k,, which is simply llr,, the reciprocal of the 
fluorescence lifetime in the absence of internal conversion. 

Solution Taking the reciprocal of both sides of the equation af = 0.25 gives 
1 + (k,,lk,) = 4.0, or k,, = 3.0 k,. We know that kobs = k, + k,,, = 
(1 + 3.0)kr = l/robs = ll(128 ns), so that 4.0kr = 1/(128 ns). Since 
k, = llr,, we find that r, = (4.0)(128 ns) = 512 ns. 

Comment Note that k, is called the radiative decay rate, while k,, is called 
the nonradiative decay rate. 

7.3.4 Photodissociation 

Excitation of some molecules results in dissociation into two or more fragments. 
With the aid of Figure 7.12 we can distinguish between two types of such pho- 
todissociation processes, direct and indirect. In all panels of this figure, the total 
energy of the molecule following absorption of the photon is fixed and given by the 
level of the vertical arrow. As time progresses, potential energy is converted into 
kinetic energy, and the internuclear separation between the fragments increases. In 
a direct process, all motion takes place on a single excited potential energy surface 
and the dissociation is complete on the time scale of a single vibration. In an indi- 
rect process, a crossing takes place between two surfaces which, at the level of the 
Born-Oppenheimer approximation, can be classified as bound and unbound. Because 
the process depends on the coupling, the dissociation might take considerably longer 
than a vibrational period. Panels (A) and (B) show direct dissociation processes 
caused either by the excitation of a region of the excited potential energy surface 
above the dissociation limit or by excitation of a purely repulsive surface, respec- 
tively. Panel (C) shows an example of an indirect process. In this case, excitation is 
to a level that would be bound if it were not for an avoided crossing with a disso- 
ciative state. Along the adiabatic curves that result from the interaction, the mole- 
cule dissociates. This indirect process is also known as predissociation. 
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W Figure 7.12 

Different types of photodissocia- 
tion: (A) and (B) direct dissocia- 
tions and (C) predissociation. Internuclear separation 

Energy (eV) 
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II Figure 7.13 

The ultraviolet absorption cross 
section (in cm2) of 0,. 

Wavelength (nm) 

As we will see in the next sections, photodissociation has profound practical 
consequences. The energy for nearly all chemical reactions in the Earth's atmo- 
sphere and on its surface comes from sunlight, so that an understanding of the light- 
induced processes, particularly dissociation, is extremely important. 

A simple example of the direct dissociation process of panel (A) and the indi- 
rect dissociation process of panel (C) in Figure 7.12 is provided by the O,, whose 
absorption spectrum is shown in Figure 7.13. There is virtually no absorption in the 
visible region of the spectrum, but the cross section for absorption increases strongly 

Figure from "Photochemical Pro- 
cesses and Elementary Reactions" in 
CHEMISTRY OF THE NATURAL 
ATMOSPHERE by Peter Warneck, 
copyright O 1988 by Academic Press, 
reproduced by permission of the 
publisher. All rights or reproduction 
in any form reserved. 
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through the ultraviolet and vacuum ultraviolet regions. It is largely this absorption 
that prevents vacuum ultraviolet radiation from reaching the surface of the Earth. 

Figure 7.14 shows some of the potential energy curves for 0, (recall that the 
ground state of 0, is a triplet: 32,,.) While there is an enormous number of states 
for even such a simple diatomic molecule, let us concentrate our interest on the low- 
est five curves. The absorption regions of Figure 7.13 labeled "Schumann contin- 
uum" and "Schumann-Runge bands" correspond to absorption from the 32,, ground 
state to the continuum and bound regions of the 32; potential curve. Absorption to 
the continuum region leads to dissociation of 0, into 0(3P) + O(lD), which is the 
process illustrated in panel (A) of Figure 7.12. Absorption to the bound region 
leads to predissociation via the 311, repulsive curve and produces 2 0(3P) atoms, 
illustrating the process in panel (C) of Figure 7.12. 

Note from Figure 7.13 that the absorption by 0, at wavelengths longer than 
200 nm is quite weak, so that 0, does not very effectively block sunlight in the 
region, say, near 250 nm, where the principal component of life, DNA, absorbs 
strongly. However, as we will examine in detail in the next section, the oxygen 
atoms produced via absorption on the Schumann continuum and on the Schumann- 
Runge bands can recombine with 0, to form 03. Ozone does absorb light in the 200- 
to 300-nm region, and it is this absorption that protects life on Earth from ultravio- 
let radiation-induced mutations, as discussed in detail in the next section. 

0.10 0.15 0.20 0.25 0.30 

Internuclear distance (nm) 

Calculated potential curves for the triplet valence states of 0,. Note the crossing of the 32; 
state by the repulsive 311, state. 
Based on curves published by F. R. Gilmore, J. Quant. Spectrosc. Radiat. Transfer 5,369 (1965). Reprinted 
from Journal of Quantitative Spectroscopy and Radiative Transfel; copyright 1965, with permission from 
Elsevier Science. 
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7.4 ATMOSPHERIC CHEMISTRY 
The composition of the atmosphere provides an interesting and important applica- 
tion of photochemistry. We start by categorizing the different regions of the atmo- 
sphere, using Figure 7.15 as a reference. As a function of the height above sea 
level, the solid line in this figure shows the average temperature and the bars give 
its range of variation. Note that the temperature decreases as the height increases to 
about 10 km, and then the temperature increases to a height of roughly 50 km. The 
extremes in temperature are used to define the different regions of the atmosphere, 
as identified in the figure. 

The troposphere is the region nearest the surface of the Earth, and the photo- 
chemistry in this region is extremely complex because of the large variety of atmo- 
spheric components. The light reaching this region is limited primarily to the visible 
and infrared parts of the spectrum. It is in the troposphere that human activity has 
had the most effect on the atmosphere. Acid rain, photochemical smog, and global 
warming, for example, are largely issues of the troposphere. 

The stratosphere is the region in which the temperature increases with increas- 
ing height. The photochemistry of this region is dominated by the dissociation of 
ozone and, in the upper regions, oxygen. It is here that the issues of ozone deple- 
tion by nitric oxide and chlorofluorocarbons are most important. The light reaching 
this area of the atmosphere is primarily at wavelengths above about 200 nm; light 
below this wavelength is absorbed by oxygen. 

160 200 240 280 320 
Temperature (K) 

The temperature of the atmosphere as a function of height above sea level. 
Figure from "Bulk Composition, Structure, and Dynamics of the Atmosphere" in CHEMISTRY OF THE 
NATURAL ATMOSPHERE by Peter Warneck, copyright O 1988 by Academic Press, reproduced by per- 
mission of the publisher. All rights or reproduction in any form reserved. 
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The mesosphere is a region of the upper atmosphere dominated by the photo- 
chemistry of small diatomic molecules and the reactions of atoms and ions. The 
thermosphere is the outer limit of the atmosphere, above about 90 krn. 

The stratosphere provides a good example of how our understanding of photo- 
chemistry can lead to an improved understanding of the atmosphere. The major 
chemical constituents of this region of the atmosphere are N, (with a mole fraction 
of 0.79), 0, (of mole fraction 0.21), and 0, (of mole fraction 1.3 X lop5). Since 
we have already remarked that it is the ozone that prevents near ultraviolet light 
from reaching the surface of Earth, it is of importance to understand the photo- 
chemical processes that maintain these steady-state concentrations. A first approx- 
imation to a chemical mechanism for the stratosphere was given by Chapman in 
1930.d In this simple model, the nitrogen is chemically inert, whereas the oxygen 
and ozone are coupled by two photochemical and two chemical reactions. The first 
of the photochemical processes is the dissociation of oxygen, already discussed in 
the preceding section: 

The second photochemical process is the dissociation of ozone: 

The absorption spectrum of ozone is shown in Figure 7.16. Because the mole frac- 
tion of ozone is small relative to that of oxygen and because the oxygen absorbs 
strongly below 200 nm, the primary region of ozone photochemistry is the so-called 
Hartley band between 200 and 310 nm. 

120 160 200 240 280 310 330 350 

Wavelength (nm) 

The absorption cross section (in cm2) of 0,. 
Figure from "Photochemical Processes and Elementary Reactions" in CHEMISTRY OF THE NATURAL 
ATMOSPHERE by Peter Warneck, copyright O 1988 by Academic Press, reproduced by permission of the 
publisher. All rights or reproduction in any form reserved. 

*S. Chapman, J. R. Meteorol. Soc. 3, 103 (1930); Philos. Mag. 10,345 (1930). 
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Two chemical reactions complete the Chapman mechanism, the recombination 
of 0 with O,, 

0 + O,(+M) + 03(+M), (R3) 

and the reaction between 0 and 03,  

where M is either 0, or N, and serves to take away enough energy to stabilize the 0,. 
The process reaction R4 is of minor importance compared to that in reaction R3. 

Although the Chapman model is a reasonable first approximation, the steady- 
state concentration of O3 that it predicts (Problem 7.7) is three times higher than 
that observed. It should be noted that, given the flux of solar radiation in the strato- 
sphere and the steady-state concentrations, ozone is photodissociated and regener- 
ated by reaction R2 and reaction R3 about 30 times for every 0, molecule disso- 
ciated in reaction R1. Thus, even minor components of the atmosphere that 
interfere with the cycle of reactions R2-R3 can have a large effect on the steady- 
state concentration of 0,. 

Two such minor components of the natural atmosphere are N,O (-100 parts 
per billion by volume, ppbv) and H,O (-5 ppmv). N,O undergoes photodissocia- 
tion in the stratosphere, while H,O reacts with oxygen atoms. The resulting NO and 
HO radicals participate in catalytic reactions that lower the steady-state concentra- 
tion of ozone. The reaction mechanisms are 

NO, + 0 + NO + 0, 

Net: 0 3 + 0  + 2 0 2 ,  

and 
HO + O3 + HOO + 0, 

HOO + O3 + HO + 2 0, 

Net: 2 0 3  + 30,. 

Notice that the net result of each of these cycles is to destroy ozone and that in each 
case the initial radical is regenerated so that it continues the cycle. 

In the 1970s, the airline industries proposed to develop a fleet of supersonic air- 
craft that would fly at a height of 20-40 km. Fortunately, enough was known about 
the chemistry of the stratosphere at that time so that chemists were able to prevent 
a potential disaster. The nitric oxides injected into the ozone layer by the exhaust 
from such a fleet of planes might have seriously depleted the steady-state concen- 
tration ozone by participating in the first of the catalytic cycles listed above.e 

Unfortunately, chemists did not have an early enough understanding to head off 
another anthropogenic cause of ozone depletion. In 1974 Rowland and Molina pro- 
posed another possible catalytic cycle involving chlorine atomsf 

Net: O3 + 0 + 20 , .  

eFor an interesting account, see H. S. Johnston, Ann. Rev. Phys. Chem. 43, 1 (1992). 
fM. J. Molina and E S. Rowland, Nature 249,810 (1974). Rowland and Molina shared the 1995 Nobel 

Prize in Chemistry (with P. Crutzen) for their work in this area. 
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They warned that chlorofluorocarbons used for industrial cleaning and refrigerants 
might produce C1 atoms that could destroy ozone. Ironically, for reasons involving 
human safety, the chlorofluorocarbons used for these purposes were designed to be 
relatively inert. They turned out to be too inert. Whereas most chlorine-containing 
compounds dissolve in rain and are returned to the Earth's surface, these substances 
rise all the way to the upper stratosphere, where they are dissociated to produce 
chlorine atoms that then catalytically destroy ozone. 

Over the past 50 years, stratospheric chlorine concentrations have increased 
from a background level of 0.5 ppbv to a level today of 3.5 ppbv. The ozone con- 
centration is beginning to show the effects, as demonstrated by satellite measure- 
ments. Whereas the average range of ozone concentration during the period 
1979-1990 was nearly 300 Dobson units (the equivalent ozone column height in 
units of m at standard temperature and pressure), the 1992 average was about 
7 units lower and the 1993 average (taken until the Nimbus-7 satellite ceased to 
function) was lower by another 7 units. 

The effect has been even more dramatic in the region of the polar caps, partic- 
ularly above Antarctica, where in 1985 an "ozone hole" has been detected just fol- 
lowing the return of the solar radiation in the spring of that and each subsequent 
year.g A stream of air known as the polar vortex isolates the region of the strato- 
sphere above the Antarctic continent. During the winter, ice and nitric acid trihy- 
drate condense to form polar stratospheric clouds, and the crystals in these clouds 
provide reactive surfaces that store chlorine as CIONO,. When the sun reappears in 
the early spring, the crystals melt and release the both C1 atoms and C10. The atoms 
destroy ozone in the catalytic cycle predicted by Molina and Rowland, while the 
chlorine monoxide participates in its own catalytic cycle: 

C1202 + hv + C1 + ClOO 

ClOO + M + C1 + O3 + M 

2 (Cl + O3 + C10 + 0 2 )  

Net: 2 O 3 + h v  + 30, .  

Experiments monitoring C10 and ozone concentrations in the region of the 
Antarctic vortex have further established the connection between chlorine and 
ozone concentrations. Figure 7.17 demonstrates the close inverse correlation 
between the C10 concentration and the ozone concentration just following the 
spring thaw. As a high-altitude airplane flew its instruments through layers formed 
by the vortex, it recorded a dip in the ozone concentration at every location where 
the C10 concentration increased. Within the vortex, the ozone concentration was 
found to be less than half the concentration outside the vortex. 

Fortunately, the end of this story may be in sight. Under the 1990 revisions of the 
Montreal protocol, agreed to by most nations producing chlorofluorocarbons, the rate 
of human injection of chlorine into the stratosphere should be cut back enough so that 
the chlorine concentration should peak around the year 2000 and fall after that. Mod- 
els predict, however, that the Antarctic ozone hole will not disappear until 2050. 

gJ. C. Farman, B. G. Gardiner, and J. D. Shankin, Nature 315,207 (1985). 
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Latitude 

Figure 7.17 

Mixing ratio in parts per trillion by volume for C10 and 0, as a function of latitude in degrees 
south. Note the close inverse correlation between the two concentrations. 
From J. G. Anderson, D. W. Toohey, and W. H. Bmne, Science 251,39 (1991). Reprinted with permission 
from Science. Copyright 1991 American Association for the Advancement of Science. 

While the stratospheric ozone concentration illustrates both the importance of 
photochemistry to the composition of the atmosphere and the importance of under- 
standing the atmospheric implications of anthropomorphically generated chemi- 
cals, it is but one of many problems of current global concern. Global warming due 
to the emission of gases that absorb infrared light, acid rain due to sulfuric acid 
emissions, and photochemical smog generated by the interaction of sunlight and 
automobile exhaust are but a few of the problem areas where a knowledge of pho- 
tochemistry is of practical relevance. These and other problems are discussed in 
detail in a few of the books listed in the Suggested Readings section. 

7.5 PHOTODISSOCIATION DYNAMICS 
The goal of a subfield of photochemistry known as photodissociation dynamics is 
to understand at the molecular level the process by which light induces a dissocia- 
tion. What causes the absorption? What are the forces on the fragments as they fly 
apart? What are the final states of the products, and how do they depend on which 
initial state was created by the photon? To physical chemists, the field of photodis- 
sociation dynamics emerged as a science with the development by Norrish and 
Porter of the flash photolysis or pump-probe te~hnique.~ 

hG. Porter, Pmc. R. Soc. A200,284 (1950). R. G. W. Nomsh and G. Porter shared the 1967 Nobel Prize 
in Chemistry (with M. Eigen) for their work in this area. 
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7.5.1 The Pump-Probe Technique 

In the earliest versions of the pump-probe technique, photolysis of a starting mate- 
rial was achieved by one flash lamp while the production of photochemical frag- 
ments was monitored by their absorption of continuum light from another flash 
lamp. In observing spectroscopically the internal energy states of the photofrag- 
ments, Norrish and Porter demonstrated the first general technique that provided 
information about the dynamics of a photochemical event. The pace of investiga- 
tion increased rapidly in the 1960s due to two improvements. Tunable lasers with 
powers high enough to dissociate a large fraction of the parent molecule and with 
spectral resolution high enough to excite individual internal energy levels gradually 
replaced the photolysis flash lamp. In addition, fragment detection by absorption 
from a second flashlamp was replaced by one of three more sensitive laser detec- 
tion techniques: time-resolved laser absorption, laser-induced fluorescence, or mul- 
tiphoton ionization. We now briefly explore with an example how results obtained 
using these experimental techniques compare with theory. 

A major goal of the field is to determine the forces acting on the fragments as 
they separate. This force is simply the negative of the gradient of the potential 
energy surface. For example, Figure 7.18 shows the sections of the excited poten- 
tial energy surface for the water molecule leading to dissociation into OH + H. 
Each curve gives the potential energy as a function of (H0)-H distance for a fixed 
value of the OH bond length. The different curves are for different angles of depar- 
ture; the curve labeled V, gives the angle averaged potential. Note that the energy 

Figure 7.18 

Potential energy curves for H,O as a function of R in the coordinate system shown for different 
values of y and for r = 0.971 A. 
From R. Schinke, V. Engel, and V. Staemmler, J. Chem. Phys. 83,4522 (1985). Reprinted with permission 
from the Journal of Chemical Physics. Copyright, American Institute of Physics, 1985. 
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decreases rapidly with increasing (H0)-H distance, so that there is a large repul- 
sive force between the recoiling fragments. The potential was calculated using ab 
initio techniques. How well does it do in predicting the experimental results? 

