南 强 讲 座


题 目: Systems and Interfaces: Controlling Bio and Catalytic Processes
    (用于控制生物与催化过程的系统与界面)
报告人: Prof. Galen D. Stucky
   美国艺术与科学院院士, 美国加州大学圣芭芭拉分校化学与生物化学系、材料系教授

时 间: 2008年10月8日(周三)下午 4:30
地 点: 嘉庚主楼220会议室

报告人简介:
  Galen D. Stucky教授是美国加州大学圣芭芭拉分校(University of California-Santa Barbara) 化学与生物化学系、材料系教授,并担任新加坡生物工程与纳米技术研究院的科学顾问委员会的联合主席。1994年当选美国科学促进会成员,2005年当选美国艺术与科学院院士。近年的奖项包括2000年的洪堡研究奖、2002年的美国化学会材料化学奖、2003年的IBM学院奖、2004年的国际介孔材料学会奖、2008年美国国防部的战争伤亡救助先进技术应用奖。近年亦被聘为北京大学客座教授、复旦大学荣誉教授。Stucky教授长期活跃于美国化学界,曾任美国化学会无机化学部主任、《无机化学》,现为《Nano Letters》、《Small》等多个杂志的评委会成员。

  作为世界知名的无机材料化学家,Stucky教授的研究兴趣极广, 涉及多孔材料、纳米材料、光学材料、仿生材料、太阳能转化、生物矿化、天然气转化、催化等多个交叉领域,长期以来,他的研究工作一直是相关领域的焦点并走在世界的最前沿。Stucky教授已发表论文630余篇,进十年论文的引用已超过两万次,最高单篇2600余次,Science/Nature 25篇,获美国专利17项。Stucky教授是在化学和材料界发表论文引用率最高的科学家之一,他的SBA类介孔材料的相关研究论文均处于《美国化学会会志》、《材料化学(Chem. Mater.)》等重要化学、材料期刊的论文引用排行榜的榜首。 

报告简介:
  The dynamic and often subtle interactions among organic and inorganic species and/or organized arrays covers a wide kinetic and thermodynamic phase space that offers almost unlimited opportunities to synthesize hierarchical multifunctional systems; and, to subsequently use the multifunctional interface chemistry to modify catalytic and bio processes. This talk will focus on two examples of some recent research on the use of inorganic species to control catalytic and bioprocesses. The first example is based on the search for a viable approach to make more efficient use of stranded natural gas by eliminating the need for flaring or reinjection into gas/oil producing geological formations. The target in this case is to selectively go directly from methane and the light hydrocarbons found in natural gas to gasoline or to petrochemical precursors needed and used for commercial carbon containing commodities. The challenge is to replace the Syngas and Fischer Tropsch processes using a smaller platform that can utilized, for example, on ocean based oil platforms. The second example involves the development of a protocol to accelerate or inhibit blood coagulation by using an inorganic-blood interface that selectively controls local electrolyte conditions, local dehydration, heating of blood, and presentation of a high surface area, charged polar surface that defines the interface chemistry created upon contact with the blood clotting cascade. Methods for optimizing the heat response of inorganic-based hemostatic materials, as well as incorporating antibacterial activity, will be described. By monitoring both the hemostatic and bone-forming activity of newly prepared mesostructured hemostatic bioactive glasses that have different compositions, an interesting inverse relationship for this class of wound healing materials has been determined. The relationship between in vitro research and in vivo testing, as well as the ultimate practical commercial evaluation and application will also summarized.