An experiment performed in 1987 prepared individual rotational levels of 
vibrationally excited water using one laser, dissociated them by excitation to the 
repulsive curves of Figure 7.18 with a second laser, and then probed the OH frag- 
ment rotational distribution using laser-induced fluorescence (a technique to be 
described below) with a third laser. Figure 7.19 shows the close agreement between 
the distributions calculated using the ab initio potential energy surface of Figure 
7.18 and that measured by the experiment. The combination of experiment and the- 
ory gives confidence that the dissociation dynamics of water are understood at the 
molecular level. 

Figure 7.19 

OH rotational state j 

Experimental and theoretical OH rotational 
distributions. The panels give the results for 
dissociation of different JKa,Kc levels. 
From D. Hausler, P. Andresen, and R. Schinke, J. 
Chem. Phys. 87, 3949 (1987). Reprinted with per- 
mission from the Journal of Chemical Physics. 
Copyright, American Institute of Physics, 1987. 
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Before proceeding further, it is helpful to understand the two detection tech- 
niques of laser-induced fluorescence and multiphoton ionization. 

7.5.2 Laser-Induced Fluorescence 

One of the most sensitive and commonly used probe techniques is called laser-induced 
fluorescence (LIF). Figure 7.20 shows the basic principle of the technique, which was 
first recognized as a tool for studying dynamics by Schultz, Cruse, and Zare.' The 
physical processes are similar to those discussed in Section 7.3.1. For simplicity, the 
figure shows schematic-level diagrams for the vibrational and rotational levels of the 
lower and upper states but omits the electronic potential energy curves. A tunable laser 
of frequency vL excites molecules from vibrational-rotational levels of the ground elec- 
tronic state to an upper electronic state that subsequently fluoresces. If the total fluo- 
rescence intensity is recorded as a function of the frequency or wavelength of the excit- 
ing laser, a line spectrum will be observed. At every frequency for which the laser is 
in resonance with an allowed transition from the lower to upper state, molecules will 
be excited and will subsequently fluoresce, whereas no excitation or fluorescence will 
be observed if the laser is not in resonance with an allowed transition. 

For example, Figure 7.21 shows a laser-induced fluorescence spectrum of CO 
produced in the 193-nm photodissociation of acetone to yield CO + 2 CH,. The top 
panel probes a region of the CO absorption band corresponding to excitation from 
rotational levels of CO in v = 0 of the ground electronic state to rotational levels 
in v = 2 of the upper electronic state, whereas the bottom panel probes a region tak- 
ing CO from v = 1 in the lower state to v = 0 in the upper state. Q-branch transi- 
tions (those with AJ = 0) are identified in each scan, although P- and R-branch 
transitions (AJ = - 1 and AJ = + 1) are also present. It is thus qualitatively clear 
from the spectrum that CO is produced in both v = 0 and v = 1 and in rotational 
levels ranging up to at least J = 50. 

A quantitative analysis of the spectrum can yield accurate relative populations for 
the CO levels produced. Assuming (as is nearly valid in this case) that the fluores- 
cence intensity is unaffected by nonradiative processes, the signal is proportional to 
the population in the lower level (because of the high excitation energy, we assume 
no initial population in the upper level). The quantities involved in the proportion- 
ality constant include the Franck-Condon factor for excitation between the two 

Figure 7.20 

The laser-induced fluorescence technique. 

AB* 

'A. Schultz, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 57, 1354 (1972); P. J. Dagdigian and R. N. 
Zare, Science 185,739 (1974). 
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Figure 7.21 

Laser-induced fluorescence spectrum of CO produced in the 193-nm photodissociation of acetone. 
From K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, J.  Chem. Phys. 91,7498 (1989). Reprinted 
with permission from the Journal of Chemical Physics. Copyright, American Institute of Physics, 1989. 

vibrational levels and the rotational line strengths, called Honl-London factors. For 
CO, these quantities have been accurately measured. Problem 7.12 provides an exam- 
ple of how these are used. 

Figure 7.22 shows the populations derived from the spectrum of Figure 7.21 
using the known Franck-Condon and HSnl-London factors for the CO t X band 
(see Problem 7.12 for details). The figure also includes results based on additional 
data probing CO in v = 2. At room temperature, the most populated level of CO is 
near J = 10. Note, therefore, that very high rotational levels are produced in all vibra- 
tional levels, suggesting that the force on the CO fragment due to the departure of the 
two methyl fragments is unequal. A likely explanation is that the dissociation proceeds 
in a sequential fashion with an acetyl intermediate, as shown in Figure 7.23. 

7.5.3 Multiphoton Ionization 

A second technique commonly used to probe the products of photodissociation is 
called multiphoton ionization (MPI). Although the technique was first used to 
detect atoms, the initial application to molecules was in the detection of Cs, by 
Collins et a1.J Extension to more chemically interesting species, such as benzene 
and NO, was subsequently made by Johnson and his  coworker^.^ 

JC. B. Collins, B. W. Johnson, and M. Y. Mirza, Phys. Rev. A 10,813 (1974). 
kP. M. Johnson, M. R. Berman, and D. Zakheim, J. Chem. Phys. 62,2500 (1975). 
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II Figure 7.22 

Relative populations of CO energy states produced in the photodissociation of acetone deter- 
mined from spectrum of Figure 7.21. 
From K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, J. Chem. Phys. 91,7498 (1989). Reprinted 
with permission from the Journal of Chemical Physics. Copyright, American Institute of Physics, 1989. 

Figure 7.23 

Probable dissociation mechanism for acetone at 193 nm. 

Figure 7.24 shows the principle of the technique, which is very similar to that 
used in laser-induced fluorescence. A pulsed, tunable laser at frequency v, excites 
molecules from a specific vibrational-rotational level of the ground electronic state 
of AB to a level of an excited electronic state, AB*. The number of AB* molecules 
thus produced is again given by the same equation that governs the laser-induced 
fluorescence signal (see Problem 7.12). If the intensity of the laser is strong 
enough, a second photon from the same laser pulse can cause further excitation of 
AB" to the ionization continuum, producing AB+ + e-. The ions are accelerated 
into a detector and counted. If, as is typical, the ionization step has a high cross sec- 
tion, nearly every AB* will be ionized. Thus the number of ions is proportional to 
the population in the initially selected vibrational-rotational level of the ground 
state. Because the detection of ions is often more sensitive than the detection of 
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8.1 INTRODUCTION 
The underlying goal of this book has been to understand kinetic processes at the 
molecular level. We started in Chapter 1 to look at the details of molecular colli- 
sions. In Chapter 2 we broke down overall reactions into their component elemen- 
tary steps, and in Chapter 3 we examined how our understanding of collisions could 
be extended to predict and understand rate constants for reactions. In this chapter 
we will go one step further by breaking down elementary steps into state-to-state 
reaction rates and by seeing how these are related to the potential energy surface 
that controls the reaction. This field, called reaction dynamics, seeks to understand 
the dynamics of chemical systems at a molecular level. 

In addition to the intellectual challenge of learning how a rate constant depends 
on both the initial state of the reactant and the final state of the product, there are 
ample practical reasons to explore the field of reaction dynamics. Many reactions 
take place under nonequilibrium conditions, so that if the reaction rate depends on 
the initial state of the reactant, the rate constant for the process might be quite dif- 
ferent from that for reactants in Boltzmann equilibrium. Perhaps by understanding 
the dynamics we can direct the reaction to produce either desired, unconventional 
products or products with a particular final state distribution. Furthermore, if a reac- 
tion, even one starting from thermal equilibrium, selectively produces a nonequi- 
librium distribution of products, we might be able to use that distribution in some 
practical way, for example, to convert chemical energy into another useful form. 
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In this chapter we start by considering a simple reaction system that has had 
both historical and practical importance in the of field reaction dynamics, F + D, + 
DF + D. After learning how the state-resolved reaction rate constants are related to 
the overall thermal rate constant in Section 8.3, we look in a more detailed way at 
molecular scattering in Section 8.4. In Section 8.5 we examine how the angular dis- 
tribution of scattering and the state-resolved rate constants are related to the poten- 
tial energy surface. Not all of the processes of interest to chemists involve reactions, 
so we spend some effort in Section 8.6 investigating processes in which the reac- 
tants and products have the same chemical identity but in which energy has been 
exchanged between various degrees of freedom. We end the chapter by exploring 
several examples to convey some of the excitement of the field and to point to direc- 
tions for future effort. 

8.2 A MOLECULAR DYNAMICS EXAMPLE 
The goals of this chapter are illustrated with a simple example. In 1961, John 
Polanyi suggested that it might be possible to use a chemical reaction to produce a 
population inversion that could be used to power a new type of "chemical" laser.a 
The idea was to find a reaction that, for example, produced more product in a high 
vibrational level than in a lower one, so that stimulated emission might occur 
between the two levels to produce a laser in the infrared region of the spectrum. It 
was clear that one wanted preferentially to consider exothermic reactions, which 
could provide enough energy to populate several different internal states of the 
products. Several examples were found? but we will focus our attention on the F + 
H, and F + D, systems. For some practical reasons, F + D, has been more care- 
fully studied. 

Figure 8.1 shows, on the left, the energetics of the reaction; the DF product can 
be produced in any of five vibrational levels from u = 0 to v = 4. The right-hand 
side of the figure gives the distribution of population among the vibrational levels 
as measured by three techniques: observing the chernilurninescence from the reac- 
tion, observing the behavior of a DF laser based on the reaction, and observing the 
velocity distribution of the DF product following a crossed molecular beam reac- 
tion. This latter technique, whose results are summarized in Table 8.1, will be dis- 
cussed in more detail in Section 8.4. The important point to note at this stage is that 
the reaction produces a higher population of DF(v = 3) than DF(u = 2). Because 
the v = 3 + v = 2 transition is optically allowed, this population "inversion" can 
form the basis for a chemical laser. Indeed, one reason that this reaction was stud- 
ied in so much detail is that there had been interest at one time on the part of the 
military in using chemical lasers as weapons.' Figure 8.2 shows a TRW-built high- 
energy laser that successfully targeted and shot down an operational short-range 
rocket in a 1996 flight test-on the first firing. 

aJ. C. Polanyi, J. Chem. Phys. 34,347 (1961). Polanyi shared the 1986 Nobel Prize in Chemistry (with 
D. R. Herschbach and Y. T. Lee) for his work in this area. 

bThe first was discovered by J. V. V. Kasper and G .  C. Pimentel, Phys. Rev. Lett. 14,352 (1965). 
CAmerican Physical Society Study Group (N. Bloembergen and C. K. N. Patel, cochairmen), "Report to 

the American Physical Society of the Study Group on Science and Technology of Directed Energy Weapons," 
Rev. Mod. Phys. 59(3), Part I1 (July 1987); P. W. Boffey, W. J. Broad, L. H. Gelb, C. Mohr, and H. B. Noble, 
Claiming the Heavens (Time Books, New York, 1988). 
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II Figure 8.1 

(left) Energetics for the F + D, reaction showing possible final vibrational states. (right) Popu- 
lation of final vibrational levels relative to u = 3. 

Population of Final Vibrational Levels v in the 
Reaction F + D, + DF(v) + D 

*Data normalized to P(u = 3) = 1.00 and taken from D. M. Neumark, A. M. Wodtke, G. N. Robinson, C. 
C. Hayden, K. Shobotake, R. K. Sparks, T. P. Schafer, andY. T. Lee, J. Chem. Phys. 82,3067 (1985). 

Figure 8.2 

Chemical laser based on hydrogenlfluorine reaction claimed by TRW to have shot down a 
short-range rocket. 
Courtesy of TRW, Inc. 
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Several questions arise from even a cursory examination of this system. What 
features of the interaction between reactants might lead to the nonequilibrium dis- 
tribution of products? Since the reaction clearly populates selected final states, does 
the reaction depend as well on the reactant initial state? If we assign a rate constant 
for the reaction between a particular state i of the reactants and a final state f of the 
products, how are these rate constants related to the overall rate constant, k(T), 
measured at thermal equilibrium? Finally, what happens if we look at this reaction 
in even more detail by examining the angular distribution of the products or their 
rotational energy levels? These are the questions that motivate the field of reaction 
dynamics. The goal is to learn about the molecular mechanism of elementary chem- 
ical processes by probing rate processes directly at molecular level; ideally, we 
would like to "watch" the atoms and molecules move as they undergo reaction. 

8.3 MOLECULAR COLLISIONS-A DETAILED LOOK 
If we wish to understand a reaction such as F i- D2 + DF + D at a fundamental 
level, we must start by recognizing that there are many internal energy levels of 
both the reactants and products, and that the rate constant for reaction might depend 
both on the initial state, i, of the reactant and on the final state, $ of the products, 
where i and f here each symbolize a set of quantum numbers representing, for 
example, vibration, rotation, and electronic degrees of freedom. Moreover, this 
"state-to-state" reaction might itself depend on the relative velocity of the reactants, 
or equivalently on the collision energy. In Section 3.3 we saw that the rate constant 
at a particular energy E, could be expressed as the product of the relative velocity, 
v,, and the energy-dependent cross section ~ ( 4 ) :  k(~,) = U,C(E,). Since even at a 
given collision energy, the rate constants from a particular initial state to a selected 
final state might differ, we now need to be more specific. Let a (~ , , i  f )  be the reac- 
tion cross section at energy E, for going from state i of the reactants to state f of the 
products. The rate constant for this process is then k(~,,i,f) = v,o(~,,i f ) .  

We now wish to address two questions. The first is how the overall rate con- 
stant at E,, k(~,), is related to k(~,,i,f). The second is how the final energy distribu- 
tion in the DF product is related to these "state-to-state" rate constants. 

We approach the first question in two steps. First we use our knowledge of par- 
allel reactions, Section 2.4.2, to show that the total rate for reaction from a partic- 
ular initial state, k(EPi) is just the sum of the state-to-state reaction rates over the 
final states,$ Suppose for simplicity that there are only two final states of the prod- 
ucts, f = 1 and f = 2. Then for a given initial state, we have the parallel processes 

and 

k(%,i,f=2) 
[i] + [ f = 2 ] .  

The situation is exactly analogous to the A + B and A + C parallel reactions of 
Section 2.4.2, so that the total rate of disappearance of i should be given by the sum 
of the two rate constants; that is, k(~,,i) = k(~,,i f = 1) i- k(~,,i f = 2). If there are 
many final states, we can generalize this result by summing over them all: 
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where f,,, is the highest energy level of the products consistent with the relative 
collision energy E,. 

The second step in the answer to how k(~,) is related to the state-to-state rate 
constants is taken by recognizing that k(~,) is an average over the rate constants 
starting in different initial states. Of course, when taking the average we need to 
weight the different initial statesd according to their populations, P(i). Thus, 

It should be noted that P(i) will generally depend on a temperature. For exam- 
ple, if the reactants are at equilibrium with a heat bath at temperature T then P(i) 
will simply be the Boltzmann distribution: 

where g, and ei are the degeneracy and energy of the ith level and Q is the partition 
function at temperature T: 

Equation 8.2 is then the answer to the first of our two questions: 

The rate constant at a particular energy is the average of the state-selected rate constants over 
initial states and the sum over final states. 

What of the second question? How are the rate constants related to the distri- 
bution of population in the products? Our understanding of parallel reactions can 
again come to our aid. Recall from Section 2.4.2 that the branching ratio to a par- 
ticular product, or equivalently the probability of forming that product, is given by 
the rate constant for the desired channel divided by the sum of the rate constants for 
all of the possible channels. Let P(E,& be the probability of forming the final state 
f of the product(s). Then, 

where each of the k(~, f )  is an average over the possible initial states for reaction at 
relative energy E,: 

We close this section by recalling from Section 3.3 that the rate constant at a 
given temperature, k(T), is obtained from k(~,) by averaging over the thermal dis- 
tribution of energies: 

(8.7) 

% similar weighting was used in equation 1.8 to determine the average grade on an examination. 
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where G(E,) is the Boltzmann distribution of energy at temperature T (see equation 
1.37). Substitution of equation 8.2 and the definition k(~,,i,j) = v,a(~,,i,f) leads to 

This last equation relates the macroscopic rate constant for an elementary process to 
the state-to-state energy-dependent cross sections. The field of reaction dynamics 
seeks to measure these cross sections and to interpret them at the molecular level. 
The interpretation is most compactly expressed by the potential energy surface for 
the system, whose relationship to a(~,,i,f) is discussed in Section 8.5. Before explor- 
ing this relationship, however, we examine the cross section at a deeper level to learn 
about its dependence on recoil angles, as measured by scattering experiments. 

example 8.1 
I Calculating k(T) from o(~,i, f )  

Objective A reaction has two initial states. State i l  is the ground state and 
state i2 lies 100 cm-' higher. The products have four final states: 
f l ,  f2, f3, and f4. The cross sections as a function of energy are 
given by T(i,f) = %-&[I - ~*(i,f)l~,], where T(i,f) and ~*(i,f) are 
given in the table, and d = 0.10 nm (1.0 A). If the reduced mass 
for the collision is 5 amu, calculate the overall rate constant for the 
reaction at a temperature of 300 K; i.e., k(T) for T = 300. 

i f  
i l f l  
i l f 2  
il j '3 
i l f 4  
i2 $1 
i 2 f 2  
i 2 f 3  
i2 f4  

Method Use equation 8.8, recalling that we have already performed the 
integration over the thermal energy distribution for a cross section 
of this functional form in the equations preceding equation 3.7. 

Solution Since each of the cross sections has the same functional form with 
respect to E,, we can perform the integral in equation 8.8 before 
doing the sum. From the equations leading to equation 3.7 we see 
that S,rrd2[1 - E*(~,~)/EJG(E,)~E, = v&v,exp[-~*(i,f)lkT). The sum 
over final states and average over initial states is then expressed as: 
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We next calculate P(i), noting that kTat 300 K is 207 cm-l: the num- 
ber of reactants in the ground state is proportional to exp(-01kT) = 
1 .O. The number in state i2 is proportional to exp(- 100 cm-llk~) = 
exp[-100/207] = 0.617. Thus P(i1) = l.Ol(1.0 + 0.617) = 0.618 
and P(i2) = 0.617/(1.0 + 0.617) = 0.382. 

Next, note that rrd2 = 3.14 X nm2 (molecule-l) and 
that at room temperature v, = [ 8 k ~ / . r r ~ ] ' / ~  = [8(1.38 X 
J molec-I K-')(6.02 X molec/mo1)(300 K)/.rr(5.0 glmol) 
(1 kg11000 g)]'l2 = 1.13 kmls; thus .rrd2v, = (3.14 X m2 
molec-') (1.13 X lo3 mls) = 3.55 X 10-l7 m3 molec-l s-I = 
2.14 X 1010 L mol-l s-l. We also evaluate exp(-10001207) = 
7.98 X lop3 and exp(-5001207) = 8.93 X 

Finally we perform the sum and average to obtain k(T = 300 
K) = (2.14 X 101° L mol-I s-l) X {[(7.98 X 10-3)(0.618)(0.05 + 
0.20 + 0.10 + 0.05)] + [(8.93 X 10-2)(0.382)(0.1 + 0.3 + 0.1 + 
O.l)]) = 4.80 X 1O8 L mol-I s-l. 

8.4 MOLECULAR  SCATTERING^ 
Ever since Rutherford obtained information about the structure of the atom from 
measurement of the angular distribution of deflected alpha particles, scattering 
experiments have been used by both physicists and chemists to explore funda- 
mental processes in their respective fields. The objective of this section is to inves- 
tigate what can be learned about chemical interactions by examination of the angu- 
lar distribution of products following reaction. How do we measure the angular 
distribution? As shown in Figure 8.3, the angle of scattering in Rutherford's case 
was measured relative to the velocity of the incoming alpha particles that struck a 
stationary metal foil. Chemists face a somewhat more complicated situation 
because neither of the reacting molecules is stationary in the laboratory frame. In 

Metal foil 

The Rutherford scattering experiment in which 
alpha particles (He2+ with large kinetic energy) 
were scattered from a foil of metal atoms. 

"D. R. Herschbach andY. T. Lee shared the 1986 Nobel Prize in Chemistry (with J. C. Polanyi) for their 
work using molecular beams to study the dynamics of elementary chemical processes. 
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the ideal experiment, the observer of a chemical reaction would like to be located 
in advance at the position where two reactants would collide. From this center-of- 
mass observation point, shown in Figure 8.4, one could then watch both the 
approach of the reactants along their relative velocity vector and the departure of 
the products along a new line making an angle 0 with the relative velocity vector. 
Unfortunately, the center-of-mass point for two reacting species is always itself 
moving in the laboratory frame, so we first need to investigate how the laboratory 
velocities are related to the velocities in the center-of-mass frame. 

8.4.1 The Center-of-Mass Frame-Newton Diagrams 

We assume that the initial velocities of two reactants of masses m, and m2 are 
defined in the laboratory frame by the use of molecular beam techniques. In a typ- 
ical case, the reactants might each be coexpanded in a dilute mixture with a light 
rare gas from a nozzle source and collimated by skimmers, as shown in Figure 8.5. 
In such expansions, the enthalpy of the gas behind the nozzle is converted to bulk 
translational energy, and the distribution is shifted to higher energies. A simple way 

I Figure 8.4 

A + BC + AB + C reaction as seen by an observer from the center-of-mass point. 

Nozzle 
/ 

Pumps 

Figure 8.5 

In a supersonic expansion source the random thermal motions on the high pressure side of the 
nozzle are converted into directed motion along the beam axis. 
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of thinking about what happens is that the very fast molecules are slowed by colli- 
sions with those in front of them, while the slow molecules are sped up by colli- 
sions with faster molecules behind them. The result is a beam whose velocity dis- 
tribution is peaked sharply compared to a Maxwell-Boltzmann distribution, as 
illustrated in Figure 8.6. One can estimate the stream velocity, v,,, of the beam for 
a monatomic carrier gas by setting its enthalpy, 5kT/2, equal to the kinetic energy 
of the molecules, ;mu;, so that one obtains 71, = (5kTlm)lD. For helium, or for heav- 
ier gases seeded in helium, and for expansion from a room-temperature reservoir, 
this velocity is u0 = 1.76 X lo3 mls. 

Now let two such beams, one containing each reactant, intersect as in the 
apparatus of Figure 8.7. We demonstrated in Appendix 1.4 using a diagram like 
that in Figure 8.8 (often called a "Newton" diagram) that the total energy, 

- - 
- - 
- /. Supersonic beam - 
- (X 0.1) - 
- /'-'\ - 
- / \ - 
- / \ - 
- / \ - 

- / 
\ 

- 
4 - / Maxwell distribution, - 

- / - 
- / 

' T = 300 K 
\ - 

/ \ 
- / \ - 

- / 
- ' \ 

I  I  I I  I  I r i  I I  I < l - r ~ - l  I  I  I  
- 

Figure 8.6 

Comparison between velocity distributions for a Maxwell-Boltzmann distribution and the dis- 
tribution obtained from a supersonic expansion. The example shown is for He at 300 K. 

Figure 8.7 

Crossed molecular beam apparatus. The products of the reaction are detected (D) as a function 
of the variable laboratory angle O. 
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Figure 8.8 

Newton diagram for intersecting beams. 

E = im,v: + irn2v;, could also be written as E = ipv? + $MV;,,, where M = 

m, + m2, p = mm,2lM, and v, and v,,, are shown in the figure. The speed and 
direction of v,,,, recall, do not change during the collisions provided that the only 
forces act between the two particles. Specifically, v, = v, - v,, and v,,, is a vec- 
tor from the origin to the center-of-mass point on v, located a distance (m,lM)v, 
from the intersection of v ,  and v,. Thus, if the two molecular beams of velocities v ,  
and v2 define directions in the laboratory frame, then their angle of intersection, 
their magnitudes, and the masses of the reactants define the direction both of the 
center of mass and of their relative motion. 

Figure 8.8 shows that an observer riding along the center-of-mass point would 
then see reactant 1 approaching from the lower right in the diagram with velocity 
u, and reactant 2 approaching from the upper left with velocity u,. Note that in this 
frame of reference, the momentum of particle 1, m,u, = -m,(m21M)v,, is equal in 
magnitude and opposite in direction to the momentum of particle 2, m2u2 = 

m2(m,lM)vr. Because the center of mass of the system will keep moving in the 
same direction at the same speed whatever the interaction between the reactants, 
the amount of energy available to the collision of the particles is not their total 
energy, but rather just that measured in the moving center-of-mass frame: 
E, = I m  2 1 U 2  1 + 1 ,  2 2 U 2  2 - 2 m l ( m 2 ~ r l ~ ) ~ + i m 2 ( m l ~ r l ~ ) ~ = ~ ~ ~ : .  - L 

After the reaction takes place, the product molecules will move away from the 
center of mass along a new direction, as already illustrated in Figure 8.4. What will 
their new relative velocity be, and how will it be partitioned between the new frag- 
ments? The second question is answered by applying conservation of momentum 
to the problem. In the center-of-mass frame, the momenta of the particles must sum 
to zero. If we label the product masses by m3 and m, and their velocities with 
respect to the center of mass as u, and u,, then 

by conservation of momentum. 
Conservation of energy can help us to answer the first question. The new rela- 

tive velocity will depend on the amount of energy available for translational 
motion. Suppose that the energy release for the specific reaction from state i of the 
reactants to state f of the products is e,,(i,f); then the total energy available for 
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translation is that available before the reaction, E,, plus the exoergicity, ~,( i , f ) .  In 
the center-of-mass frame, the products will then have an energy E, + ~,( i , f ) .  Then, 
by conservation of energy we have 

If v,! is the relative velocity between m, and m, after the collision, vi = u4 - u,, 
then the solution for u3 and u, that satisfies equations 8.9 and 8.10 is 

By conservation of mass, M = m, + m, is the same as M = m, + m,. 
Figure 8.9 illustrates the relationships just described. For the example drawn, 

m, > m4. 
The task remaining is to find out where the product molecules will appear in 

the laboratory frame of reference. Let us first concentrate on the product with mass 
m,, recognizing that generalization to the other product would follow similar argu- 
ments. The conservation laws of energy and momentum limit the length of u, but 
not its direction, so that, as shown in Figure 8.10, m, could in principle be found 
anywhere on a sphere of radius u, centered on the center-of-mass position. Of 
course, the product will not necessarily be isotropically distributed on this sphere; 
its distribution is what we would like to learn. As shown in the figure, if we set the 
detector at a laboratory angle of 8 and in the plane of the two molecular beams, it 
will detect products that have been scattered by an angle 8 in the center-of-mass 
frame. By scanning 8 and transforming from the laboratory to the center-of-mass 
frame, it is then possible to map out the center-of-mass angular distribution of prod- 
ucts. This distribution is called the differential reaction cross section, because it 
tells us how the cross section varies with solid angle. Specifically, we will symbol- 
ize the differential cross section by d3a(v,,8)ld2~ dv:. It provides the cross section 
for product molecules that are scattered per unit time into a solid angle d2w with 

Figure 8.9 

Products separate along their new relative velocity vector vi making an angle 0 with respect to 
the reactant relative velocity vector v,. 
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Figure 8.10 

The reaction product m, will be found on a sphere of radius u,. Products scattered by 8 in the 
center-of-mass frame are scattered by O in the laboratory frame. 

Figure 8.11 

Newton diagram for the heavier product, m,. 

final relative velocities in the range from v: to v: + dv:. We use the notation d2w 
for the solid angle to mean sin 8 d0 d4, where 0 and 4 are the spherical coordinates 
in the center-of-mass frame. 

It is interesting to note from Figure 8.10 that to measure the complete differ- 
ential cross section for m,, the detector would have to be moved in a complete cir- 
cle around the scattering center. What would the Newton diagram look like for the 
other product, m,? Figure 8.11 shows that this product is located on a much smaller 
sphere, corresponding to its smaller velocity. The entire scattering angle distribu- 
tion from 8 = 0 to 8 = 2 ~ r  in the center-of-mass frame can be measured by rotating 
the detector between O = O1 and O = O, in the laboratory frame. Note, however, 
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that the scattering at a particular laboratory angle, say @,, measures reaction prod- 
ucts usually corresponding to two center-of-mass angles. If the detector is equipped 
to measure the laboratory velocity of the products by using, for example, a veloc- 
ity selector, then it would detect fast fragments due to scattering at center-of-mass 
angle 83, and slow fragments due to scattering at center-of-mass angle 0;. 

Before proceeding to an example of what can be learned from measurement of 
the differential cross section, we note that much of the scattering to the sphere cen- 
tered on the center-of-mass point is directed toward points that are outside of the 
plane formed by the crossed molecular beams and in which the detector is typically 
located. For a given center-of-mass scattering angle 8 and for randomly oriented 
reactants, we can deduce that the scattering should be cylindrically symmetric 
about the relative velocity vector v,. The reason is shown in Figure 8.12. The angle 
of scattering 8 should depend on the impact parameter b, defined in Section 1.7, and 
on the orientation of the two reactants as they collide. If the orientation is random, 
then 0 depends just on b. However, for a given magnitude of b between b and b + 
db, there are an equal number of trajectories passing through any part of an annu- 
lus centered on v,. Because the annulus has circular symmetry about v,, the scat- 
tering should also be symmetric about v,; that is, the intensity may depend on 8 but 
it does not depend on 4 ,  the azimuthal angle about v,. 

With this cylindrical symmetry in mind, let us note that the differential reaction 
cross section, d2a(v,,0)ld2w dv,!, is defined in such a way that its integral over final 
velocities and angles gives the total reactive cross section at a particular relative 
energy: 

" d3aR(V:,0) 
sin Ode. (8.12) 

d20 dv: 

A word of caution is necessary here. Molecular beam reaction experiments 
sometimes report aR(v,,O), but they more often report the "product contour dia- 
gram." The two are related. The product contour diagram plots in polar coordinates 
the derivative of the cross section with respect to both angles and product velocity; 
that is, they plot d2a(v,,8)ld2w dv,!, where d20 is shorthand for sin 8 d0 d 4  and v,! 
is the product relative velocity. 

Figure 8.12 

Diagram showing that scattering should be cylindrically symmetric about v, because of the 
cylindrical symmetry of b about v,. 
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8.4.2 Reactive Scattering: Differential Cross Section for F + D, 

We now consider measurements of the differential cross section for the F + D, 
reaction. A product contour diagram, already converted to the center-of-mass 
frame, is shown in Figure 8.13. What can be learned from such a diagram? First, 
note the dashed circles superimposed on the diagram. These correspond to the max- 
imum velocities consistent with the conservation laws for production of DF in var- 
ious vibrational levels. For example, the circle marked "u = 1" shows the velocity 
expected for DF(u = 1, J = 0). Higher rotational levels of this vibrational state 
would have less energy available for translation and so would lie within this circle. 
There are clear peaks in the contours near the energetic limits for the various vibra- 
tional levels, and these must then correspond to products formed in the indicated 
levels with varying amounts of rotational excitation. The contour peak for the u = 

3 level is the highest, so most of the DF product must be formed in this state. A 
careful analysis produces the relative populations already presented in Table 8.1. 

Note also that the DF products are "backward scattered, i.e., that with 8 = 0' 
defined as the direction in which the attacking F atom moves, the DF product is 
scattered primarily to angles near 8 = 180". The picture of the reaction which 
emerges is that the F atom must hit the D, or H, nearly head-on, and then bounce 
backward taking one of the hydrogen atoms with it. We might call this a "rebound 
reaction. 

Figure 8.13 

Product contour map for the F + D, reaction at a collision energy of 1.86 kcal mol-I. The con- 
tours show the DF velocity distribution. 
From D. M. Neumark, A. M. Wodtke, G.  N. Robinson, C. C. Hayden, K. Shobotake, R. K. Sparks, T. P. 
Schafer, andY. T. Lee, J. Chem Phys. 82,3067 (1985). Reprinted with permission from the Journal of Chem- 
ical Physics. Copyright, American Institute of Physics, 1985. 
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Reactions of other sorts are also possible. Product contour maps, or the 
related differential cross section, are valuable precisely because they tell us what 
sort of reaction we are observing. For example, in reactions such as K + I, + 
KI + I, the newly formed product, KI, is found predominantly in the forward 
direction, as shown in Figure 8.14. Reaction occurs at large impact parameters 
where an electron is transferred from the K atom (whose ionization potential is 
low) to the iodine molecule (whose electron affinity is high). The K+ and 1,- are 
then drawn toward one another by the electrostatic force, and the more energet- 
ically stable KI + I products are formed with the KI moving off in the direction 
of the original K atom. This type of reaction mechanism is known as the har- 
poon mechanism, because, in effect, the potassium has used its electron as a har- 
poon to pull in an iodine atom along the line of electrostatic force. The theory of 
such reactions will be discussed in Section 8.6.4. Harpoon reactions are exam- 
ples of a more general class of reaction, called stripping reactions, in which the 
attacking atom or radical carries off part of the attacked molecule in the forward 
direction. 

Figure 8.15 shows the product contour plot for a reaction involving a collision 
complex. Note that there is backward-forward symmetry in the differential cross 
section. The interpretation is that the 0 and Br, have "stuck" together for a time 
long compared to their mutual rotation period. To see why such complex-forming 
reactions might lead to forward-backward symmetry in the product contour plots, 
we consider the collision of two structureless particles that form a complex. Figure 
8.16 shows the two particles coming together at a given impact parameter and orbit- 
ing one another in a plane. If the collision complex lives longer than a rotational 
period, then the reaction products are likely to be flung out radially like water spin- 
ning off a wet frisbee. Thus, if dN(B)ldt is the number of products created per unit 

R Figure 8.14 

KI contour map for the reaction K + I2 + KI + I. Note that the KI product is scattered in the 
forward direction with respect to the K velocity. 
From K. T. Gillen, A. M. Rulis, and R. B. Bernstein, J. Chem. Phys. 54,2831 (1971). Reprinted with per- 
mission from the Journal of Chemical Physics. Copyright, American Institute of Physics, 1971. 
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BrO from 0 + Br2 
90" 

180" 0" 

Figure 8.15 

BrO contour map for 0 + Br, + BrO + Br reaction. Note that the scattering distribution is 
symmetric in the forward and backward directions. 
FromD. D. Parish andD. R. Herschbach, J. Am. Chem. Soc. 93,6133 (1973). Reprinted with permission from 
The Journal of the American Chemical Society. Copyright 1973 American Chemical Society. 

I Figure 8.16 

Two molecules forming a complex with angular momentum L. Products are "sprayed" out with 
a uniform distribution of angles in the plane of rotation. 

time near the angle 8, then d2N(8)ldt d8 = constant. Although it might thus seem 
that the differential cross section should have equal intensity in all directions, it is 
important to remember that for collisions of structureless particles, and indeed for 
the average collisions of structured particles if they are not oriented on average with 
respect to one another, the scattering is cylindrically symmetric about the relative 
velocity vector because of the cylindrical symmetry of 4 in Figure 8.12. In the fris- 
bee analogy, we need to think of rotating the already spinning frisbee about an axis 
in the plane of the frisbee: the water will be more dense along this relative velocity 
axis because many values of 4 for 8 near 0" or 180" contribute to flinging water in 
the same direction. 
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In summary, the differential cross section, obtained by analysis of molecular 
scattering, is useful because it gives us a detailed picture of how the reaction pro- 
ceeds. Common examples are rebound reactions, where the scattering is predomi- 
nantly in the backward direction, stripping reactions, where the scattering is pre- 
dominantly in the forward direction, and collision complex reactions, where the 
scattering exhibits forward-backward symmetry corresponding to peaking in the for- 
ward and backward directions. 

Our focus in this chapter has been on reactive collisions, but scattering experi- 
ments also provide important information about other kinds of collisions. We digress 
briefly here to discuss elastic and inelastic collisions. 

8.4.3 Elastic Collisions 

Even for collisions that do not result in reaction, the differential cross section, 
obtained from scattering experiments, provides us with the most detailed information 
about the collision mechanism. As we will see, the distribution of scattering angles 
for nonreactive collisions can be used rather directly to calculate the potential of inter- 
action between the colliding species. We consider in this section collisions for which 
there is neither reaction nor energy transfer; that is, collisions for which the energy of 
the outgoing particles is exactly the same as that of the incoming particles, only the 
direction of their motion has changed. Such collisions are called elastic collisions; 
collisions between billiard balls are a familiar approximation. It was essentially col- 
lisions of this type which we considered in Chapters 1 and 4 when we introduced the 
concept of mean free path and then used it to examine transport properties. 

Example 8.2 shows how a Newton diagram can be used to relate the labora- 
tory and center-of-mass scattering angles for elastic processes. 

example 8.2 

Newton Diagrams for Elastic Collisions 

Objective A beam of argon (MW = 40) intersects a beam of krypton (MW = 
84) at right angles. Calculate the laboratory angle between the 
krypton direction and the direction of a detector placed so as to 
monitor krypton scattered elastically in the backward center-of- 
mass direction. Assume that both collision species are traveling at 
the same speed. 

Method Draw a Newton diagram for the collision, noting that for elastic 
scattering the krypton product velocity will be located on the sur- 
face of a sphere whose radius is the original relative velocity of 
the krypton. 

Solution Figure 8.17 shows the Newton diagram. 
Because the original species are traveling at the same veloc- 

ity, the relative velocity vector lies at an angle of 45" to each of 
the primary beams. The center-of-mass velocity vector is located 
between the origin and a point 40/(40 + 84) of the distance from 
the end of the Kr velocity and the end of the Ar velocity. The elas- 
tically scattered Kr will be on a sphere of radius (40/124)v,, where 
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Figure 8.17 

Newton digrarn for elastic scattering of krypton and argon. 

v, is the length of the relative velocity vector. Kr that is exactly 
backward scattered in the center-of-mass frame has its velocity 
vector in the plane of the two beams and lying between the center- 
of-mass point and the point where the sphere intersects v,; i.e., a 
point on v, located 801124 of the distance from the tip of the orig- 
inal Kr velocity vector. Direct measurement of the diagram gives 
O = 60". Alternatively, one can use the following relationships for 
a triangle whose sides are A, B, and C, and whose opposite angles 
are a, b, and c, respectively: a + b + c = 180"; Alsin a = Blsin 
b = Clsin c. Letting b be the angle we want, we find from the last 
two relationships that sin b = sin(l80 - a - b)BIC, where B = 
(80/124)v,, C = v,,, and a = 45". Realizing that v, = G v , ,  , we 
obtain sin b = sin(135 - b) X 0.9124; a few iterations on a cal- 
culator gives b = O = 61". 

The bottom portion of Figure 8.18 shows on a log scale the angular distribu- 
tions for scattering between argon and krypton and argon and xenon obtained from 
crossed beam experiments. The scattering distributions exhibit many features com- 
mon to all elastic scattering. First, the scattering is strongly peaked in the forward 
direction. Second, for each collision partner there is a series of oscillations in the 
intensity as the angle increases. These lead to a broad relative maximum centered 
on the so-called rainbow angle. Finally, the intensity falls off strongly at angles 
approaching 180". Such features can be understood both qualitatively and quanti- 
tatively as the consequence of the attractive and repulsive forces between the colli- 
sion partners. Let us examine the qualitative aspects first. 
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CM scattering angle, 0 

Figure 8.18 

(bottom) Scattering distributions for Ar + Kr and Ar + Xe at E,,, = 1 X J .  (top) Potential 
energy functions. 
From J. M. Parson, T. P. Schafer, P. E. Siska, F. P. Tully, Y. C. Wong, and Y. T. Lee, J. Chern. Phys. 53, 3755 
(1970). Reprinted with permission from the Journal of Chemical Physics. Copyright, American Institute of 
Physics, 1970. 

The top portion of Figure 8.18 shows a good approximation to the inter- 
atomic potential between the two closed-shell species, either argon and krypton 
or argon and xenon in this example. Note that the potential energy is negative 
(attractive) for large distances and repulsive (this part of the potential is not drawn) 
for small distances. It is these forces that ultimately cause the breakdown of the 
ideal gas approximation. By knowing these forces, it is possible to calculate the 
coefficients in the virial expansion for a real gas. 

The consequences of the potential functions shown in Figure 8.18 are depicted 
in Figure 8.19, where the deflection angle ,y is plotted for various reduced impact 
parameters, b* = blR,, where Re is the distance at which the potential energy is a 
minimum. For collisions involving large impact parameters, there is a slight attrac- 
tion between the two species which leads to slightly negative value of X .  As b* 
decreases, this negative deflection increases until reaching a maximum when b is 
equal to b,, the impact parameter where there is the maximum negative deflection, 
xI.. This impact parameter is called the rainbow impact parameter for reasons that 
will be described below. Further reduction in b* leads to increasing (less negative) 
deflection. At a particular impact parameter b, called the glory impact parametel; 
the deflection is zero. For smaller impact parameters the deflection increases rap- 
idly until for b* = 0 there is backward scattering, ,y = 180". 
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Distance 

II Figure 8.19 

Trajectories giving the deflection angle for different reduced impact parameters. 

A qualitative plot of the deflection angle x as a function of impact parameter 
is given in Figure 8.20. Of course, a scattering experiment cannot tell whether a 
given center-of-mass scattering angle 8 resulted from a positive or negative deflec- 
tion X ;  what is measured is 8 = 1x1, as shown in the dashed line. 

There are several interesting features of this plot. First, note that a very large 
number of (large) impact parameters lead to small deflection. Qualitatively, this 
means that the scattering should be strongly peaked in the forward (zero deflection) 
direction, as observed in Figure 8.18. Quantitatively, note that d8ldb + 0 as b + m. 

Second, note that at the so-called rainbow angle, 8 = Or, a range of impact 
parameters lead to scattering at the same laboratory angle. Qualitatively, we might 
expect a relative maximum at this angle, as, indeed, is observed in Figure 8.18. 
Quantitatively, we note that near the rainbow angle we again have d8ldb = 0. The 
same phenomenon causes rainbows of the celestial sort, where light of a given color 
entering raindrops at different locations is scattered to the same angle. 

Third, note that there are three impact parameters that contribute to the scat- 
tering at every angle 8 smaller than the rainbow angle. From quantum mechanics 
we know that having more than one trajectory leading to the same final state 
always results in inteqerence, so we might expect the differential cross section to 
exhibit oscillations for 8 < Or, as indeed are observed. Finally, we see that only the 
very smallest impact parameters lead to large deflections near 180°, so that we 
expect there will not be very many scattering events that produce this deflection. 
This is the reason that the differential cross section in Figure 8.18 falls dramati- 
cally as 8 + 180". 

A more quantitative analysis can be performed with the aid of Figure 8.12. 
Note that the contribution to scattering between angles 8 and 6 + d8 comes from 
collisions occurring within an annulus between impact parameters b and b + db. 
Thus, d a  = I(8)sin 8 d0 d$ = 2 r b  db, or, after integrating over d$, 
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Figure 8.20 

Deflection angle as a function of reduced impact parameter. Note that 19 = 1x1 is the angle 
observed. 

b 
I(0) = 

sin 0 1 dO/db I ' 
where the absolute value has been introduced in recognition that the intensity is 
always positive. Equation 8.13 shows that, at least according to classical mechan- 
ics, the scattering intensity I(0) should be infinite when dO1db goes to zero. Figure 
8.21 shows the expected results. The top panel reproduces the curve of 0 as a func- 
tion of b* (Figure 8.20) but turned on its side so that 0 is the abscissa. The bottom 
panel plots the logarithm of the derivative dOldb. We have already noted that dOldb 
is zero at 0 = 0 and at 0 = 0,. Experiments are necessarily performed with finite 
resolution, and quantum mechanics makes it impossible to specify 0 closely enough 
for I(0) + w. These considerations avoid the infinities, but there are still peaks in 
I(0) at these locations. In particular, the rainbow peak in the scattering distribution 
is clearly evident at the angle marked by the dashed line. Note also the oscillations 
in I(0) for 0 < 0, corresponding to multiple impact parameter collisions contributing 
intensity at the same angle. 

Because the scattering function I(0) depends on the deflection function ~ ( b ) ,  
and because ~ ( b )  depends on the potential V(r), it should be clear that a measure- 
ment of I(8) can be used to determine V(r). In practice, however, the "inversion" 
from I(0) to V(r) is far from straightforward. While new techniques are still under 
development, the potential is usually determined iteratively by a "forward convolu- 
tion" technique. A functional form is assumed, classical or quantum mechanical 
scattering calculations are then performed, and the results are convoluted with 
experimental parameters and compared to the experimental results. The functional 
form of the potential is then adjusted, and the cycle is repeated. For example, the 
solid line fits to the I(0) curves in Figure 8.18 come from forward convolution of 
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II Figure 8.21 

(top) Relationship between scattering angle and impact parameter. (bottom) I(8) from equation 
8.13. 

the potentials shown at the top of the figure. Much of our knowledge concerning 
the potential of interaction between closed shell species comes from scattering 
experiments such as those just described. 

8.4.4 Inelastic Collisions 

Although we will consider inelastic collisions in more detail in Section 8.6, it is 
important to note that scattering techniques provide important information about 
energy transfer. The Newton diagram for inelastic scattering is simpler than that for 
reactive scattering because the masses of the products are the same as the masses 
of the reactants. On the other hand, unlike the diagram for elastic scattering, the 
final relative velocity will be different from the initial one, because, in general, the 
inelastic collision will transfer energy between translational and internal degrees of 
freedom. 

Consider, for example, the rotational excitation of NO by collision with argon. 
Figure 8.22 shows a Newton diagram for the collision. In this diagram, the argon 
beam is traveling from top to bottom and the NO beam from right to left. Ioniza- 
tion of components in the two beams and projection of the ions onto a screen gives 
a picture of the beams and a measurement of the velocities. The circle shows the 
range of NO velocities expected if the scattering were elastic. For processes such 
as Ar + NO(Ji) + Ar + NO(Jf) with the final rotational quantum number larger than 
the initial one, Jf > Ji, energy will be transferred from the translational to rotational 
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W Figure 8.22 

Image of molecular beams and the superimposed Newton diagram for Ar + NO. 
Reprinted with permission from L. S. Bontuyan, A. G. Suits, P. L. Houston, and B. J. Whitaker, Journal of 
Physical Chemistry, 97,6342, 1993. Copyright O American Chemical Society. 

degree of freedom, so that the final relative velocity should be less than the initial 
one. We would thus expect that final NO velocity vectors should lie inside of the 
indicated circle. 

Figure 8.23 provides images of the final velocity vector distribution obtained by 
a technique in which the product NO molecules are state-selectively ionized and pro- 
jected onto a screen. The image is such that the observer is looking down on the 
Newton sphere of Figure 8.22. The circles in the three panels are the same diame- 
ter, and represent the size of the scattering sphere that would be expected if all col- 
lisions were elastic (see Example 8.3). In these experiments the initial state is 
NO(J, = 0.5), while the final state is indicated in the ~apt ion.~  There are three impor- 
tant points to note. First, as Jf increases, the size of the scattering decreases; in the 
top panel the scattering is nearly at the elastic limit, whereas in the bottom panel it 
is substantially more confined. This observation is a simple consequence of conser- 
vation of energy (see Example 8.3). Second, as J f  increases the distribution of scat- 
tering moves from the forward part of the scattering sphere to the backward part. A 
little thought shows why this should be so. Collisions at large impact parameter pro- 
duce very little change in either the direction of the NO or its rotational state. Thus, 
low rotational levels with J f  just a little above Ji should be forward scattered. To 
appreciably change the rotation of the NO, the argon must hit nearly head-on, after 
which it will rebound nearly along its initial direction. Thus, high Jf products are 

fHere J denotes the total angular momentum, which is half-integral because it is composed of both the 
angular momentum due to nuclear spin and the angular momentum of the unpaired electron. 



II Figure 8.23 

Differential cross section for Ar -I- NO. (top) Jf = 7.5; (middle) Jf = 18.5; (bottom) Jf = 24.5. 
Reprinted with permission from L. S. Bontuyan, A. G. Suits, P. L. Houston, and B. J. Whitaker, Journal of 
Physical Chemistry, 97, 6342, 1993. Copyright O American Chemical Society. 
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associated with backward scattering. Third, the scattering is concentrated at specific 
locations, called rotational rainbows. Their origin is similar to the origin of the rain- 
bows in elastic scattering. At the rainbow angles, many trajectories contribute to pro- 
duction of NO in the specified state with the same final scattering angle. 

The way in which the rainbow angle moves from the forward to the backward 
part of the scattering sphere as the final rotational state increases can be used to 
obtain detailed information about the shape of the NO molecule. Specifically, at the 
high collision energies of these experiments, the collision samples the repulsive 
part of the potential between NO and Ar, and this potential looks nearly like an 
ellipse centered on the NO and having a difference between the major and minor 
axes of about 0.03 1 nm. 

example 8.3 
Newton Spheres for Inelastic Collisions 

Objective Calculate the velocity corresponding to the radius of the Newton 
sphere for NO(u = 0, J = 0.5) in an elastic collision with argon if 
the center-of-mass collision energy is 0.25 eV. What would be the 
radius if an inelastic collision produced NO(v = 0, J = 10.5) 
given that the NO rotational constant is 1.7 cm-'? 

Method For the elastic case, we can calculate the center-of-mass relative 
velocity from the energy and the reduced mass. The NO velocity 
will then be given by conservation of momentum. For the inelas- 
tic case, the final energy will be just the collision energy minus the 
energy needed to rotationally excite the NO. The NO velocity is 
then calculated in the same manner as for the elastic collision. 

Solution 1 ZpNo-AI.v~ = (0.25 eV)(8066 cm-I eVP1)(hc J cm) = 0.40 X 
10-l9 J. Thus, v, = [2(0.401 X lo-" J)(6.02 X 1023)(1000 kg1g)I 
(30 * 40170 g)I1l2 = 1678 d s .  The NO speed is thus (40170) * 1678 
d s  = 959 d s .  For the inelastic case, the final available energy is 
[(0.25 eV)(8066 cm-I eVP1) - (10)(11)(1.7 cm-I)] * (hc J cm) = 
0.362 X 10-l9 J. Thus, the new NO speed is [(0.362)/(0.401)](959 
d s )  = 866 d s .  

8.5 POTENTIAL ENERGY SURFACES 
Having explored how molecular scattering can reveal the details of reactive, elas- 
tic, and inelastic collisions, we now return to a main theme, the connection between 
the potential energy surface and the measured product state distributions. We have 
already seen in Figure 8.18 how the potential energy function for elastic collisions 
is related to the angular distribution of products. Of course, because more atoms are 
involved, the potential function is more complicated for reactive collisions, but it 
still controls both the angular and product state distributions. The potential energy 
surface for a system of atoms can often be determined spectroscopically for some 
regions of coordinate space (see, for example, Section 8.7.3), but most often these 
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measurements have to be supplemented with calculations. In this section we con- 
sider briefly how a potential energy surface is constructed and how to use it to cal- 
culate the outcome of collisional events. 

Potential energy functions are calculated from the Schrijdinger equation using the 
Born-Oppenheimer approximation. Because the motion of the electrons is much faster 
than that of the nuclei, it is a reasonable approximation to assume that the electrons 
adjust rapidly to any change in nuclear configuration. Thus, the electronic energy will 
be nearly independent of the nuclear motion and can be calculated for each desired 
geometry of the atoms. The electronic calculation typically employs a self-consistent 
field approach in which the energy of each electronic orbital is optimized assuming an 
average field of the remaining electrons. As the electrons are each considered in turn, 
the average field is improved. Such calculations of the electronic energy are performed 
for several geometries of the atoms involved in the reaction, and the resulting points 
on the energy surface are interpolated by a smooth fitting function. 

Figure 8.24 gives some early results obtained for the F + Hz reaction in the 
collinear configuration of lowest energy. The valley at the lower right corresponds 
to the reactants F + H,, while that at the upper left corresponds to the products 
H + HE The zero of energy has been taken as the energy of F + Hz, and the con- 
tours are labeled in units of kcal/mole. A typical reaction would proceed from the 
valley on the lower right to the one on the upper left over a slight barrier. Note that 
the barrier to the reaction is located near the entrance channel to the reaction, so 
that much of the exothermicity of the reaction is released before the H-H bond has 
stretched very far and before the HF bond has fully formed. The effect of this 
energy release is to accelerate the products toward short HF distances before the 
H-H bond has stretched, resulting in vibrational excitation of the HF product. We 
defer a more detailed explanation of this effect until the next section. 

Figure 8.24 

Potential energy surface for the F + H, reaction. 

From C. F. Bender, S. V. O'Neil, P. K. Pearson, and H. E Schaefer 111, Science 176, 1412 (1972). Reprinted 
with permission from Science. Copyright 1972 American Association for the Advancement of Science. 
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In the Born-Oppenheimer approximation the electrons sense only the charges 
of the nuclei and not their masses. Thus, the potential energy surface for F + D, is 
exactly the same as that for F + H,; it is only the zero-point energies and vibra- 
tional level spacings that change with the differing reduced masses. Thus, we would 
also expect the product acceleration to excite DF vibrationally. It is precisely this 
feature of the potential energy surface that leads to the vibrational inversion in the 
DF product that we have already observed in Figure 8.1 and Figure 8.13. 

Before generalizing this result, we see how a semiclassical approach to the 
dynamics can provide us with greater insight into the dynamics. 

8.5.1 Trajectory Calculations by Classical Mechanics 

If particles behaved classically according to Newton's laws of motion, then the rela- 
tionship between the potential energy surface and the dynamics of a reaction would 
be perfectly straightforward. One would simply specify the initial conditions for the 
reaction, for example the collision energy, the impact parameter, the angle of 
approach and so on, and then integrate Newton's laws to find the "trajectory" for 
the collision, i.e., the coordinates as a function of time. We know from the devel- 
opment of quantum mechanics that such an approach is deficient. Particles pene- 
trate into regions of the potential energy that are classically forbidden, and their 
vibrational and rotational energies can have only quantized values rather than the 
continuous ones allowed in classical mechanics. Nonetheless, classical mechanics 
can give us a conceptual picture of the dynamics, and it often indicates the correct 
trends, for example, how the product state distribution might depend on the relative 
reactant velocity. We thus briefly explore here how this classical approach might 
help us to understand molecular dynamics. 

The equations that we need to describe the system are basically simple, but the 
notation is somewhat cumbersome. Let k = 1, 2, . . . , N index the atoms in the sys- 
tem, and let qf with i = 1, 2, 3 index the three Cartesian coordinates x, y, and z for 
atom k. The potential energy is a function of the 3N coordinates: V = V(q$; i = 1-3, 
k = 1 4 ) .  Consider starting at some location on the potential energy surface. The 
force along any coordinate is simply the negative of the change in potential along that 
coordinate: FF = -(dVldq,k). However, by Newton's law Ff = m,a$ = d(p$)ldt. Thus, 

The kinetic energy of the system is simply given by the sum of the kinetic energies 
in all of the coordinates: 

By taking the partial derivative of both sides of this equation with respect to pik, we 
find that 
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Suppose we start the system in a particular configuration of positions and 
velocities corresponding to a particular kinetic and potential energy; the initial val- 
ues of V T pf, and q3 are thus known. Equations 8.14 and 8.17 then enable us to 
calculate the change in momentum and position along each coordinate. By taking 
small time steps and integrating these equations numerically, we can then develop 
the trajectory of the system. A check on the numerical accuracy of the method can 
be made by comparing the total energy, E = (T + V), at any time with the initial 
total energy. Although this method is numerically straightforward, there are several 
features that must be considered. 

The first feature of the classical mechanics approach to notice is that it requires 
us to specify some parameters over which a typical experiment might have no con- 
trol. For example, even collision experiments that measure cross sections from a 
given state of the reactants to a specified state of the products still provide no con- 
trol over such parameters as the initial impact parameter, the orientation of the reac- 
tants, the phase of the reactant vibration(s) with respect to the time of collision, and 
so on. If classical calculations are to provide guidance in understanding our exper- 
iments they must average appropriately over these uncontrolled parameters of the 
collision. A typical method for such averaging is the Monte Carlo technique. Initial 
conditions are chosen at random from the appropriate distribution. For example, the 
initial phase of reactant vibration might be chosen by picking a number at random 
between 0 and 27r. 

A second feature to note is that, although we will be interested in such quan- 
tum mechanical features as the vibrational or rotational product state distribution, 
classical mechanics does not recognize that the products have quantum states. A 
given integration of Newton's equations will likely produce a product with vibra- 
tional energy different from that allowed in quantum mechanics. Of course, if many 
states of the products are produced we might expect the overall classical distribu- 
tion of energy in a particular degree of freedom to be similar to the quantum distri- 
bution, but in order to obtain a correspondence we must use a binning process to 
assign quantum states to a particular classical outcome. For example, if the allowed 
quantum mechanical vibrational energies are given by (v + $hv, we might assign 
energies 0 5 E < hv to v = 0, energies hv 5 E 2hv to u = 1, and so on. 

Once we recognize the need for averaging over initial conditions and for bin- 
ning the final results, it is quite simple to perform a number of trajectories to see 
how particular features of the potential energy surface influence the dynamics of a 
reaction. The force a mass feels along any direction r is simply the negative deriv- 
ative of the potential, F = -dV/dl; and the acceleration that the mass experiences 
in this direction is simply given by Newton's law, F = ma. Given the initial values 
for the positions and velocities, final values can be obtained by calculating the 
changes in positions and velocities during each of a large number of small time 
increments. 

Figure 8.25 shows typical results for distance as a function of time in the 
abstraction of an H atom from H2(v = 0, J = 1) by O('D). In this figure the curves 
labeled RoA and ROB give the distances between the oxygen atom and the two 
hydrogen atoms, denoted by A and B, while the curve labeled RAB gives the H-H 
distance. The rapid oscillations on all three curves correspond to the H2 zero-point 
vibrational motion, while the slower oscillations on RoA and ROB correspond to H2 
rotational motion. At t = 30 X 10-l4 s, the collision results in a reaction between 
the oxygen and the hydrogen labeled A to produce OH, so that RoA now oscillates 
with the v = 2 vibrational motion of OH, while ROB and RAB increase as hydrogen 
B moves away from the OH product. 
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o('D) + H2(0,1) - OH(2,18) + H 
"Abstraction" 

E,, = 0.5 kcal mole-' 

.- a 

2 - 

R ,  - 

I _ - - - -  
--. . 

I 

II Figure 8.25 

A trajectory for the O('D) + H, abstraction reaction. 
From P. A. Whitlock, J. T. Muckerman, and E. R. Fisher, J. Chem. Phys. 76,4468 (1982). Reprinted with per- 
mission from the Journal of Chemical Physics. Copyright, American Institute of Physics, 1982. 

For a reaction involving N = 3 atoms there are 3N - 6 = 3 coordinates nec- 
essary to specify all the relative atomic positions. For example, in the O('D) + H, 
abstraction of Figure 8.25 the three chosen coordinates were R,, ROB, and RA,. 
Although all the coordinates can be described in a plot like that of Figure 8.25, it 
is often more instructive to fix all but two of the 3N - 6 coordinates and to plot the 
trajectory as a point moving along the potential energy surface expressed as a func- 
tion of the two chosen coordinates. For example, if we constrain the atoms to be in 
a collinear geometry, then we could plot the trajectory for the F + H, reaction as a 
point moving along the potential energy surface of Figure 8.24. Such a trajectory 
might look like that in the upper left-hand panel of Figure 8.26, which offers some 
insight into energy consumption and deposition in chemical reactions. 

Note in panels (A) and (B) of Figure 8.26 that the barrier, like that for F + H,, 
is close to the reactant valley (A + BC, lower right), a so-called early barrier. The 
top left panel shows a typical trajectory for the case when the reactants A + BC 
approach one another with translational energy. The translational energy propels 
the reactants toward the barrier, and the energy released as the trajectory leaves the 
barrier compresses the AB bond and results in vibrational energy of the products. 
By contrast, if an equivalent amount of energy were placed in the vibration of the 
BC reactant rather than in translation, the trajectory might be similar to that shown 
in panel (B), where not enough energy is provided along the A-B coordinate to 
attain the top of the barrier. We thus conclude that early barriers favor production 
of vibrationally excited products and require that the reactant energy be in transla- 
tion rather than vibration. 
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Early barrier - Late barrier 

w 

1 Figure 8.26 

The position of the barrier controls what type of energy is deposited into product degrees of 
freedom as well as what type of reactant energy is required. 
From J. C. Polanyi, Acct. Chem. Res. 5 ,  161 (1972). Reprinted with permission from the Accounts of Chem- 
ical Research. Copyright 1972 American Chemical Society. 

The opposite is true for the late barrier depicted in panels (C) and (D) of the fig- 
ure. In panel (C) we see that, to turn the corner and attain the barrier, the trajectory 
needs not only to have its energy in BC vibration but also to have the correct phase 
(dotted trajectory rather than solid one). Translational energy, shown in panel (D), 
results in deflection back toward the reactant valley. Those trajectories that do react, 
such as the dotted one in (C), that do react produce primarily translational energy 
in the products, because much of the reaction exothennicity is released along the 
B-C direction. We thus conclude that late barriers favor production of translation- 
ally excited products and require that the reactant energy be in vibration rather than 
translation. 

8.5.2 Semiclassical Calculations 

The energy consumption and deposition propensities described in the previous sec- 
tion provide an example where classical calculations give a qualitative and often 
even quantitative connection between the potential energy surface and the dynamics. 
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On the other hand, more detailed descriptions of the molecular dynamics some- 
times require quantum mechanical calculations with the potential as an input func- 
tion. Unfortunately, the effort needed to achieve the results often far exceeds the 
amount of understanding gained. An alternative route that couples the simplicity of 
classical trajectories with the rigor of quantum mechanics is needed. 

One such semiclassical approach uses the trajectory calculated from classical 
mechanics to describe the relative motion of reactants and products while treating 
the internal energy levels quantum mechanically. This approach works well as long 
as the amount of energy exchanged in the collision or reaction is small compared 
to the original translational energy; unfortunately this is not always the case. Even 
so, it is often instructive to examine the results of semiclassical approaches, 
because they provide a great deal of insight into what controls energy exchange 
processes. 

For simplicity, we consider an inelastic collision A + BC(i) + A + BC(f) tak- 
ing a molecule initially in state i to a final state$ Assume that the trajectory R(t) is 
known from classical mechanics, where R here represents the distance of A from 
the center-of-mass of BC. Then the potential V(R) can be treated as a time-dependent 
interaction, V(R(t)), and the wave function for the system will then satisfy the time- 
dependent Schrodinger equation 

Of course, at t -+ oo and t + -w, the potential goes to zero, and H(i;t) becomes the 
time-independent Hamiltonian for the system, Ho(r), with solutions 

H~(r>$j(r> = Ej$j(r>, (8.19) 

where r represents the internal coordinate of BC. 
Let us expand the general solution +(i;t) in terms of the solutions to the time- 

independent problem with time-dependent amplitudes ak(t): 

Note that at t = -oo all the coefficients a, are equal to zero except for the one mul- 
tiplying the initial state of the system 4, which has a value ai = l. At some later 
time t the wave function will be a superposition of the basis states, with the proba- 
bility of finding the system in state f given by the projection of the superposition 
state, +(r,t), onto the wave function for state$ 

where all other terms in the sum for the expansion equation 8.19 vanish because of 
the orthogonality of the solutions to the time-independent problem: 

The Kronecker delta function, ajk, is equal to unity if j = k and is zero otherwise. 
The probability of finding the system at t = w in state f is simply laf(t = w)l2, 

where the coefficient is determined by the condition that the wave function of 
equation 8.20 be a solution to equation 8.18. 
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To calculate laf(t = w)l2, let US substitute the expansion of equation 8.20 into 
the time-dependent Schrodinger equation 8.18 using the fact that the Hamiltonian 
can be written as H = Ho + V(t): 

Taking the derivative on the left-hand side and operating with Ho on the right-hand 
side, we obtain 

Note that the second summation on the left-hand side when multiplied by ih is 
exactly equal to the first summation on the right-hand side, so that 

We now multiply both sides of equation 8.25 by +f* and integrate over the 
internal coordinate r: 

Because of the orthogonality of the +, given in equation 8.22, the sum on the left- 
hand side reduces to the single term for which k = J: On the right-hand side, we 
now make the approximation that, because the probability for excitation is small 
and because the initial state of the system was characterized by ai = 1, the only 
coefficient in the sum likely to be important is a,; all the rest will remain close to 
zero. Thus. 

Letting ho = Ef - Ei, integrating both sides of equation 8.27 from t = -a to t = 
co, and squaring both sides, we obtain the time-dependent perturbation theory result 
known as the Born approximation: 

We will find that this equation is quite important in helping to understand 
energy transfer. 

Next Page



Answers and Solutions to 
Selected Problems 

Chapter 1 
1.1 (a) 

1.3 Zero. 

1.9 The average molecular energy, <E>, will be given by 

where 

312 
G(e) de = 2~ (L) 7rkT G exp (- Z) kT de. 

We can simplify the integral by letting a = 6, so that 

where the integral was evaluated using Table 1.1. 

2.5 The Arrhenius form of the rate law is k = A exp(-EalkT). 
A can be evaluated by (a) measurement of the rate at infi- 
nite temperature, because as T + -, -E,IRT + 0 and the 
exponential + 1, or (d) or (e) measurement of the intercept 
of a plot of In k versus IIT: In k = In A - (EJRT). Thus, the 
correct answer is (f). 

2.7 (c)  

2.9 (b) 

2.11 The substrate concentration must be small. 

2.13 (a) and (c) are both true, so the correct answer is (d). 

2.28 k = 5.04 X 10-l2 cm3 molec-' s-l. The activation energy 
is 1250 times R, or (1250)(8.314 J mol-' K-I) = 10.4 kJ 
mole-', while the preexponential factor is A = 5.41 X 

10-l1 cm3 molec-I s-l. 

2.34 The rate constant is 0.46 X s-I. 

Chapter 3 
3.1 Nine coordinates. 

1.13 2.95 X 1 O3 independent of T. 
3.3 (d) 

1.17 $l/molecule, independent of Z 
3.5 The activated complex for elimination of HBr would be 

more "ordered" than that for elimination of Br, so the 
elimination of HBr has a more negative entropy of activa- 
tion and thus a smaller rate constant. 

Chapter 2 
2.1 (c) 3.6 (b) is true. 

2.3 The reaction is f ~ s t  order. 3.10 (b) 8.8%; 4.6%; 25%. 
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3.11 (a) A = 1.28 X 10" L mol-I s-l. (b) p = 7.82 X lop4. 

3.13 (a) k = 2.4 X 10" L mol-I s-I exp(-2.67) = 1.7 X 1010 
L mol-' s-'. The preexponential factor from collision the- 
ory, 2.4 X 10" L mol-' s-', agrees well with the experi- 
mentally observed result, 2 X 10" L mol-' s-I. (b) A = 

0.67 X 10" L mol-I s-I, as compared to the experimental 
value of 2 X 10" L mol-I s-'. 

3.16 (b) The values of k,lk, calculated for the given vibrational 
frequencies are CH, 7.78; OH, 10.3; NH, 8.96; SiH, 6.29. 

Chapter 4 
4.1 The viscosity coefficient, like the thermal conductivity 

coefficient, is independent of the molecular density because 
the mean free path depends inversely on density, whereas 
the amount of the quantity carried (momentum in this case 
and energy in the case of thermal conductivity) depends 
linearly on density. Thus, the density cancels in the final 
expression, provided, of course, that the density is high 
enough so that the mean free path is small compared to the 
macroscopic dimensions of the system. 

-- dx - - kf(x + Ae)(x + Be) - k,(Ce - x) 
dt 

= kfAeBe - k,.Ce 4- kfx(Ae + Be) + k,.x + kfx2. 

In the last equation, the first line is zero by the definition of the 
equilibrium and the last line can be neglected if we assume 
that the perturbation is small. The resulting equation is 

dx 
- = -[kf(Ae + Be) + k,.]~, 
dt 

x = x(O)exp{- [kf(Ae + B,) + k,]t). 

Substitution of this equation into A(t) = A, + x gives the 
desired result. 

5.5 k = 9.08 X lo9 L mol-' s-'. 

Chapter 6 
6.1 (a) increases monotonically. 

6.3 Only (b) or (d) could possibly be correct. Usually the bar- 
rier to diffusion is about 25% of that for desorption, so (d) 
is most nearly the correct answer. 

6.5 Answer (c) is correct. 
4.3 The correct answers are (b), (d), and (e). 

4.5 The coefficient K is proportional to the average molecular 
speed, and helium is faster than argon because it is lighter. 
Although N, is lighter than argon, it has rotational degrees 
of freedom, so that its heat capacity is larger. Recall that K 

is proportional to C,. 

4.7 (b) increases; (c) decreases. 

4.9 The correct answer is (d). 

4.13 (a) 5.56 X W m-' K-I. (b) J,A = (44.4 W m-=) 
(1 m2) = 44.4 W. (c) 6.34 X ton: 

Chapter 5 
5.1 Independent of size. 

5.3 The differential equation for the system is 

Let x = x(t) be A(t) - A,, or equivalently B(t) - Be or C, - 
C(t). Then 

6.7 This is a case where one of the products of the reaction 
occupies sites needed by the reactant. In the presence of 
both NH, and H, in the gas phase and at temperatures 
where both adsorb to any appreciable extent, the surface 
coverage of NH, is given by equation 6.5, where "A" here 
refers to ammonia and "B" to hydrogen. In the limit when 
K,[B] >> KA[A] >> 1, the equation gives the surface 
coverage of ammonia as 0, = KAIA]IKBIB]. The rate for 
the unimolecular reaction is simply kg,, which is first 
order in ammonia pressure but inversely proportional to 
hydrogen pressure. 

6.9 The activation energy is assumed to be zero and we have 
already noted in the text that the partition function for the 
unoccupied site, q,, can be taken as unity. Thus the rate 
constant is given simply by k = (kTlh) qz'lq,. For atomic 
adsorption, q, contains only translational motion: qg = 

(2~rnkTlh~)~". For the activated complex, by assumption 
there are (in addition to the vibrational coordinate perpen- 
dicular to the surface-that is, the reaction coordinate) two 
degrees of translational motion. Thus qt' = ( 2 ~ r n k T l h ~ ) ~ ~ .  
The rate constant is thus 
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Since this equation gives the rate constant for adsorption, the 
rate of adsorption is simply $<v> times the concentration 
of the gaseous reactants, n*; or rate = $n*<v>. This is also 
the rate at which atoms hit the surface, as we have seen in 
Sections 6.1 and 4.3.2. 

Chapter 7 
7.1 (a), (c), (d), and possibly (e) are correct. 

7.3 The basic assumption is that the electrons move much more 
rapidly than the nuclei, so that the molecule can change its 
electronic configuration on a time scale short compared to 
any changes in nuclear arrangement. Note that the assump- 
tion here is the same as that used in the Born-Oppenheimer 
approximation. 

7.5 All of these processes depend on the density of states. 

7.7 The differential equations for the three species are 

7.10 v,, = (2714) X [sin(141.5)]/sin(30) = 3379 mls, for an 
arrival time of 101 ps. The difference in arrival times is 90 

P S .  

7.11 (a) Estimating the spacing between the peaks in the upper 
plot in Figure 7.35 gives about 1300 fs; v = l l t  = 

ll(1300 X 10-l5 s) = 7.7 X 10" Hz. (b) To find a rate, 
assume an exponential rise and estimate the time, 7, at which 
a concentration of (maximum conc) X [ l  - (lle)] is reached. 
Take the inverse of this time to get the rate constant, k = 

117. The rise time is about 580 fs, so k = 1/(580 X 10-l5 
s) = 1.7 X 10I2 s-'. 

7.13 One method is to solve equation 7.5 for llp(v), substitute 
in the blackbody result for p(v), and equate terms with the 
same temperature dependence. Let BF = (g2/gl) X 

exp(- hvlkT). Then 

dn2 -- - -Jan2 - kbnln2nM f Jcn3 + 2kdnIn3, 
dt The first term on the left-hand side and the first term on the 

right-hand side of the last equation depend on temperature, 
dn3 
-- - kbnln2nM - jcn3 - kdnln3. while the second terms do not. Equating the temperature 
dt independent terms we obtain the second equation of equa- 

Summing the first and third of these equations and applying tion 7.6. Equating the temperature dependent terms we 

the steady-state principle we obtain find that 

Neglecting all but the second and third terms in the differ- 
ential equation for n, and application of the steady-state 
equation to this intermediate yields 

where in obtaining the last line we have used the second 
equation of equation 7.6 obtained above. 

7.15 Let the two fragments have center-of-mass recoil veloci- 
ties of u, and u, and internal energies of E, and E,. Let the 
energy of the photon be E = hv and the bond dissociation 

Substitution of this last equation into the equation for dnlldt 
energy be Dt. Then the total energy available to the + dn21dt gives 
photofragments following dissociation is E = hv - Dg and 
is known. By conservation of energy, E = E, + E, + ipu:, 
where u, is the relative velocity of recoil and is related to u, 
and u, by the equation ipu? = irnlu: + $rnzui. Putting these 
equations together gives hv - D; = E, + E, + $rn,u: + 
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$m2u,2. By consenation of linear momentum, mlu1 = m2u,, 
so that u, = (m1lm,)ul. Substitution yields hv - D: = el + 
e2 + $nlu: + ~m2(mllm2)2uf. Solving for e,, we find that 
e2 = hV - D: - el - 1, z u2 - 1 2 m 2 ( m l l ~ ) 2 ~ f  = hv - Do - 0 

el - $ml[l + (mllm2)]u~. Thus, if all the quantities on the 
right-hand side of this equation are known, e2 can be cal- 
culated. 

7.20 The square root dependence on light concentration sug- 
gests that there is an initiation step in which light dissoci- 
ated Br2 into 

Br2 + hv --+ 2 Br. 

It is then likely that some sort of chain reaction takes place: 

Br + CH, + HBr + CH,, 

CH, + Br, + CH3Br + Br, 

with a likely termination step as 

Br + Br (+ M) --+ Br, (+ M). 

Note that this is the same mechanism as the Br,/H2 reac- 
tion, except for the initiation step, so that we would expect 
the same result: linear dependence on the CH, concentra- 
tion and square root dependence on the initiation step; that 
is, the rate should be proportional to the square root of 
light intensity and the square root of Br2 concentration. 

Chapter 8 
8.1 The answers (a) and (d) are correct. 

8.3 The correct answer is (b). 

8.5 The answers (a) and (d) are correct. 

8.9 The cross section will be proportional to the total probabil- 
ity given in equation 8.47: P = 2 Pl,(l - P,,), where PI, 
is given in equation 8.46. Note that as P,, approaches either 
zero or unity, the total probability P will approach zero. 
This is because there are two possibilities for crossings, one 
on the way in and one on the way out. For the process to 
occur, one and only one surface hop must occur. Thus, P 
will be a maximum when P12 = 0.5. Because P12 increases 
as the velocity increases, P will at first increase as PI, 
increases, but will then decrease as PI, becomes greater 
than 0.5. A more quantitative treatment is discussed by A. P, 
M. Baede, Adv. Chem. Phys. 30, (1975), see in particular 
section IA3 and Figure 5. 

8.1 1 Substituting equation 8.11 into the left-hand side of the 
first equation of equation 8.10, we find that 

Thus, equation 8.10 is satisfied. Equation 8.11 also satis- 
fies equation 8.9: 

8.13 (a) From what we are given, the distance from the center 
of mass to the peak marked 1 is 300012 = 1500 m/s. By 
measuring with a ruler, we find that the distance between 
peaks 0 is 1.3 times the distance between peaks 1, so the 
distance from the center of mass to peak 0 is (1.35)(1500 
mls) = 2025 mls. These then are radii of the Newton 
spheres that we are asked to show belong to OH(u = 1) 
and OH(u = 0). We need to show that these velocities 
make sense given the energetics of the reaction. If the col- 
lision energy is 45 kJ mol-' and the exothermicity is 46 kJ 
mol-', then there are 91 kJ mol-' available to the OH and 
F- products. For OH(u = 0, J = 0), all of this energy 
would be in translation, so the relative velocity of the prod- 
ucts, u, would be given by ~ p ' u 2  = 91 kJ1mole. With p' = 
(1 7)(19)/(17 + 19) = 8.97 glmole, we find that the relative 
velocity is u = [(2 * 91 kJ/mole)(1000 g/kg)/(8.97 
glmole)]'" = 4504 m s-l. The diagram shows the F- prod- 
ucts, and this velocity is 17/(17 + 19) of u, or 2126 m s-', 
somewhat larger than the 2025 m/s calculated for the v = 

0 peak above. On the other hand, there may be some rota- 
tional excitation of the OH, and this would reduce the size 
of the product sphere. Note that a measurement (with a 
ruler) of total width of the diagram shows that all the scat- 
tering is within a sphere corresponding to 4416 m s-', in 
rough agreement with the total calculated value of 4054 m 
s-I. For OH(u = l), there is less energy available by 43 kJ 
mol-I, so that the total available is 91 - 43 = 48 kJ mol-'. 
The relative velocity is calculated as u = (2 * 48 
kJ/mole)(1000 g/kg)/(8.97 glmole)] '" = 327 1. The F- 
velocity would then be 1545. Since this is again a bit larger 
than the measured value of 1500, there is probably some 
rotational excitation for the u = 1 products. In general, 
however, the assignment seems realistic. (b) Note that the 
reaction is peaked in both the forward and backward direc- 
tions, suggesting that a long-lived complex is likely formed. 
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(COOH)CH&db;CH(COOH). See 

       Fumaric acid 

(COOH)CH2CH2 (COOH).See 

       Succinic acid 

CH3CHO. See Acetaldehyde 

Chemical kinetics 

    definition of xi 

    importance of xi 

    instrumental techniques for xii 

Chemical laser 258 

    as weapon 258 259f 

Chemical reaction(s). See Reaction(s) 

Chemiluminescence 258 

Chemisorption 175 195 

    activated 175f 176 

    potential energy curves for 175 175f 

Chemistry, definition of xi 

Chlorine monoxide, stratospheric, 

 and ozone depletion 224 225f 

Chlorine plus methyl iodide reaction 87 

Chlorine plus ozone reaction 223 

Chlorofluorocarbons 224 247 
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CH3NC. See Methyl isocyanide 

CH3OH. See Methanol α-Chymotrypsin 85 

Cl. See under Chlorine 

Classical trajectory calculations 283 285f 286f 308 

Clausius-Clapeyron equation 178 195 

Co-error function (erfc(x)) 28 28f 

Collinear collisions 292 293f 310 311f 

Collision(s) 

    adiabatic 292 296 297 

    in center-of-mass frame 28 

    collinear 292 293f 310 311f 

    elastic 273 

  hard-sphere approximation 290 

  Newton diagram for 273 274f 

    inelastic 202 278 279f 

  Newton spheres for 281 

    internal conversion caused by 215 

    intersystem crossing caused by 215 

    molecular 260 

    reactive 

  bond-selective chemistry of 304 305f 

  cross-section for 95 96f 

  energy dependence of 95 96f 98f 

  relative energy dependence of 96 

  orientation and 302 

    surface, angular distributions of 

  scattered molecules in 189 190f 191f 

    and unimolecular decomposition 61 

    vertical distance between 122 

Collision complex 271 272f 

Collision energy(єr)  95 111 

Collision rate(s) (Z) 2 19 

    between dissimilar species 21 95 

    for molecules behaving as hard spheres 19 24 96 

    number of possible collision pairs and 20 

    relative speed of molecules and 20 

    size of molecules and 20 
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Collision theory 91 95 109 113 

    modified 99 101n 110 111 

    probability of reaction in 96 97f 

    simple 95 110 111 113 

    and “width” of barrier to reaction 102 

Concentration gradient (J)  148 

Concurrent reactions. See Parallel 

 reactions 

Consecutive reaction(s)  56 82 84 90 

Conservation of energy 266 

Conservation of mass 267 

Conservation of momentum 266 

Continuous wave (cw) radiation 210 

Contour diagram. See also Potential 

 energy surface(s) 

    of collinear reaction 92 93f 94f 

Convection, heat transport by 125 

Copper, thermal conductivity coeffi- 

 cient (κ) for, at 273 K and 1 atm 124t 

Coumarin 153, fluorescence spectral 

 shift, as function of time follow- 

 ing excitation 163 164f 

Crossed molecular beam 

 reaction 258 

    apparatus for 265 265f 

Cross-section, for reactive collisions 95 96f 

    energy dependence of 95 96f 98f 

    relative energy dependence of 96 

Cyclobutane, decomposition of, 

 Arrhenius parameters for 49t 

Cyclopropane, decomposition of, 

 Arrhenius parameters for 49t 

D 

Deactivation probability, of Ca(1P1) 

 by helium 300 301f 

Debye, Peter 153n 

Debye-Hückel limiting law 154 165 
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Debye-Hückel theory 153 

Deflection angle (χ) 275 276f 277f 310 

 See also Scattering angle 

Density of vibrational states (ρν) 214 246 

Deprotonation rates, measured by 

 relaxation techniques 159 160t 

Desorption 171 174 194 195 

    first-order, rate of 186 199 

    second-order, rate of 187 

    temperature-programmed 185 186f 195 199

   200 

Detailed balance, principle of 53 

Diels-Alder condensation, of butadiene 41 42f 

Differential cross section 267 268f 

    for argon plus nitric oxide 279 280f 

    for F + D2 reaction 270 307 

    as function of velocity 312 312f 

    for lithium plus iodine reaction 312 312f 

    measurement of 269 

    for  + HF reaction 314 314f 

    for sodium plus iodine reaction 312 312f 

Differential equations 90 

    linear 

  definition of 198 

  Laplace transforms for 196 

Diffusion 

    with electrostatic potential 167 

    in gases 116 117 131 132 

  transport equation for 118t 

    surface 171 183 194 195 

  as function of coverage 185 

  potential energy barrier and 184 184f 198 

  temperature and 184 

    in three dimensions 148 

Diffusion coefficient (D) 141 

    equation for 139 

    and friction coefficient 164 

    in gas 118 
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Diffusion coefficient (D) (Cont.) 

  for various substances, at 273 K and 1 atm 131t 

    for motion in liquid, friction 

 coefficient and 147 

    for surface reactions 183 195 199 

    temperature-dependent 184 184f 

Diffusion-controlled rate constant 148 169 

    calculation of 152 

    for ionic reactants 152 164 

    for uncharged (nonionic) reactants 151 164 

Diffusion-controlled reactions 147 149f 164 

    simple model for 148 

p-Difluorobenzene, emission 

 spectrum of 253 253f 

Dihydrogen (H2). See Hydrogen 

Dimethyether, thermal decomposition of 90 

Dinitrogen oxide 

    decomposition of, Arrhenius 

  parameters for 49t 

    photodissociation of 231 232f 

Dinitrogen pentoxide, decomposi- 

 tion of 

    Arrhenius parameters for 49t 

    mechanism for 86 

Dispersion forces 175 

Dissipation 147 

Distribution(s) 5 

    of molecular speeds 8 

Distribution function(s) 

    definition of 7 

    determination of 7 

Doppler profile, of photofragment 241 

Doppler width 208 208f 246 

E 

Eigen, Manfred 159 

Einstein coefficients 252 

    for two-level system 
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Einstein coefficients (Cont.) 

 for absorption (B12) 205 205f 246 

 relation to absorption 

  cross-section 205 216 245 

 relation to transition dipole 

  moment 207 246 

 for spontaneous emission (A21) 205 205f 246 

 for stimulated emission (B21) 205 205f 246 

Einstein-Smoluchowski 

 equation 138 143 

Elastic collision(s) 273 

    hard-sphere approximation 290 

    Newton diagram for 273 274f 

Elastic scattering 190 190f 289 

Electrical charge, transport equation for 118 

Electronic energy, calculation of 282 

Electronic energy transfer 297 298f 299f 308 

Electronic motion, partition function for 104 104t 

Electronic-to-vibrational energy transfer 89 

Electron transfer reaction(s) 153 155 

    energy dependence, as function 

  of reaction coordinate for 

  electron on donor or acceptor 156 156f 

    intramolecular rate constants, as 

  function of free energy change 157 158f 165 

    rate constant for 157 165 

    solvation dynamics of, ultrafast 

  laser investigation of 163 163f 164f 

Electrostatic potential, diffusion with 167 

Eley-Rideal mechanism, for bimo- 

 lecular reaction 180n 200 200f 

Encounter rate (kenc),    in solutions 148 152 

Energy. See also Threshold energy 

 (є*); Zero-point energy 

    as function of reaction coordinate for 

  endothermic reaction 94 95f 

    transport 117 119 

  See also Thermal conductivity 
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Energy (molecular) 

    average of (є) 24 31 

  calculation of 4 

    temperature and 4 

Energy distribution(s) 17 

Energy transfer 89 

 See also Molecular energy transfer 

    between different degrees of freedom 289 289t 308 

    electronic 297 298f 299f 308 

    rotational 296 296f 308 310 

    translational 289 290f 308 310 

    vibrational 292 293f 308 310 

Entropy of activation 109 

Enzyme(s) 

    inhibition of 68 

  competitive 68 69f 82 84

    85 

  noncompetitive 68 69f 82 84

    85 

    turnover number of 66 

Enzyme catalysis 64 

Enzyme reaction(s) 64 

    rate of 65 84 85 

Equilibrium 52 82 84 

Equilibrium constant 

    for ratio of activated complexes to 

  reactants 106 111 

    between reactants and activated 

  complexes, in activated com- 

   plex theory 103 110 

Equipartition principle 18 

Error function (erf(x)) 27 

    values of, as function of x 28 28f 

Ethane, decomposition of 86 

    Arrhenius parameters for 49t 

    to ethylene and hydrogen 73 

Ethyl iodide, photodissociation of 255 

Ethyne. See Acetylene 
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Even function(s) 8 8n 

Exchange reaction, path of 92 93f 

Exothermic reactions 258 313 

Explosion(s) 74 

    thermal 74 

F 

Faraday, M. 174 

F + D2 reaction 313 

    chemical laser based on 258 259f 

    differential cross section for 270 307 

    energetics of 258 259f 

    final vibrational levels 258 259f 259t 

    potential energy surface for 283 

    product contour map for 270 270f 

F + H2 reaction, potential energy 

 surface for 282 282f 

Fiberglass insulation, heat flow through 125 

Fick’s law 

    first  118t 131 132 

    second 135 

Field emission microscopy 183 184f 

Firefly flashing 87 

First-order reaction(s) 37 38f 81 

    Arrhenius parameters for 48 49t 

    opposing 52 

Flash photolysis. See hmp-probe 

 technique 

Flow. See also Flux 

    of liquid through tube 117 117f 

Fluid, transport equation for 118t 

Fluorescence 209 246 

 See also Laser-induced fluorescence 

Fluorescence decay 214 215f 246 

Fluorescence intensity (I) 38 39f 210 

    definition of 39 

Fluorescence lifetime, as function of 

 excitation energy 216 217f 
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Fluorine plus hydrogen reaction 113 113t 

    Arrhenius parameters for 50t 

Flux  16 16n 

    of atoms or molecules to surface 172 194 

    definition of 117 

    general flux equation 122 

    molecular 116 120 120f 

  across a surface 138 

    of momentum 128 

 units of 128 

    of property through a plane 120 

    time-dependent 134 134f 

    of volume 130 

Formic acid, adsorbed on nickel 

 surface at 325 K, temperature- 

   programmed desorption of 187 188f 

Forward convolution 277 

Forward scattering 271 308 

Fourier’s law 118t 124 

Franck-Condon principle 207 207f 209 217

   228 246 252 

Free radical reactions 72 83 

Frequency of modulation (ω) 193 194f 195 

Friction coefficient (ζ),147 164 

    and mean squared displacement 166 

β-Fructofuranidase. SeeInvertase 

Fumaric acid, formation of 68 

G 

Gas(es). See also Ideal gas 

    density of, pressure and 131 

    kinetic theory of 1 

  historical perspective on 2 

  integrals of use in 9 10t 

Gas-liquid interface, study of, 

 molecular beam techniques for 201 201f 

Gas-solid interface(s). See Solid-gas 

 interface(s) 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

General flux equation 122 

Gibbs free energy 109 

Global warming 221 225 

Glory impact parameter (bg) 275 

Glycerol 

    collisions of various gases with, 

  time-of-flight distributions for 202 203f 

    viscosity coefficient for, at 273 K 128t 

Gradient operator (∇) 148 

H 

H, H2. See Hydrogen 

Half-life, of reactant 38 40 

Hamiltonian 209 212 213 249

   298 299n 

Hard spheres, collision cross section for 290 

Harpoon mechanism 271 300 301 

Hartley band 222 222f 

Heat, transport. See also Thermal 

 conductivity 

    by convection 125 

    by radiation 125 

Heat flow 4 

    through fiberglass insulation 125 

Helium 

    most probable speed of, and most 

  probable speed of oxygen, 

   comparison of 14 

    thermal conductivity coefficient 

  (κ) for 142 

  at 273 K and 1 atm 124t 

    viscosity coefficient for, 

  at 273 K 128t 

Herschbach, D. R. 263n 

Herzfeld, K. F.  73 

Higher-order reactions 47 

HNO3. See Nitric acid 

H2O. See Water 
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Hönl-London factor 229 252 

l’Hôpital’s rule  85 

Hydrogen 

    desorbed from polycrystalline 

  iron, angular distribution of 190 191f 

    thermal conductivity coefficient 

  (κ) for, at 273 K and 1 atm 124t 

    viscosity coefficient for, at 273 K 128t 

Hydrogen atom exchange reaction 92 100 

Hydrogen-hydrogen, diffusion coef- 

 ficient (D) for, at 273 K and 1 atm 131t 

Hydrogen-oxygen flame 76 

Hydrogen peroxide plus iodide reaction 169 

Hydrogen plus bromine reaction 36 78 86 

    chain mechanism of 72 

Hydrogen plus carbon dioxide 

 reaction, Arrhenius parameters for 50t 

Hydrogen plus dinitrogen monoxide 

 reaction, Arrhenius parameters for 50t 

Hydrogen plus fluorine reaction 113 

Hydrogen plus methane reaction, 

 Arrhenius parameters for 50t 

Hydrogen plus nitric oxide reaction, 

 Arrhenius parameters for 50t 

Hydrogen plus oxygen reaction 

    Arrhenius parameters for 50t 

    Arrhenius plot of 48 49f 

    as branched chain reaction 75 76f 

Hydrogen plus ozone reaction, 

 Arrhenius parameters for 50t 

Hydrogen plus water reaction, 

 Arrhenius parameters for 50t 

Hydrogen sulfide, decomposition of, 

 Arrhenius parameters for 49t 

Hydroxyl plus carbon monoxide reaction 51 

Hydroxyl plus hydrogen reaction 114 

    Arrhenius parameters for 50t 
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Hydroxyl plus methane reaction, 

 Arrhenius parameters for 50t 

Hydroxyl plus oxygen reaction, 

 Arrhenius parameters for 50t 

Hydroxyl plus ozone reaction 223 

I 

Ideal gas 

    monoatomic, thermodynamics of 17 

    pressure of 2 

Ideal gas law 1 34 5 24 

    average square of velocity <v> 

 and  8 9 

Impact parameter 20 20f 

    and deflection angle 276 276f 277f 310 

    scattering angle and 277 278f 

Impact parameter(s) 275 276f 

    glory  275 

    rainbow (br) 275 310 

Induction period, of consecutive 

 reactions 58 

Inelastic collisions 202 278 279f 

    Newton spheres for 281 

Inhibition, enzyme 

    competitive 68 69f 82 84

   85 

    noncompetitive 68 69f 82 84

   85 

Integrals, of use in kinetic theory of gases 9 10t 

Integral transforms 196 

Interference 276 

Internal conversion 215 216f 247 249 

    induced by collisions 215 247 

    intramolecular 216 247 

Intersystem crossing 215 216f 247 249 

    induced by collisions 215 247 

    intramolecular 216 247 
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Intramolecular vibrational energy 

 redistribution 211 213f 214f 215f

    246 249 

Invertase, reaction catalyzed by 64 

Iodine 

    electronically excited 

  deactivation by collision with NO 55 

  radiative decay of 38 39f 51  55 

  as pseudo-first-order 

   reaction 45 

    fluorescence of, quenching of 210 211f 252 

    fluorescence spectrum of 210 211f 

Iodine plus oxygen chloride 

       reaction 90 

Ionic strength, of solutions 

    increasing, change in activation 

  energy with 155 165 

    and reaction rates 153 165 

  for ions of varying charges 154 154f 165 169 

Iron, thermal conductivity coefficient 

       (κ) for, at 273 K and 1 atm 124t 

Isothermal compressibility coeffi- 

       cient (κ) 124n 

Isotropic distribution of 

       vectors 302 303f 

K 

Ketene, photolysis, photofragment 

       yield of CH2 250 250f 

Kink(s)  172 172f 194 

Knudsen cosine law 190 

Kronecker delta function 

    (δjk)  287 

L 

Laboratory to center-of-mass 

       conversion 307 
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Lactase, reaction catalyzed by 67 

Laminar flow, of liquid 130 

Landau-Teller equation 294 295 

Landau-Teller model 292 

Landau-Zener equation 300 308 

Langevin equation 145 164 165 

Langmuir, Irving 176 

1-Langmuir exposure, definition of 174 

Langmuir-Hinshelwood model, for 

       bimolecular reaction 180n 

Langmuir isotherm 176 

Langmuir model, for adsorption 176 177f 195 198 

Laplace transform(s) 57n 196 197t 

Laser(s)  206 249 

 See also Chemical laser; Multiphoton ioniza- 

   tion; Ultrafast laser techniques 

    excitation using, and control of 

  reaction outcome 304 305f 308 

    hydrogen fluoride 113 

Laser-induced fluorescence 226 227 228 228f

   229f 247 251 

Lee, Y.  T. 263n 

Lennard-Jones 6 

 potential 291 292f 

Lifetime, of reactant 38 40 

Lifetime width 208 246 

Light 

    absorption of 205 249 

    energy density per unit frequency (ρ(υ)) 205 205f 246 

    interactions with matter 205 245 

Lindemann, F. A. 61 

Lindemann mechanism 60 77 82 84

   113 233 

    high-pressure result for 61 

    low-pressure result for 62 

Lineweaver-Burk plot 

    for enzyme reaction obeying 

  Michaelis-Menten mechanism 66 67f 
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Lineweaver-Burk plot (Cont.) 

    for noncompetitive 

  inhibition 69 

Liquid 

    flow through tube 117 117f 

    laminar flow of 130 

Liquid solution(s) 

    ionic strength of, and reaction rates 153 

    reactions in 144 

  of charged species 152 

  rate constant determination for 

  by relaxation techniques 159 160t 

 by temperature jump technique 159 160f 

 by ultrafast laser 

  techniques 161 

 and reactions in gas phase, 

  comparison of 144 

Lithium plus iodine 

 reaction 312 312f 

Lorentz-broadened line shape 208 208f 

Lotka mechanism 70 90 

M 

Mach number 14 

Malonic acid 68 

Marcus, R. 159n 

Marcus inverted region 157 165 

Marcus theory 153 155 

Mass spectrometry, of photofrag- 

 ments 241 241f 242f 

Mass-weighted coordinates 313 

Maxwell-Boltzmann distribution 116 265 265f 289 

Maxwell-Boltzmann distribution law 119 

Maxwell-Boltzmann energy 

 distribution 24 

Maxwell-Boltzmann speed distribution 1 11 14f 24

   31 

    experimental verification of 15 
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Maxwell-Boltzmann speed distribution (Cont.) 

    as function of temperature 12 12f 

    measurement of, methods for 15 16f 

Maxwell-Boltzmann velocity distri- 

 bution, one-dimensional 10 11f 

Mean free path (λ) 2 31 116 122

   133 

    in liquid 145 

    for molecules behaving as hard spheres 23 25 

    of nitrogen 23 

    transport between layers sepa- 

  rated by 122 123f 

Mean speed 13 14f 

Mean squared displacement 

    expression for 166 

    friction coefficient and 166 

    long-time 166 

Mechanism(s). See Reaction mecha- 

 nism(s) 

Menten, Maude 65n 

Mesosphere 221f 222 

Methane 

    thermal conductivity coefficient 

 (κ) for, at 273 K and 1 atm 124t 

    viscosity coefficient for, at 273 K 128t 

Methanol, decomposition of, Arrhe- 

 nius parameters for 49t 

Methemoglobin reductase 69 

Method of initial slopes 37 

Methyl alcohol. See Methanol 

Methyl bromide, formation of 255 

Methyl iodide, photolysis of 239 239f 

Methyl iodide plus rubidium 

 reaction, steric aspects of 303 304f 

Methyl isocyanide, decomposition 

 of, Arrhenius parameters for 49t 

Methyl radical plus hydrogen reaction 100 

    Arrhenius parameters for 50t 
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Methyl radical plus methyl radical reaction 114 

Methyl radical plus oxygen reaction, 

 Arrhenius parameters for 50t 

Michaelis, Leonor 65n 

Michaelis-Menten constant, for 

 lactase-catalyzed hydrolysis of 

   synthetic substrate 67 

Michaelis-Menten equation 65 

Michaelis-Menten mechanism 65 66n 67n 82 

Microscopic reversibility, principle of 52 

Milk, spoilage of 87 

Minimum energy path 94 

Mobility (μ) 167 

Modulated molecular beam methods. 

 See Molecular beam methods 

Molecular beam methods 

    apparatus for 189 189f 

    crossed 

  alignment of reactants in 302 303f 

 orientation of reactants in 302 303f 

    for study of gas-liquid interactions 201 201f 

    for surface reactions 187 196 200 

  in determination of angular 

   distribution of scattered species 189 190f 191f 196 

  in determination of kinetic 

   parameters 192 193f 194f 200 

Molecular collisions 260 

Molecular diameter 

    calculation of, from viscosity coefficients 129 

    estimation of 129 

Molecular energy transfer 289 

Molecular flux. See Flux, molecular 

Molecular reaction dynamics 257 

    examples of 302 

Molecular scattering 263 307 310 

    backward 270 308 

    cylindrical symmetry 269 269f 

    elastic 289 
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Molecular scattering (Cont.) 

    forward 271 308 

    inelastic 278 

    reactive 270 

    symmetric 271 272f 

Molecular transport 117 

 See also Diffusion 

Momentum 

    transport 117 119 

  See also Viscosity 

    transport equation for 118t 

Monte Carlo method 284 

Montreal protocol 224 

Most probable speed (c*) 13 14 14f 24 

Miiller, E. W.  184 

Multiphoton ionization 226 229 231f 232f

   247 

N 

NADH (nicotinamide adenine dinucleotide) 69 

Naphthalene, molecule of, root- 

 mean-squared (rms) distance 

   traveled by, in a day 136 

Newton diagram  264 266f 268f 307 

    for argon plus nitric oxide 278 279f 

    for elastic collisions 273 274f 

Newton’s equations of motion  2 

Newton’s law, of viscosity 128 

Newton’s laws of motion 283 

Newton spheres, for inelastic collisions 281 

NH3. SeeAmmonia 

Nitric acid, decomposition of, Arrhe- 

 nius parameters for 49t 

Nitric oxide (NO) 

    and ozone, collision rate of 22 

    rotational excitation of, by collision with argon 278 279f 

Nitric oxide (NO) plus ozone reaction 113 223 
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Nitrogen 

    diffusion coefficient (D) for calculation of 133 

  at 273 K and 1 atm 131t 

    mean free path of 23 

    rotational distribution 231 232f 

    thermal conductivity coefficient (K) for 142 

  at 273 K and 1 atm 124t 

    thermal conductivity of 142 

    viscosity coefficient for, at 273 K 128t 

Nitrogen dioxide 

    photodissociation of, photofrag- 

  ment angular distribution for 241 241f 

    unimolecular dissociation of 231 233f 234f 237 

Nitrogen-nitrogen, diffusion coeffi- 

 cient (D) for, at 273 K and 1 atm 131t 

Nitrous oxide. See Dinitrogen oxide 

N2O. See Dinitrogen oxide 

N2O5.See Dinitrogen pentoxide 

Normalization 5 

Normalization constant (K) 7 31 

Norrish, R.G.W. 225 225n 226 

Number density (n*) 129 132 134 142 

O 

O3. See Ozone 

Odd function(s) 8 

OH. See under Hydroxyl 

Ohm’s law 118 118t 

Olive oil, viscosity coefficient for, at 273 K 128t 

One-dimensional random walk 142 

    and molecular diffusion in gas 136 137f 139 

Opposing reactions 52 54f 82 

Order. See Reaction(s), order of 

Orientation, and reactive collisions 302 

Orientation requirement, in collision 

 theory 100 110 

Oriented distribution of 

 vectors 303 303f 
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Oscillating reaction(s) 70 

Oscillator, vibrational excitation of 292 

Oxygen 

    diffusing through nitrogen, calcu- 

  lation of number of molecules 

   crossing an area per second during 132 

    dissociation of 222 

    most probable speed of, and most 

  probable speed of helium, comparison of 14 

    thermal conductivity coefficient 

  (κ) for, at 273 K and 1 atm 124t 

    triplet valence states of, calcu- 

  lated potential energy curves for 220 220f 

    ultraviolet absorption spectrum of 219 219f 

    viscosity coefficient for 142 

  at 273 K 128t 

Oxygen-carbon dioxide, diffusion 

       coefficient (D) for, at  273 K and 1 atm 131t 

Oxygen-nitrogen, diffusion coeffi- 

       cient (D) for, at 273 K and  1 atm 131t 

Oxygen-oxygen, diffusion coeffi- 

       cient (D) for, at  273 K and  1 atm 131t 

Oxygen plus acetylyne reaction, 

       Anhenius parameters for 50t 

Oxygen plus bromine reaction, prod- 

       uct contour plot for 271 272f 

Oxygen plus ethene reaction, Arrhe- 

       nius parameters for 50t 

Oxygen plus hydrogen reaction, 

       Arrhenius parameters for 50t 

Oxygen plus methane reaction, 

       Arrhenius parameters for 50t 

Oxygen plus nitrogen dioxide reac- 

       tion, Arrhenius parameters 

       for  50t 

Oxygen plus nitrogen reaction 114 

Oxygen plus ozone reaction 223 

    Arrhenius parameters for 50t 
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Ozone 

    absorption spectrum of 222 222f 

    Chapman mechanism for 223 247 249 

    chlorine and 221 223 225f 247 

    decomposition of, Arrhenius parameters for 49t 

    dissociation of 222 

  time-of-flight distribution of 

  O2, fragment from 242 242f 243 

    formation of 220 

    hydroxyl and 223 247 

    light absorption by 220 

    and nitric oxide (NO), collision rate of 22 

    nitrogen oxides and 221 222 223 247 

    production of 59 

    steady-state concentration of 249 

  regulation of 223 247 

    stratospheric, destruction of 223 247 

  determination of, using steady- 

   state approximation 59 

Ozone hole 224 247 

P 

Parallel reactions 54 82 84 90

   260 

Partition function(s) 111 112 

    for activated complex 106 

    in activated complex theory 103 110 

    definition of 103 

    electronic 104 104t 

    for molecular degrees of freedom 104 104t 105 112 

    physical interpretation of 103 

    rotational 104 104t 

    translational 104 104t 112 

    vibrational 104 104t 105 

Pascal  128 

Persoz, Jean-Francois 65n 

Phase shift 193 196 

Phosphorescence 209 
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Photochemical smog 221 225 

Photochemistry 204 

    on short timescales 244 244f 245f 

Photodissociation 218 219f 247 

    direct  218 219f 247 

    indirect 218 247 

    unimolecular 231 233f 255 

Photodissociation dynamics 225 247 

Photofragment 

    alignment of, in laboratory frame 243 

    rotation vector of, and velocity 

  vector, correlation between 

   (v-J correlation) 243 

Photofragment angular distributions 239 239f 247 

    measurement of 241 241f 

Photophysical processes 209 246 

Photopredissociation 255 256f 

Physical chemistry, definition of xi 

Physisorption 175 195 

    potential energy curves for 175 175f 

Poise  128 

Poiseuille formula 130 139 

    use of 130 

Poiseuille’s law 117 118t 

Polanyi, John 258 258n 263n 

Polar vortex 224 

Population inversion 258 

Porter, G. 225 225n 226 

Potassium plus iodine reaction, prod- 

 uct contour map for 271 271f 

Potential energy curves 

    adiabatic 298 

    for discussion of harpoon mecha- 

  nism 301 301f 

Potential energy function 111 

    calculation of 282 

    for elastic collisions 275 275f 281 

    and rate constant 91 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

Potential energy function (Cont.) 

    for reactive collisions 281 

Potential energy surface(s) 92 93f 94f 95f

   109 281 313 

    for ArHF system 306 307f 

    for BrHI system 310 311f 

    for collinear reaction 92 93f 

    for F + H2, reaction 282 282f 

    from spectroscopic information 305 306f 307f 

Predissociation 218 219f 220 

Preexponential factor (A) 48 49t 50t 83

   87 102 109 111 

    113 114 

    for desorption 185 

    temperature dependence of 114 

Pressure, of ideal gas 2 

Pressure gradient 117 

Primary kinetic isotope effect 114 

Primary salt effect 155 170 

Principle of detailed balance 53 

Principle of microscopic reversibility 52 

Product contour diagram 269 270f 271f 272f 

Proportionality constant 36 117 

Protonation rates, measured by 

      relyation techniques 159 160t 

Pseudo-first-order reaction(s) 44 82 

    rate constant for, evaluation of 46 

Pump-probe technique 161 161f 225 247 

Q 

Quantum beats 212 215f 246 

Quantum mechanics, definition of xi 

Quantum yield, for photochemical 

      process 209 

Quenching, fluorescence 210 246 252 
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R 

Radiation, heat transport by 125 

Radiationless transition 215 

    promoting mode for 217 217f 

Rainbow angle 274 276 

Rainbow impact parameter (br) 275 310 

Random walk, one-dimensional, and 

 molecular diffusion in gas 136 137f 139 

Rate constant(s) (κ) 36 36n 82 

     calculation of 109 

     collision theory 95 110 

     as function of energy 95 

      at given temperature (k(T)) 261 

  calculation of, from σ(ε,i,f) 262 

     for hard-sphere collisions 99 

      orders of magnitude, estimation 

  of, with activated complex theory 105 

      potential energy function and 91 

      prediction of, theoretical basis for 109 

      for pseudo-first-order reaction, 

  evaluation of 46 

      second-order, units for 47 

      for state-to-state reactions 260 

      temperature dependence of 48 

      at two temperatures 82 

  relationship between 50 

Rate law(s) 35 81 

    definition of 35 35f 

    determination of mechanisms from 77 

    differential 

  for first-order reactions 37 81 

  for higher-order reactions 47 

  for second-order reactions 40 43 81 

    integrated 81 

  for fist-order reactions 37 

  for second-order reactions 40 

    macroscopic, reaction mechanism and 51 
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Rate-limiting step 88 

    and reaction rate 77 79 83 

Rate of reaction. See Reaction rate(s) 

Reactant(s) 

    half-life of 38 40 

    lifetime of 38 40 

Reaction(s) 

    bimolecular 51 

    branched chain 74 83 

    chain  72 78 

  chain steps of 72 

  initiation step of 72 

  termination step of 72 

    consecutive 56 82 

    diffusion-controlled 147 149f 164 

  simple model for 148 

     exothermic 258 313 

     first-order 37 38f 81 

  Arrhenius parameters for 48 49t 

  opposing 52 

     free radical 72 

     harpoon 271 300 

     higher-order 47 

     in liquid solutions 144 

     opposing 52 54f 82 

     order of 81 83 

  definition of 36 

  experimental determination of 37 

     oscillating 70 

     overall order of, definition of 36 

     parallel 54 82 260 

     pseudo-first-order 44 82 

  rate constant for, evaluation of 46 

     rebound 270 

     second-order 81 

  Arrhenius parameters for 48 50t 

  first order in each of two 

  reactants 40 43 
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  with nonstoichiometric start- 

  ing conditions, general solution for 43 

  opposing 54 

  rate constants for, units  for 47 

  in single reactant 40 41f 

    stripping 271 

    termolecular 51 

    third-order 47 83 

    unimolecular 51 

  activated complex theory of 104 107 110 

  reaction rate for, with reactant 

  molecules of same energy 107 

  surface 179 195 

  temperature-dependent rate of 107 

Reaction coordinate 94 95f 

Reaction cross section 260 262 

 See also Differential cross section 

Reaction dynamics 257 

    definition of xi 

Reaction intermediate(s) 35 84 

Reaction mechanism(s) 34 51 89 

    determination of, from rate laws 77 

    elementary steps of 34 51 82 

  order of, molecularity and 52 84 

    microscopic processes of 51 

Reaction order. See Reaction(s), order of 

Reaction rate(s) 34 90 106 

 See also Rate law(s) 

     factors affecting 34 

     isotopic substitution and 114 

     measurement of 35 

     prediction of, theoretical basis for 91 

  See also Activated complex 

   theory; Collision theory 

     rate-limiting step and 77 79 83 

     temperature dependence of 48 

     of two atoms, activated complex 
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  theory calculation of 107 108 

     for unimolecular reaction with 

  reactant molecules of same energy 107 

Reactive collision(s) 

    bond-selective chemistry of 304 305f 

    orientation and 302 

Reactive scattering 270 

Rebound reaction 270 

Reduced mass (μ) 22 31 

Relative energy 96 

Relative velocity 32 

    for molecules behaving as hard 

  spheres 20 20n 25 95 

    for two particles, in center-of- 

  mass frame 29 30f 

Relaxation techniques 

    for measurement of rapid rate constants 159 160t 165 

    protonation and deprotonation 

 rates measured by 159 160t 

Reorganization energy (Em) 157 165 

Rice, F. O. 73 

Rice-Herzfeld mechanism 73 83 

    for decomposition of acetaldehyde 74 79 

Root-mean-squared (rms) 

 distance 135 

    as function of square root of 

  number of steps for a one- 

   dimensional random walk 137 137f 142 143 

    temperature and 142 

    traveled by adsorbate on surface 183 

    traveled by a molecule in a day 136 

Root-mean-squared (rms) 

 speed 12 14f 

Rotational energy transfer 296 296f 308 310 

Rotational motion, partition function for 104 104t 

Rotational rainbows 281 
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RRKMWSU computer program 255 

Rubidium plus methyl iodide reaction 100 

Ruthenium(0001) surface, dissocia- 

 tion of nitric oxide on, catalytic sites of 182 183f 

Rutherford scattering experiments 263 263f 

S 

Saddle point, in contour diagram 93 

    “width” of barrier over 110 

Salicylate ion 69 

Salt effect, primary 155 170 

Scaling law(s) 297 

    exponential energy-gap 297 

    statistical power-gap 297 

Scattering, molecular. See Molecular 

       scattering 

Scattering angle. See also Deflection 

       angle (χ) 

    for elastic collisions 290 

    and impact parameter 277 278f 

Schrodinger equation 282 

Schumann continuum 219f 220 

Schumann-Runge bands 219f 220 

Second-order reaction(s) 81 

    Arrhenius parameters for 48 50t 

    first order in each of two reactants 40 43 

    with nonstoichiometric starting 

  conditions, general solution for 43 

    opposing 54 

    rate constants for, units for 47 

    in single reactant 40 41f 

Self-diffusion 133 142 

Semiclassical trajectory calculations 286 308 

Silver, thermal conductivity of 142 

Skewed coordinates 313 

Sodium iodide, photodissociation of 244 244f 245f 251 
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Solid-gas   interface(s)), reactions at 171 

    processes of 172 

Solid surfaces 

    catalytic sites of 182 183f 

    flux of atoms or molecules to 172 194 

    flux of reactants to 172 

    number of molecules striking, at 

 1-langmuir exposure, com- 

  pared to number of surface sites 172 174 

    reactions at 171 

  activated complex theory of 181 

  bimolecular 180 181f 195 

  bimolecular elementary step 

   in, rate constant for 182 

  catalytic 179 

  mechanisms for 179 

  unimolecular 179 195 

  unimolecular elementary step 

  in, rate constant for 182 

    structure of  172 172f 173f 

    study of, techniques for 172 185 

Solution(s). See Liquid solution(s) 

Solvation, energy of, for reactants 

       versus products 155 

Solvent cage. See Cage effect 

Spectroscopic information, potential 

       energy surfaces from 305 306f 307f 

Spectroscopy, definition of xi 

Specular scattering 190 190f 

Speed (molecular) 

    average 24 

 as function of mass 15 15f 

    distribution of 8 

    mean   13 14f 

    most probable (c*) 13 14f 24 

  for oxygen and helium, comparison of 14 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

Speed (molecular) (Cont.) 

    relative, and collision rate 20 

    root-mean-squared (rms) 12 14f 

    and speed of sound, relationship of 13 

Speed distribution (molecular) 24. 

       See also Maxwell-Boltzmann 

       speed distribution 

    used to determine averages 13 

Speed of sound, and molecular 

       speed, relationship of 13 

Spherical coordinates 11f 26 26f 

    volume element in 26 27f 

S(1D) plus argon 

    collision cross sections for 290 291 t  

    speed distributions for sulfur, 

  as function of number 

   of collisions with argon 289 290f 

State-to-state rate constants 260 307 310 

State-to-state reaction 

       rates 257 

Statistical mechanics 110 

    definition of xi 

Steady-state approximation 56 82 83 84

   86 

    and enzyme reactions 63 

    for free radical reactions 72 

    and Lindemann mechanism 60 

Steady-state hypothesis 77 

Step(s), on surface 172 172f 194 

    as catalytic sites 182 183f 

Step-adatoms 172 172f 

Steric factor (p) 100 109 110 111

   302 

    estimation of 100 

    formula for, in activated complex theory 107 

Stern-Volmer equation 210 246 

Stirling’s approximation 143 

Stoichiometry 36 81 89 
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Stratosphere 221 221f 

    ozone balance in 59 

    photochemistry of 221 222 

Stream velocity 265 

Stripping reactions 271 

Succinic acid 68 

Succinic dehydrogenase, inhibition of 68 

Supersonic expansion technique 212n 264 264f 306 

    velocity distribution for 265 265f 

Surface coverage 186 186n 195 199 

Surface reactions. See Solid surfaces, reactions at 

T 

Taylor series expansion 123 123n 126 

Temperature 

    definition of 4 

    and energy 4 

    probability of vibrational reaction 

  as function of 292 293f 294 

Temperature dependence 

    of preexponential factors, in gas- 

  phase reactions 114 

     of rate constant (k(T)) 33 95 98 

  derivation of, from P(єr,b) 97 

     of reaction rate 48 

Temperature jump technique 159 160f 

Temperature-programmeddesorption 185 186f 195 199 

Termolecular reactions 51 

Terrace(s) 172 172f 194 

    crystallography of 172 173f 

Terrace vacancies 172 172f 

Thermal conductivity 116 117 124 142 

    quantity (property) carried in 118 119 

    transport equation for 118t 

Thermal conductivity coefficient (κ) 118 124n 141 142 

    equation for 138 

    of nitrogen, at 273 K and 1 atm 126 
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    for various substances at 273K and 1 atm 124t 

Thermal explosion(s) 74 

Thermal rate constant 111 

Thermodynamics 

    definition of xi 

    of ideal monoatomic gas 17 

Thermosphere 221f 222 

Third-order reactions 47 83 

Threshold energy (є*) 94 95f 99 110 

    in activated complex theory 103 103f 

    orientation dependence of 101 102f 

Time-dependent diffusion 

       equation 135 

Time-dependent transport 133 

Time-of-flight measure- 

       ment 16 17f 

    at gas-liquid   interface 201 203f 

    for photodissociations 241 241f 242 242f 

Time-resolved laser absorption 226 

Tolman’s theorem 114 

Total reactive cross section 269 

Trajectory calculations 

    by classical mechanics 283 285f 286f 308 

    semiclassical 286 308 

Transfer function (t(ω))  193 193f 200 

Transition dipole moment (μ12) 207 246 

Translational energy transfer 289 290f 308 

Translational motion, partition func- 

 tion for 104 104t 

Transport equation 117 

    for diffusion 118t 

    for electrical charge 118t 

    for fluid transport 118t 

    functional form of 117 

    for momentum 118t 

    for thermal conductivity 118t 



Index Terms Links 

 

This page has been reformatted by Knovel to provide easier navigation. 

Transport law(s) 

    microscopic basis for 119 138 

    simplifying assumptions for 119 

Trapping-desorption collisions 202 

Troposphere 221 221f 

    photochemistry of 221 

Turnover number, of enzyme 66 

U 

Ultrafast laser techniques, for mea- 

 surement of rapid rate constants 161 161f 163f 164f

    165 

Unimolecular decomposition 61 82 113 

    mechanism of 60 

Unimolecular dissociation 231 233f 255 

Unimolecular reactions 51 

    activated complex theory of 104 107 110 

    reaction rate for, with reactant 

  molecules of same energy 107 

    surface  179 195 

    temperature-dependent rate of 107 

V 

van der Waals, J. D. 305n 

van der Waals clusters, spectroscopy of 305 306f 307f 309 

van der Waals complexes 305 

van der Waals forces 175 

Vector correlation, in molecular dynamics 242 

 See also Photofragment angular distributions 

Velocity (molecular), squared, aver- 

 age of (<υ2>) 2 4 

     calculation of, 4 and ideal gas law 8 9 

Velocity distribution(s) 

     as even function of υ 8 

    of fluid in cylindrical tube 140 140f 

    functional form of 25 

    independent 8 9 
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    one-dimensional 10 11f 

    three-dimensional 10 

  depends only on speed 8 11 

    uncorrelated 8 9 

Vibrational energy transfer 292 293f 308 

Vibrational frequency 104 112 114 

Vibrational motion, partition func- 

 tion for 104 104t 105 

Vibrational relaxation 209 210f 

Vibration-translation energy transfer 292 310 

    mass dependence of 295 

Vibration-vibration energy 

       transfer 292 

Viscosity 116 117 118t 127

   127f 

    Newton’s law of 128 

    quantity (property) carried in 118 119 

Viscosity coefficient (η) 118 128 141 

    calculation of molecular diameter from 129 

    equation for 139 

    of fluid, measurement of 130 

    independence of pressure 128 

    for motion in liquid 147 

    units of 128 

    for various substances, at 273 K 128t 

v-J correlation 243 

Volume flux 130 

W 

Water 

    dissociation dynamics of 226 227f 

    potential energy curves for, as 

  function of R 226 226f 

    viscosity coefficient for, at 298 K 128t 

Waterston, John James 2 

Wilhelmy, L. 35 
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Xenon bromide, fluorescence energy 

 spectrum of 254 254f 

Xenon-xenon,   diffusion coefficient 

 (D) for, at 273 K and 1 atm 131t 

Z 

Zero-point energy 94 
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